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A new method for pole figure measurement is described, entitled a dynamic

segmented spiral scheme. Compared with the schemes currently in use, the

dynamically segmented spiral scheme is shown to have advantages in terms of

evenness of pole figure coverage and phase fraction accuracy. The phase fraction

accuracy is shown to be robust for a variety of texture components commonly

encountered in steels and for texture sharpness exceeding what is commonly

encountered for rolled sheet steels. This scheme provides a promising

alternative to conventional methods of simultaneous texture and phase fraction

measurement.

1. Background

Many engineering materials make use of multiple crystalline

phases to produce properties that are an improvement upon

what can be achieved by a single phase. Recent advances in

materials science have enabled the development of several

classes of materials that take advantage of effects introduced

by additional phases, one example of which is provided by

third-generation advanced high strength steels (Han et al.,

2009; De Moor et al., 2010; Abu-Farha et al., 2018). In addition

to phase fraction information, crystallographic texture is

another key parameter to quantify, as the processing,

production, use and failure modes may depend on the

arrangement of the microstructure. Therefore accurate

measurement of both the phase fraction and texture is often

key for the verification of material design and prediction of

material behavior.

A common method for collecting and displaying crystal-

lographic texture data is the use of pole figures (Bunge, 1982;

Kocks et al., 1998). These are a stereographic representation of

intensity variations in a material, plotted for a particular hkl

plane as a function of sample orientation. Sample orientation

vectors for rolled sheets are often expressed in terms of the

rolling direction (RD), transverse direction (TD) and normal

direction (ND). Pole figures are typically collected by moving

the sample through a series of rotations and hkl planes. A

more complete representation of crystallographic texture,

termed an orientation distribution function (ODF), can be

calculated using data from several pole figures through pole

figure inversion techniques: spherical harmonics (Bunge, 1982;

Roe, 1965), WIMV (Matthies & Vinel, 1982), EWIMV

(Lutterotti et al., 2004) and summation of radially symmetric

functions (Hielscher & Schaeben, 2008). These pole figure

inversion techniques have been implemented in PopLA

(Kallend et al., 1991), BEARTEX (Wenk et al., 1998), MAUD

(Lutteroti, 2000) and mtex (Hielscher & Schaeben, 2008).
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Numerous laboratory diffraction instruments, synchrotron

X-ray beamlines and neutron beamlines can provide phase

fraction and crystallographic texture measurements. Data

from these instruments can often be used to measure simul-

taneously both phase fractions and crystallographic texture.

As many advanced materials use metastable phases, the

traditional approach of powdering a sample will result in

inaccurate phase measurements, as some portion of the

sample may transform into other phases. Phase fraction and

stability are often functions of composition and processing,

necessitating measurements on the material as produced.

When diffraction data are recorded, the phase fraction data

are often calculated from a simple summation (Jatczak et al.,

1980; Creuziger et al., 2021) over all diffraction vectors (i.e.

positions on a pole figure) measured. However, as shown by

Creuziger et al. (2021, 2018a), summation alone can lead to

bias in the phase fraction. Bias errors were found to be

negligible when a series of diffraction vectors were evenly

distributed over a pole figure. Phase measurements that take

the texture of the sample into account, either by simulta-

neously fitting the texture and phase fraction (co-refinement)

(Wenk et al., 2003; Matthies et al., 2005; Larson &Dreele, 2004;

Toby &Von Dreele, 2013) or by even measurement of the pole

figure (Creuziger et al., 2018a), should be more accurate.

Co-refinement algorithms applied to diffraction data typi-

cally rely on two alternating fitting sequences: first a fit of the

texture, and second a propagation of the texture values to

each diffraction peak to modify the intensity as a function of

the relative sample orientation. This technique has been

routinely applied for several time-of-flight (TOF) neutron

sources such as HIPPO (Wenk et al., 2010), iMATERIA

(Onuki et al., 2020), TAKUMI (Xu et al., 2018) and NOMAD

(Peterson et al., 2021). As shown for a limestone sample

investigated as part of a round robin (Wenk, 1991; Lutterotti et

al., 1997), it is possible to get consistent texture data from the

co-refinement approach.

By contrast, the phase fraction accuracy of the co-refinement

technique has not been studied as extensively. As noted in

several quantitative phase analysis round robins involving

Rietveld refinement that do not add the additional complexity

of texture effects (powdered materials), significant deviations

can occur due to choices made by the operator (Madsen et al.,

2001; Fawcett et al., 2010). The large number of variables

(Fawcett et al., 2010), the dependence of accuracy on

converged parameters across all data sets (Vogel et al., 2018),

the complex procedure (Wenk et al., 2010) and the effect of

order of refinement (Rowles, 2021) have each been identified

as contributing factors in these deviations. One advantage of

complete and even pole figure measurement techniques to

determine phase fraction is that the bias errors due to texture

are accounted for without requiring Rietveld refinement.

However, a disadvantage of the complete pole figure tech-

nique is that the number of peaks measured is typically lower,

which can introduce other errors in phase fraction measure-

ments.

Electron backscatter diffraction (EBSD) is another tech-

nique that is routinely used for texture and phase fraction

measurements (Schwartz et al., 2009). This technique typically

provides a spatial map of the phases and orientations present

on a prepared surface. While growing in usage, there are a

number of challenges for accurate measurements. For texture

measurements, the number of grains required for accuracy is

estimated to be 10 000 (Wright et al., 2007). The data sets and

time required for each scan grow rapidly if the suggested

number of EBSD points per grain for grain size measurements

(>100; International Organization for Standardization, 2020)

are recorded. Wright et al. (2007) noted that differences in

grain size between phases can cause additional challenges. The

step size and data cleaning choices are also likely to have an

impact on the accuracy of the measurements, particularly if

the phases have different grain sizes or shapes.

A series of diffraction vectors for texture measurements via

pole figures has been termed a sampling scheme by Kocks et

al. (1998), and their work also includes some examples. Awell

known sampling scheme is the equal angle grid, where the

diffraction vectors are arranged in an even grid of angles

(often with 5� resolution). As noted by Kocks et al. (1998),

these equal angle grids result in an uneven distribution of pole

figure area coverage. The hexagonal grids of Matthies

(Matthies &Wenk, 1992) and Rizzie (2008) were developed to

address the problem of uneven area coverage. These grids

have an additional benefit in that, for a given sampling scheme

resolution, they reduce the number of measurement points

compared with an equal angle grid.

Prior to the use and development of equal angle and

hexagonal sampling schemes, spiral sampling schemes were

developed. As shown in some of the original work by Holden

(1953) and included in the book by Klug & Alexander (1974),

these early spiral schemes were accomplished by mechanical

linkages between the tilt and rotation motors. This arrange-

ment results in a spiral that has a constant rate of expansion

(i.e. an Archimedean spiral). While computer control of the

X-ray goniometer stage has made mechanical linkages obso-

lete and therefore spiral techniques have fallen out of use,

spiral schemes have the advantage of allowing continuous

motion of the sample. However, the use of a mechanical

linkage for a spiral scheme (or reproduction via computer

control) will probably result in uneven pole figure area

coverage, similar to the equal angle grid demonstrated by

Kocks et al. (1998).

This paper demonstrates a new spiral scheme with even

pole figure area coverage, termed a dynamic segmented spiral

(DSS). The DSS scheme was developed to cover the pole

figure space more evenly, with the hypothesis that more even

coverage will provide a more accurate phase fraction and

texture measurement than other sampling schemes. The spiral

motion also allows for simple summation and continuous

motion, unlike more discrete schemes.

2. Methods

To eliminate additional sources of variation inherent in

experimental data and analysis methods, this work uses

simulated texture and phase data, as done by Creuziger et al.
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(2018a). In order to achieve complete pole figure coverage, the

sampling schemes explored here assume a transmission

geometry. Fig. 1 is an illustration of a goniometer and the

angle conventions used for neutron diffraction. The effects of

incomplete pole figure coverage and intensity corrections

from sample tilt, such as are commonly encountered in

reflection geometry, are outside the scope of this work.

Four different sampling schemes were explored, the new

DSS scheme, the hexagonal grids of Matthies and Rizzie, and

the Holden spiral scheme. The number and distribution of

diffraction vectors are compared between the four sampling

schemes, together with ODF accuracy and accuracy of the

phase fraction by summation. For comparison, a common

resolution parameter (�) was used in the construction of each

sampling scheme. The code base developed by Creuziger et al.

(2018a) was built upon in this work, with observations on even

pole figure coverage from Creuziger et al. (2021) used to

inform the DSS scheme. The code used for this work is

available at https://github.com/usnistgov/Texture-Sampling-

PhaseMeasurement-BiasErrors as release 2.2.0.

2.1. Definition of the DSS

To create a spiral with even pole figure area coverage, the

pole figure sphere is divided into discrete spherical segments.

As shown by Creuziger et al. (2021), spherical segments

provide a simple calculation for spherical area. The polar

angle between each pair of adjacent segments is defined by a

resolution parameter (�). The spiral scheme iterates through a

full goniometer rotation (0 < � � 360�) while the range of the
goniometer tilt (�) is limited within the range of each spherical

segment. The initial point of the spiral is set at �0 = 90� and
�0 = 0�. The next step in the spiral is determined by equations

(1)–(5):

p ¼ 360�

�
sinð�n�1Þ; ð1Þ

�s ¼
360�

p
; ð2Þ

�s ¼
�

p
; ð3Þ

�n ¼ �n�1 þ �s; ð4Þ

�n ¼ �n�1 � �s: ð5Þ
The step increments �s and �s are updated on the basis of the

prior � value. Any additional rotation beyond � > 360� is also
retained in this method when moving to the next spherical

segment. The tilt increment value is therefore small at the start

of the spiral and increases continuously towards the center of

the pole figure. This spiral scheme is termed a dynamic

segmented spiral (DSS) in the rest of this work.

2.1.1. Holden spiral. The construction of the Holden spiral

uses a constant rate of rotation for � and a scaled rate of

rotation for �. The rate of expansion of the Holden spiral is set

by the same resolution parameter (�) as is used in the DSS.

Using the initial point �0 = 0� and for �n � 360�ð90�=�Þ, the
Holden spiral is defined by equations (6) and (7):

�n ¼ �n�1 þ �; ð6Þ

�n ¼ �n

�

360�
: ð7Þ

2.1.2. Rizzie hexagonal grid. The construction of the Rizzie

hexagonal grid described in equations (8)–(18) is largely

identical to the description given by Rizzie (2008), where a

mesh of equilateral triangles is placed over an equal area pole

figure. However, stereographic conversions for equal area

(Kocks et al., 1998) are now explicitly added [replacing R in the

work of Rizzie (2008) with Dmax here]. �max was set equal to

90�. The resolution parameter (�) is used to determine the

value of N,

N ¼ 90�

�
: ð8Þ

The maximum value of tilt is converted to a Dmax value using

the equation for an equal area stereographic projection,

Dmax ¼ 2 sinð�max=2Þ: ð9Þ
To construct the grid, an integer series j is used, with

j ¼ f0; 1; 2; . . .g ð10Þ
and a constructor function yj defined as

yj ¼ j
ð31=2ÞDmax

2N
: ð11Þ

The values for j are limited by the inequality

jyjj � Dmax: ð12Þ
A second integer series i takes values within the inequality,

i
Dmax

N
� ðDmaxÞ2 � ðyjÞ2

� �1=2
: ð13Þ
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Figure 1
A sketch of a goniometer for pole figure measurements in transmission
geometry, with rotation (�) and tilt (�) axes labeled. The Bragg angle (�)
is also shown, but is not considered in this work. Courtesy of Thomas
Gnäupel-Herold.
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The constructor function xij takes the following values:

xi j ¼ ðDmax=NÞ i if j mod 2 ¼ 0;
ðDmax=2NÞ þ ðDmax=NÞ i if j mod 2 ¼ 1:

�
ð14Þ

The constructor functions are then used to calculate the tilt

with an intermediate step,

Dij ¼ ðxijÞ2 þ ðyjÞ2
� �1=2

; ð15Þ
before using the inverse stereographic function to determine

the tilt position �ij ,

�ij ¼ 2 arcsin
Dij

2

� �
: ð16Þ

The rotation positions for the first and second quadrants of the

pole figure are found from

�ij ¼
arctanðyj=xijÞ if xij > 0;
90� if xij ¼ 0,

arctanðyj=xijÞ þ 180� if xij < 0;

8<
: ð17Þ

while the rotation positions for the third and fourth quadrants

are found from

�ij ¼
arctanðyj=xijÞ þ 180� if xij > 0;
270� if xij ¼ 0,

arctanðyjxijÞ þ 360� if xij < 0:

8<
: ð18Þ

2.1.3. Matthies hexagonal grid. The Matthies hexagonal

grid is based on hexagonal tiles covering a pole figure, but is

implemented as a series of concentric rings. The original

reference for the Matthies hexagonal grid (Matthies & Wenk,

1992) does not include an explicit algorithm for how to

construct the grid. However, this grid is implemented at the

National Institute of Standards and Technology (NIST)

Center for Neutron Research (NCNR) on the Residual Stress

Diffractometer (Brand et al., 1997) and the algorithm was

provided to the present authors. � is a resolution parameter as

described above. In this case, the discretization occurs in the

rotation n� and is described in equations (19)–(23).

n� ¼ 360�

�

� �
; ð19Þ

where b c indicates rounding to the nearest whole number.

Similarly to the Rizzie hexagonal grid, two integer series are

used in the grid construction, limited by the inequality 6i � n�
for i,

i ¼ 0; 1; 2; . . . ;
n�

6

n o
; ð20Þ

and limited by the inequality j � n� � 6i for j,

j ¼ f1; 2; . . . ; ðn� � 6iÞg: ð21Þ
The tilt and rotation positions are then set by

�ij ¼
360�

n� � 6i
ðj� 1Þ; ð22Þ

�ij ¼ 2 arcsin
21=2

2

ðn�=6Þ � i

ðn�=6Þ
	 


: ð23Þ

While it is possible to move the sample continuously along a

spiral path, for our comparison with other sampling schemes a

discrete approach was used. The time required to traverse

each spiral was divided into equal increments, and the

diffraction vector position at each increment was determined

for both the DSS and the Holden spiral. Discretization also

permits a calculation for the ‘number of points’ as measured

by the spiral schemes for comparison with the hexagonal grids.

Experimentally, the total measurement time is expected to be

a multiple of the number of points measured. In this work the

additional time required for motor motion is not directly

discussed, but the motor motion time is expected to correlate

with the number of points measured. The code for each of

these equations has been implemented in the program at

https://github.com/usnistgov/Texture-Sampling-Phase

Measurement-BiasErrors (Creuziger et al., 2018b) and is

available there for reference or use.

2.2. Sampling scheme comparison

To compare the evenness of pole figure area coverage,

oversampling plots were created using the density contour

function in the mplstereonet package (Kington, 2015). This

function discretizes the pole figure into small areas (each

approximately 1% of the total hemisphere area) and computes

the number of points inside each area (option ‘Schmidt’ in

mplstereonet). The number of points per area is then

normalized and depicted as a filled contour function. The

values of the contour function represent the density of points,

which is equivalent to the number of times a particular area is

oversampled (values > 1), undersampled (values < 1) or

evenly sampled (= 1).

To compare the distribution of diffraction vectors, histo-

grams of the closest adjacent vector were calculated. A matrix

of dot products for each vector series was computed and

sorted by value, and the second term was retained (as the first

term corresponds to 0, the vector dotted with itself). These

histograms are expressed as a relative probability for

comparison.

2.3. ODF accuracy

Following the work described by Creuziger et al. (2021,

2018a), 20 common texture components for rolled steel sheets

were used to assess the accuracy of the ODFs. These texture

components are separated into seven face-centered cubic

components for the austenite (�) phase and 13 body-centered

cubic components for the ferrite (�) phase. These components

are commonly encountered during rolling processes (Dilla-

more & Roberts, 1964; Bleck et al., 1991; Kocks et al., 1998;

Kestens & Jonas, 2005) and were implemented via the texture

analysis package mtex (Hielscher & Schaeben, 2008) with

cubic crystal symmetry and orthotropic sample symmetry.

An ODF for each texture component was created and

pole figures using each of the four sampling schemes were
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calculated. Pole figures for the hkl planes (111), (200) and

(220) for the austenite phase and the (110), (200) and (211)

planes for the ferrite phase were chosen for this work. Using

these pole figures as input, a recalculated ODF was created.

The difference between the original ODFand the recalculated

ODF was determined, and the mean difference was calculated

for each texture component. For this analysis, the pole figure

resolution parameter � was fixed at 5�, and the half-width of

the recalculated ODF was also fixed at 5� to match the pole

figure resolution.

The sharpness of individual texture components was also

investigated. Texture sharpness was implemented by assigning

variable half-width values to each of the individual texture

components to create an orientation distribution function

(ODF). A half-width range from 2.5 to 50� was analyzed in this
work.

2.4. Phase fraction accuracy with textured data

As discussed previously by Creuziger et al. (2021, 2018a),

crystallographic texture and oversampling can affect phase

fraction measurements. The common ODF components listed

in the previous section were also used to assess the accuracy of

phase fractions determined by summation.

The phase fraction calculations follow the equations laid

out by Creuziger et al. (2021). ODFs were used to calculate

pole figures for a selection of hkl planes. Pole figure normal-

ized intensity values ÎIhklð�; �Þ for each hkl were extracted

from these pole figures. Note that this intensity normalization

is not the same as traditional normalization by the theoretical

intensities but is solely based on texture and sampling effects.

The pole figure normalized intensity bypasses sources of

variation other than the sampling scheme and crystallographic

texture. Interpolated values were used when the required

(�, �) values were not coincident with the original pole figure

grid. These pole figure normalized intensity values are given in

terms of multiples of a uniform (or random) distribution. To

investigate the bias errors in the phase fraction measurement,

a known phase fraction was imposed on the data. In this work

an austenite phase fraction (�) of 0.25 and ferrite phase frac-

tion of 0.75 (1 � �) were used, matching the values assumed by

Creuziger et al. (2018a). The austenite phase fraction V� is

calculated from a rule of mixtures,

V� ¼
�ÎI�

�ÎI� þ ð1� �Þ ÎI�
; ð24Þ

where ÎI� and ÎI� are the average of all ÎI
hklð�; �Þ values

measured for each phase.

As with the ODF reconstruction, the particular hkl planes

used to calculate the phase fraction can affect the accuracy of

phase fraction measurement (Creuziger et al., 2021, 2018a).

Common approaches include using intensity data from a select

list of measured peaks or fitting the entire spectrum of data

(i.e. Rietveld refinement). Evaluating the question of which

particular peak choice selections are optimal was outside the

scope of this project. The hkl planes (111), (200) and (220) for

the austenite phase and the (110), (200) and (211) planes for

the ferrite phase were chosen as benchmarks for this work, as

in the ODF reconstruction.

3. Results

3.1. Comparison of sampling schemes

A discrete representation of the DSS scheme is shown

Fig. 2(a). Discrete representations of the spiral scheme of

Holden [Fig. 2(b)], the hexagonal grid of Rizzie [Fig. 2(c)] and

the hexagonal grid of Matthies [Fig. 2(d)] are also shown. To

facilitate comparison between the schemes, each plot shown in

Fig. 2 uses a resolution of � = 5�. Table 1 includes the number

of discrete points generated for each of the four schemes with

resolutions of � = 2.5, 5 and 10�. Fig. 3 shows oversampling

plots for each scheme with a common resolution of � = 5�.
Histograms of the closest adjacent vector are shown in Fig. 4.
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Table 1
A summary of the number of sampling points for each tested scheme
resolution.

Scheme resolution DSS Holden Rizzie Matthies

2.5� 3303 5185 3805 1801
5.0� 828 1297 955 469
10.0� 209 325 241 127

Figure 2
Discrete scatter plots of the sampling schemes, (a) the new DSS scheme,
(b) the Holden spiral, (c) the Rizzie grid and (d) the Matthies hexagonal
scheme. All are plotted on an equal area pole figure with axes x = rolling
direction (RD), y = transverse direction (TD) and z = normal direction
(ND). All plots use a scheme resolution of � = 5� and an equal area
stereographic projection
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As Figs. 2(a) and 3(a) show, the DSS scheme has an even

distribution of points across the pole figure. The points are

arranged as nearly concentric rings with an offset determined

by �. The contour plot in Fig. 3(a) indicates slight oversampling

along the ND and along the periphery of the pole figure (RD–

TD plane) at the top right and bottom left. The periphery at

the top left and bottom right was slightly undersampled. The

over- and undersampling along the periphery is due to the

proximity of the points to the � = 90� boundary, which is a

symmetry plane for the pole figure (Kington, 2015). If the

points are close to this boundary, they represent an over-

sampling, as shown by comparing Figs. 2(a) and 3(a). Table 1

shows that the DSS has fewer points than the Rizzie and

Holden schemes but more than the Matthies scheme.

While the path of the Holden spiral is similar to that of the

DSS, the rate at which the spiral completes one revolution is

equal to the rate at which the spiral expands outwards. As

shown in Fig. 2(b), the region along the ND is heavily clus-

tered with sampling points, while the periphery of the scheme

pole figure grid is more sparsely populated with sampling

points. The oversampling plot in Fig. 3(b) demonstrates this

oversampling quite visibly along the ND, with a maximum

value of 10, exceeding the upper bound of the color range used

for the plots in Fig. 3. At � = 5� the Holden spiral samples 1297

points (Table 1), a greater number than any other sampling

scheme explored in this work.

The Rizzie grid [Fig. 2(c)]

samples the pole figure in a

column-like arrangement of

sampling points moving left to

right on the pole figure, as

opposed to the nearly concentric

rings of sampling seen on the

spiral scheme grids in Figs. 2(a)

and 2(b). Similar to the DSS

shown in Fig. 3(a), the distribu-

tion of points for the Rizzie grid

shown in Fig. 3(c) is fairly even

across the entire pole figure.

There are small areas of under-

sampling at 60� incremental

patches along the � = 90�

boundary of the pole figure,

corresponding to an ‘edge’ of the

hexagonal grid. As listed in

Table 1, the Rizzie grid has more

points than the DSS, but fewer

than the Holden spiral.

The Matthies hexagonal

scheme shown in Fig. 2(d) seems

to blend concepts from both the

spiral schemes and the Rizzie

grid, adopting a concentric

sampling pattern and a hexagonal

arrangement of sampling points.

However, the oversampling plot

shown in Fig. 3(d) indicates an
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Figure 4
Normalized histograms showing the relative probability distributions of the angle to the closest adjacent
scattering vector for the sampling schemes, (a) the DSS, (b) the Holden spiral, (c) the Rizzie grid and (d) the
Matthies hexagonal scheme. All plots use a scheme resolution of � = 5�. Note the y-axis scales are dissimilar
to show details of the distribution.

Figure 3
Filled contour plots of the sampling schemes, (a) the DSS, (b) the Holden
spiral, (c) the Rizzie grid and (d) the Matthies hexagonal scheme. The
color axes show the oversampling multiple (density of points).
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oversampling by a factor of 2 along the outer ring of the pole

figure. This oversampling is probably due to the points on the

outer ring lying on the � = 90� boundary, which is a symmetry

line between the upper and lower halves of the pole figures.

The obvious advantage of this scheme is shown in Table 1, as

the Matthies hexagonal scheme requires the lowest number of

points of any scheme investigated, with approximately half as

many points as the Rizzie grid and DSS.

The histograms shown in Fig. 4 provide additional details on

the distribution of diffraction vectors. While each sampling

scheme uses a common resolution parameter value of � = 5� in
its construction, the range and distribution of values differ

between the schemes. For the DSS shown in Fig. 4(a), the

median value of this distribution is 5.0� with the distribution

narrowly grouped at 5�. A few adjacent vectors with a smaller

angle can be seen with low relative probability. The Holden

spiral shown in Fig. 4(b) has a quite different distribution, with

the relative probability initially sharply decreasing at smaller

angles, but reaching a constant value between 3.0 and 0�. The
median value of the Holden spiral is 3.5�. While the extent of

the Rizzie hexagonal grid shown in Fig. 4(c) is comparable to

that of the DSS, the Rizzie hexagonal grid has a wider spread

near 5�, with a greater proportion of adjacent vectors smaller

than 5�. The median value of the Rizzie hexagonal grid is 4.5�.
The Matthies hexagonal scheme shown in Fig. 4(d) has a

similar spread to the Rizzie grid, but the Matthies hexagonal

scheme is biased towards larger values of adjacent vector

angle. The median value for the Matthies hexagonal scheme is

6.0�. There is also a significant distribution of values at 0� for
the Matthies hexagonal scheme, supporting the oversampling

plot in Fig. 3(d) at � = 90� values.

3.2. Comparison of ODF accuracy

The ODF reconstruction accuracy is shown in Table 2. The

accuracy in ODF reconstruction was not greatly affected by

the sampling scheme. The Holden spiral performed slightly

worse than the other three schemes for the entire range of

component half-widths. As expected, component half-widths

that were smaller than or equal to the sampling scheme

resolution of � = 5� (and reconstructed ODF resolution of 5�)
have significant errors. At component half-widths greater than

30�, the errors approach zero as there is minimal texture in the

ODFs. Thus, half-width values greater than 30� are not

included in Table 2.

3.3. Comparison of phase fraction accuracy

The oversampling plots suggest there may be bias errors in

the phase fraction due to some regions of the pole figures

being measured with greater frequency than others. Fig. 5

shows the range of calculated phase fractions for each scheme.

The range of phase fractions comes from calculations for all 91

(7 � 13) texture component combinations at each ODF half-

width value. The scheme resolution � was held constant at 5�

for each scheme. A 5% relative error bound on the phase

fraction was used as a benchmark for ‘tolerable’ error, as done

by Creuziger et al. (2018a). While ODF half-width values up to

50� were investigated, the range of ODF half-widths plotted in

Fig. 5 was reduced as the values converged at larger values of

ODF half-width, similar to Table 2. This method of plotting

does not preserve information on which texture components

contribute most significantly to the variation. Heat maps of the

phase fraction for each texture combination are available in

the supporting information that accompanies this paper.

The ranges of texture-induced bias errors in the phase

fraction calculation are comparable for the DSS and Rizzie

grid schemes. For both, the ranges of bias errors are within the

5% relative error bounds for ODF half-widths greater than or

equal to 5�. For the Matthies scheme, bias errors were nearly

within a 5% relative error bound for ODF half-widths greater

than or equal to 10�. The Holden spiral had errors that

exceeded the 5% relative error bound until an ODF half-

width of 30�.
Restating these observations in a different way, for the DSS

scheme and Rizzie grid a scheme resolution of � = 5� was

accurately able to measure phase fractions in materials with

texture sharpness comparable to a half-width of 5�. For the
Matthies grid, a scheme resolution of � = 5� was only able to
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Table 2
ODF error (mean difference) per sampling scheme and component half-
width.

ODF error is caculated as an average for all components. Units are multiples
of a uniform or random distribution. The data use a scheme resolution of � =
5� and reconstructed ODF half-width of 5�.

Component half-width DSS Holden Rizzie Matthies

2.5� 1.158 1.305 1.161 1.201
5.0� 0.235 0.321 0.235 0.238
10.0� 0.059 0.084 0.060 0.065
15.0� 0.045 0.069 0.046 0.049
20.0� 0.027 0.046 0.026 0.031
25.0� 0.025 0.032 0.025 0.027
30.0� 0.019 0.021 0.019 0.020

Figure 5
A comparison of the phase fraction error range for all four schemes. The
scheme resolution was fixed at � = 5�.
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measure phase fractions accurately in materials with texture

sharpness comparable to a half-width of 10�. Finally, the

Holden spiral was only able to measure phase fractions

accurately in materials with texture sharpness comparable to a

half-width of 30�. Inspection of the experimental ODFs by

Kocks et al. (1998), Dillamore & Roberts (1964), Bleck et al.

(1991) and Kestens & Jonas (2005) indicates texture sharp-

nesses of the order of ODF half-widths of 5–20� are commonly

encountered.

4. Discussion

The DSS scheme has successfully been demonstrated to have

more even pole figure coverage than the other schemes

explored, comparable phase fraction accuracy to the Rizzie

hexagonal scheme and approximately 13% fewer points than

the Rizzie hexagonal scheme. This phase accuracy is largely

due to the dynamic nature of updating the angular increment

as a function of tilt and not forcing each segment to reset at 0�

on each rotation. In addition, unlike the Rizzie or Matthies

schemes, the DSS can be run continuously, possibly allowing

for additional data to be recorded while traversing the spiral.

As Fig. 4 shows, the DSS has the tightest spread and a median

value that matches �.
There are significant disadvantages to the Holden spiral

scheme compared with the DSS. While they both share a

fundamental spiral pattern, the DSS offers significant

improvements in measurement accuracy and measurement

time. Given their common origin, they both experience some

level of uneven sampling along the ND and along the

periphery of the pole figure, but this unevenness is much

greater in the Holden spiral. As the ND orientation corre-

sponds directly to many common texture orientations, there

are several textures that affect the ability of this scheme to

mitigate measurement error effectively.

Comparing the DSS and the Rizzie grid, both schemes

nearly evenly cover the pole figure. The DSS shows slight

oversampling along the ND compared with the Rizzie grid,

while the Rizzie grid has a few regions of undersampling

arranged in a 60� pattern along the periphery of the pole

figure. These differences account for the slight differences in

which texture components cause bias errors. As noted above,

the DSS accomplishes even pole figure coverage with fewer

measurement points than the Rizzie grid. The motor motion

for the DSS is also more continuous than the Rizzie grid,

which requires more motor oscillation to reach each

prescribed tilt angle.

The Matthies hexagonal scheme has a strong advantage

over the DSS in terms of the number of points required, as the

Matthies hexagonal scheme samples nearly 50% fewer points

than either the spiral scheme or the Rizzie hexagonal grid.

However, the effective resolution of the Matthies hexagonal

grid is 6�, as shown in Fig. 4(d), despite the use of a resolution

parameter of � = 5�. In addition, the Matthies hexagonal

scheme oversamples along the periphery of the pole figure,

resulting in more bias errors that are more significant than for

the DSS or the Rizzie hexagonal scheme. This oversampling is

due to the points lying on the � = 90� symmetry boundary.

While locating the points along the RD–TD plane is advan-

tageous for pole figure measurements, weighting these points

by a factor of 0.5 relative to interior points or only measuring

� � 180� (due to sample symmetry) may improve accuracy for

phase fractions.

Despite all four grids having a fixed scheme resolution � in
this analysis, there are differences in the number of nearest

neighbors and in the angular distance to neighboring points.

The scatter plot for the Matthies grid [Fig. 2(d)] visually

appears less dense than those of the spiral [Fig. 2(a)] and

Rizzie hexagonal grid [Fig. 2(c)]. In general, the scheme

resolution parameter does not match the actual distribution.

As Table 2 shows, the ODFaccuracy does not depend strongly

on the scheme used, up to the resolution limit of the pole

figure and/or ODF.

The Matthies hexagonal scheme has correspondingly larger

phase fraction errors than the Rizzie hexagonal and DSS

schemes, and phase fraction errors outside the error bounds

for half-widths less than 10�. However, as many common

rolling textures can be approximated by texture components

with a half-width ranging from 10 to 20�, the advantage of

fewer points may outweigh the decreased accuracy.

Reversing the criteria of scheme resolution and texture

half-width, one can get an estimate of how sharp a texture a

particular sampling scheme can resolve. In the cases of the

DSS and Rizzie grids, the scheme resolution should be

approximately half of the ODF half-width value. The texture

literature currently offers little guidance on how best to assess

whether an ODF is artificially ‘smoothed’ due to the pole

figure resolution.

5. Conclusions

This paper has successfully demonstrated a new spiral scheme

for conducting diffraction experiments. Compared with

schemes currently in use, the new dynamically segmented

spiral scheme has advantages in terms of evenness of pole

figure coverage, number of points (time per measurement)

and phase fraction accuracy. The phase fraction accuracy has

been shown to be robust for a variety of texture components

commonly encountered in steels and for texture sharpness

exceeding what is commonly encountered for rolled sheet

steels.

This scheme provides a promising alternative to conven-

tional methods of simultaneous texture and phase fraction

measurement and takes advantage of modern computer

control no longer requiring mechanical linkages.
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