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A B S T R A C T   

In this article, we describe training and validation of a machine learning model for the prediction of organic 
compound normal boiling points. Data are drawn from the experimental literature as captured in the NIST 
Thermodynamics Research Center (TRC) SOURCE Data Archival System. The machine learning model is based on 
a graph neural network approach, a methodology that has proven powerful when applied to a variety of chemical 
problems. Model input is extracted from a 2D sketch of the molecule, making the methodology suitable for rapid 
prediction of normal boiling points in a wide variety of scenarios. Our final model predicts normal boiling points 
within 6 K (corresponding to a mean absolute percent error of 1.32%) with sample standard deviation less than 8 
K. Additionally, we found that our model robustly identifies errors in the input data set during the model training 
phase, thereby further motivating the utility of systematic data exploration approaches for data-related efforts.   

1. Introduction 

Determination of the normal boiling point has an interesting history 
dating back hundreds of years [1]. Predictive models for normal boiling 
point were developed as early as 1842 by Kopp who studied the corre
lations of molecular volume to various chemical and physical properties 
and noted a 19 ◦C increment in temperature per carbon group in a ho
mologous series of hydrocarbons [2–5]. In 1905, Young summarized and 
extended the work of the previous century, and proposed a more 
complicated formula for the boiling point increment for a series of 
related compounds [6]. In 1937, Aten noted some of the difficulties of 
Young’s approach and reverted to an expression published by 
Boggio-Lera in 1899 that demonstrated a linear relationship between the 
square of the boiling point of a compound in a homologous series and 
the number of CH2 groups [7,8]. 

In 1947, Wiener published a seminal paper introducing a “path 
number,” now known as the Wiener index, to aid in the determination of 
boiling points for alkanes [9]. In creating his index, Wiener leveraged 
the work of Taylor, Pignocco, and Rossini who had previously reported 
predictions of boiling points of alkane and alkene substances [10]. 
Structural indices have been widely applied and extended in property 
prediction. For example, the “topological index” defined by Hosoya was 

cited as correlating particularly well with the boiling point [11]. 
More recent work takes advantage of a larger database of measured 

boiling points and makes predictions for a wider variety of chemicals. 
Notably, Stein and Brown used a database of 4,426 organic chemical 
compounds to fit a group contribution model with a mean absolute error 
of 15.5 K (3.2%) [12]. When their model was tested against an addi
tional 6,584 compounds not used in fitting, the error increased to 20.4 K 
(4.3%). This model was incorporated into the United States Environ
mental Protection Agency’s (EPA) EPI Suite program that predicts a 
number of properties for a variety of compounds using molecular 
structure information [13]. 

Quantitative Structure-Property Relationship (QSPR) models have 
been used extensively in making predictions of a wide range of chemical 
properties including the normal boiling point. Some of the early work in 
this area has been reviewed by Dearden, so we will cite only a relatively 
small number of articles of interest here [14]. Toropov and coworkers 
used an atomic orbital graph basis to fit a one-parameter equation and 
predict normal boiling points for haloalkanes with a standard error of 
9.2 ◦C. Duchowicz, Castro, and Toropov used a correlation weighting 
scheme to predict normal boiling points for a set of carbonyl compounds 
[15]. Ribeiro and Ferreira reported QSPR predictions of boiling point, 
octanol–water partition coefficient, and retention index for a series of 
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polycyclic aromatic compounds (PAHs) [16]. González, Toropov, and 
coworkers employed atomic orbital graphs in a study of 200 diverse 
organic compounds [17]. The standard errors for their models were 
large (35 K–60 K), presumably due to the diversity of molecules within 
their training and testing sets. Ghavami et al. studied a set of 394 
compounds, using topological indices to predict normal boiling points, 
obtaining a root-mean-square (RMS) error of 6.17 K for their best model 
[18]. Toropov and coworkers employed QSPR based on the 66 features 
from the molecular SMILES representation to predict normal boiling 
points for 90 cyclic and acyclic hydrocarbons, reporting a standard error 
of 11.8 ◦C [19]. Yi-min et al. used an electronegativity topological 
descriptor to predict normal boiling points for a set of 215 organic 
compounds, reporting standard errors of about 7 K for selected com
pounds within their testing set [20]. Saaidpur et al. used a QSPR model 
based on descriptors derived from the results of semiempirical quantum 
chemistry calculations employing the AM1 model [21]. Their set con
sisted of 216 liquid amine compounds which was divided into sets of 
primary, secondary, and tertiary amines, yielding standard errors of 11 
K–17 K for their QSPR models. Arjmand and Shafiei studied a set of 227 
alcohols and phenols using a variety of topological indices, with their 
best model yielding a standard error of 7.16 K [22]. 

One of the first applications of a neural network was reported by 
Cherqaoui and Villemin who studied a series of alkanes up to decane 
[23]. Their model was able to predict the boiling point of these com
pounds with a mean absolute error of 3.09 K and a standard deviation of 
1.99 K. Their analysis showed superior performance to contemporary 
QSPR models, with a slightly larger correlation coefficient and a sub
stantially smaller standard deviation. Goll and Jurs reported the use of 
multilinear regression, neural networks, and a genetic algorithm to 
predict boiling points for 104 compounds [24]. Their best neural 
network model had an RMS error of 11.72 K, while their genetic algo
rithm result has an RMS error of 8.59 K. Gharagheizi et al. employed 
QSPR with a feed-forward neural network to predict normal boiling 
points for a set of 17,768 chemical compounds, reporting an RMS error 
of 21 K in their test set [25]. Their article contains an interesting review 
of historical and contemporary QSPR modeling studies of normal boiling 
point. Jin and Bai studied 240 acyclic oxygen-containing organic com
pounds using a radial basis function artificial neural network approach, 
obtaining an RMS error of 3.93 K for their testing set [26]. A subsequent 
study by the same authors using a similar approach on 432 
oxygen-containing organic molecules gave an RMS error of 9.45 K [27]. 
These authors also studied normal boiling points of a set of 168 hydroxyl 
compounds using their radial basis network approach, finding an RMS 
error of 5.33 K [28]. Zang et al. studied a wide variety of compounds 
using a support vector regression model and obtaining an RMS error of 
19.72 K. Fissa et al. studied pure hydrocarbon compounds with an 
artificial neural network model and obtained an RMS error value of 1.37 
K for 44 compounds after training on a set of 179 compounds [29]. They 
noted that the performance of their neural network model was superior 
to that of a related multilinear regression model. Groven et al. used 
molecular simulation and an artificial neural network approach to pre
dict boiling points and critical points for a small set of PAH compounds, 
obtaining a mean absolute error of 26.85 K with a standard deviation of 
13.55 K [30]. Finally, we note a recent study of normal boiling points of 
160 compounds that explores a number of machine learning methods 
[31]. 

Normal boiling points may also be determined using first principles 
calculations. Mewes and Smits used density functional theory combined 
with thermodynamic integration and thermodynamic perturbation 
theory to predict boiling points for atomic liquids, reporting accuracy 
within a few percent of the best available data [32]. 

Today, the normal boiling point is routinely used as a measure of 
purity of chemical substances sold as reagents or after synthesis pro
cedures. Prediction of normal boiling points using a variety of methods 
continues to be of significant interest. 

In this article, we describe the application of a graph neural network 

(GNN) model to the prediction of experimental normal boiling point 
data. We have previously found that a graph neural network model 
performs well in predicting Kováts retention indices [33]. Given the 
linear relationship between retention times and boiling points, we 
expect that the same model will perform well on the data set described 
herein. Further, we feel that in order to produce models with greater 
accuracy than those reported to date, new approaches, such as the 
methodology described here, are needed. The data used in this study was 
extracted from the literature as captured by the NIST Thermodynamics 
Research Center (TRC) SOURCE Data Archival System [34,35]. This 
database contains more than 12,000 experimental determinations of the 
normal boiling point for a wide variety of molecules, providing a robust 
data set for training a new predictive model. 

2. Data and methods 

2.1. Data preparation 

The TRC data was organized into a set of molecules and a set of 
property values. The molecule set was processed prior to consideration 
of the normal boiling point values to ensure that the data set can 
adequately represent the chemical functionalities and normal boiling 
point data with the goal of ensuring a robust model. Each of the filters 
described below is designed to ensure that the data set contains a suf
ficient number of molecules so that the training procedure is able to 
learn from a larger number of molecules as opposed to fitting many 
disparate cases. The number of occurrences of a given atom type in the 
set of molecules was counted. If a particular atom occurred in less than 
100 molecules, then those molecules were excluded from the set. Mol
ecules containing one or more of the atoms C, H, O, N, Cl, F, Br, S, Si, P, 
and I were retained. Monoatomic compounds were removed as were 
molecules that did not contain a C atom (as there were very few of 
these). Application of these criteria removed fewer than 100 molecules 
from the set. Molecules with mass less than 50 amu or greater than 600 
amu were similarly removed from the set. This filter removed 122 
molecules. The molecules were supplied in a 2D MolFile format. This 
format includes fields that describe features of atoms and bonds, e.g. a 
stereocenter label, bond order. Importantly, this format does not contain 
any 3D information about the molecules from which property data such 
as bond distances might be derived. The bonding geometric information 
is thus limited to whether two atoms are bonded and what type of bond 
exists between them. We removed molecules with feature codes that 
occurred infrequently in the MolFile. From the original set of 12,679 
molecules, 11,057 were retained (note: many of these did not have 
normal boiling point data). 

Next, we processed the normal boiling point data. We started with a 
set of 22,935 data points taken from a large number of literature sources 
(as captured in the NIST/TRC SOURCE Data Archival System) [34,35]. 
In many cases there were multiple measurements of the normal boiling 
point for a single molecule. When we matched the data to the set of 
molecules described in the previous section, we were left with 3,876 
molecules with 20,544 determinations of the normal boiling tempera
ture. For molecules with a single determination of the normal boiling 
point, the single value was used; otherwise, the normal boiling point was 
determined as the mean of the set of values. For sets with three or more 
data points, the Grubbs 2-tail outlier test was applied. In this test, the 
datum with the largest deviation from the mean is identified and used to 
compute the quantity 

G = max
i

||
Yi − Y

s
, (1)  

where Yi is an element of the data set with mean Y and s is the sample 
standard deviation of the data set. If the quantity G satisfies the 
relationship 
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G >
N − 1

̅̅̅̅
N

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(tα/(2N),N− 2)
2

N − 2 + tα/(2N),N− 2

√

(2)  

where N is the number of points in the data set and tα/(2N),N− 2 is the 
critical value of the t distribution with (N − 2) degrees of freedom and a 
significance level of α/(2 N) with α = 0.05, then the data point is rejected 
from the set. Although it is possible to apply this test more than once to a 
set of data, we did not do so. This procedure removed outlier data points 
from 403 molecules. Finally, 22 compounds with boiling point values 
less than 200 K and greater than 700 K were removed from the set as 
they were not representative of the data set. An additional 4 compounds 
with normal boiling temperatures suspected to be in error, as discussed 
in the next section, were also removed from the data set, leaving a set of 
3,850 molecules for training and testing the machine learning model. A 
histogram plot showing the distribution of boiling points in the final 
data set is presented in Fig. 1. 

2.2. Machine learning model 

Our machine learning model is based on the materials graph network 
(MEGNet) approach developed by Chen et al. [36,37] This model has 
been tested for a variety of chemical properties on both molecular and 
crystalline systems. We have previously used this approach to predict 
Kováts retention indices with excellent results [33]. The MEGNet 
methodology incorporates a graph network architecture that captures 
molecular structure in a very natural way, providing a powerful 
framework for machine learning of chemical properties. In a graph 
neural network (GNN), the atomic centers correspond to vertices in the 
graph, and chemical bonds correspond to graph edges. 

The input data to the model is obtained from a 2D MolFile repre
sentation of the molecule. This format contains information about the 
atoms and about the chemical bonds, but does not provide any 3D 
structural information. As our goal is to facilitate rapid prediction of 
normal boiling point, using MolFile input that is easily created using 
chemical structure drawing software or obtained via name to structure 
conversion allows us to develop an efficient workflow for property 
prediction. 

The MEGNet methodology captures molecular information at the 
level of atoms, chemical bonds, and whole molecule, with the chemical 
structure captured in the structure of the graph representation. At the 
atom level, information about the nuclear charge was included. At the 
bond level, bond order information was used. Finally, global properties 
such as the molecular mass were added as inputs to the model. 

Our MEGNet model incorporates 3 atom features (encoded as 18 one- 
hot variables), 3 edge features (encoded as 7 one-hot variables), and 3 
global features. The atom features are the atomic number (11 one-hot 
variables representing C, H, O, N, F, Si, P, S, Cl, Br, and I), the hybrid
ization of the atom (6 one-hot variables, s, sp, sp2, sp3, sp3d, and sp3d2), 
and the formal charge (1 integer variable) on the atom. The hybridiza
tion is calculated from the information in the MolFile using RDKit. The 
edge features are the bond type (i.e., no bond, single, double, triple, or 
aromatic, 5 one-hot variables), whether the atoms were in the same ring 
(a single 0/1 integer variable), and a graph distance (1 integer variable). 
The graph distance is calculated as the smallest number of edges that 
have chemical bonds between the atoms in the pair. Recall that an edge 
here refers to any pair of atoms, not just those that are formally chem
ically bonded. However, our model does not encode the complete graph 
of the molecule as we do not consider pairs of atoms with a graph dis
tance higher than 5 edges, leading to a considerable reduction in the 
memory required to train the model. Global features are the number of 
heavy (non-hydrogen) atoms in the molecule, the molecular mass 
divided by the number of heavy atoms, and the number of chemical 
bonds divided by the number of heavy atoms. Importantly, only 2D 
representations of the molecule are needed for the present model. 

The features used in the model were selected through a trial and 
error process, i.e. the initial model contained a number of features that 
were removed when it was found that they did not significantly improve 
the performance of the model. For example, a feature that encoded ring 
size was eliminated when it was found that a single bond feature indi
cating whether the bond was in a ring produced results of similar 
quality. Other features that have been included in MEGNet models, 
stereochemical center information and bond lengths, were not included 
as there was insufficient information to include these features since the 
MolFile contained a 2D representation of the molecule (as opposed to 
some equilibrium 3D geometry) and stereochemistry was not consis
tently labeled because this information is not frequently included in the 
source literature from which the compound data was taken. 

Our MEGNet model was used with 3 MEGNet blocks. These blocks 
are composed of two layers of densely-connected multilayer perceptrons 
(MLP) and a graph neural network layer in which each of the attributes 
is successively updated. The dense layers used 64 and 32 units, respec
tively. The MEGNet block steps are followed by a ‘Set2Set’ layer in 
which the output of the bond and atom attributes are mapped to the 
appropriate vector quantities. This is followed by a concatenation step 
and two densely-connected MLPs (32 and 16 units) as we used previ
ously [33]. 

2.3. Model training and validation 

Training was carried out for up to 2,000 epochs, with early stopping 
employed with restoration of the best weights if the value of the loss 
function for the validation set did not improve for 300 epochs. These 
limits were found to be reasonable as a result of empirical testing during 
the training phase of the project. The average number of epochs in 
training was approximately 1,100. A batch size of 32 was used during 
training. The Adam optimizer was used in fitting the model, with a 
learning rate of 2 × 10− 4. The mean absolute error (MAE) was used as 
the loss function. The rectified linear unit (ReLU) activation function 
was used in the MLP layers. The experimental values of the normal 
boiling point taken from the TRC library were used as target values. 
These were normalized by converting them to a z-score 

BPnorm =
BP − μ

s
(3)  

where BP represents the normal boiling point, μ is the mean of the 
boiling point data set, and s is its sample standard deviation. 

In order to facilitate the eventual model validation, the data set was 
divided into 10 equally-sized “folds” of randomly selected data. During 

Fig. 1. Histogram showing the distribution of the normal boiling points used in 
this study. 
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model training, 80% of the data was used as the training set with an 
additional 10% of the data used as a validation set. Briefly, the valida
tion set is used to update the parameters of the machine learning model 
during training and is helpful in avoiding issues with over fitting. The 
remaining 10% of the data is used as a testing set. 

The training history for a prototypical training run is depicted in 
Fig. 2 where the mean absolute and mean squared errors are depicted for 
the training and validation sets. In this figure, it is evident that over 
fitting starts to become significant after about 200 epochs. The training 
error continues to fall, while the error in the validation set remains 
approximately constant. This is a sign that our model has reached the 
limits of its ability to predict new structures more accurately. It is also 
clear in the figure that there is considerable noise in the validation 

history. This seems to be due to the relatively small size of the validation 
set (385 molecules). 

The model performance was assessed using a 10-fold cross validation 
procedure. In this scheme, the data set is trained 10 times. In each 
training run, different validation and testing sets are used. In this way, 
the entire data set is used to test the predictive power of the machine 
learning model. This procedure has been shown to be a robust measure 
of model performance. Final statistics for the model are computed as 
averages of the corresponding individual statistics of the 10 testing sets. 

3. Results and discussion 

The performance of our GNN model is shown in Fig. 3. In the plots, 
the red shaded line has a width of 2s (where s is the sample standard 
deviation of the absolute difference between the predicted and experi
mental value of the normal boiling point). The plots clearly show that 
the error is larger in the validation and testing sets than in the training 
set as expected. The errors in the validation and testing sets are similar, 
however. This is an indication that the validation set was effective 
during training, resulting in a model with good predictive capabilities. 

The error performance of the machine learning model is depicted in 
Fig. 4. Again it is seen that the error in the training set is smaller, 
whereas the validation and testing sets exhibit longer “tails” in their 
error distributions. The fact that the latter error distributions are so 
similar is an indication that the model is performing well. 

In order to understand the performance of the model more clearly, 
the details of the 10-fold cross validation procedure are given in Table 1. 
In this table, the mean absolute error and the sample standard deviation 
of the absolute errors are given (units are K). By examining the mean 
errors of the testing set, it is immediately evident that our model has an 
overall error in the 5 K–6 K range with a slightly larger sample standard 
deviation. The errors are considerably larger than those of the training 
set, an indication of over fitting in the model. The overall statistics of our 
model are shown in Table 2, with a mean absolute error of 5.77 K and a 
sample standard deviation of 7.81 K. 

To further demonstrate the performance of the model, we examine 
detailed statistics for a single training run as shown in Table 3. It is seen 
that the model can make predictions that have significant errors (≈±60 
K). However, the median absolute error of 3.17 K indicates that these 
outliers are few in number. The mean absolute percentage error for our 
model is 1.32% with a sample standard deviation of 1.95%, another 
indication that the model is working well. 

We also characterize the performance of our model by comparison to 
the method of Stein and Brown as implemented in the EPI Suite package 
[12,13]. The mean absolute error of the Stein and Brown method over all 
compounds in our data set is 11.84 K with a median error of 7.99 K and a 
standard deviation of 12.84 K. These values are in line with the accuracy 
of the experimental data reported by Stein and Brown and demonstrate 
that our model is performing about a factor of two better. 

During model training, we noticed that predictions for certain mol
ecules consistently exhibited large errors. We took note of these and 
went back to the source literature. This procedure identified a number of 
errors in the input data set, i.e. we found our model to be useful in 
detecting various types of literature and data abstraction errors. In some 
cases, there was not enough information to unambiguously identify a 
datum as “bad,” and these were retained in the data set. 

Our experience with repeated cycles of training and tracking mole
cules with consistently large errors, combined with the lack of infor
mation (usually another experimental measurement of the normal 
boiling point) leads us to believe that the performance of our model is 
ultimately limited by the error present in the input data. As many of the 
data in the input set were taken from literature sources where the boiling 
point was determined as a measure of the purity of the final product in a 
synthesis procedure, it may be expected that the errors will be larger 
than for a set of experiments specifically designed to measure the normal 
boiling point with the highest possible accuracy. Though it is certainly 

Fig. 2. Plots of the MAE and MSE values for the training and validation data 
sets during training of the neural network model. 
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Fig. 3. Plots of experimental versus predicted value of the normal boiling point 
for the training, validation, and testing data sets. 

Fig. 4. Histogram plots of the absolute errors for the training, validation, and 
testing data sets. 

Table 1 
Detail statistics for each run of the 10-fold cross validation procedure. The mean 
value and standard deviation of the mean absolute error (MAE) is given for each 
of the 3 data sets used.  

Training Validation Testing 

μ s μ s μ s 

2.55 3.11 5.68 7.70 6.34 9.84 
3.06 3.50 6.43 11.15 5.91 7.97 
2.23 2.73 4.88 5.21 5.92 7.50 
2.08 2.84 5.58 7.33 6.14 8.25 
1.85 2.32 6.14 8.51 5.38 6.56 
2.53 3.22 5.17 6.49 5.27 6.73 
1.64 1.92 5.29 6.74 5.86 8.21 
2.81 3.40 5.32 7.90 5.09 7.13 
2.20 2.60 5.04 7.27 5.78 8.22 
2.01 2.37 6.11 9.51 5.98 7.65  

Table 2 
Summary statistics of the 10-fold cross validation procedure. The mean value 
and standard deviation of the mean absolute error (MAE) and the root mean 
square error (RMSE) over 10 runs is given for each of the 3 sets used.  

Set MAE RMSE 

Training 2.30 ± 0.44 2.80 ± 0.51 
Validation 5.56 ± 0.52 7.78 ± 1.66 
Testing 5.77 ± 0.40 7.81 ± 0.94  

Table 3 
Statistics describing the graph convolutional network model performance in 
predicting the normal boiling point for the training, validation, and testing sets. 
The error is calculated as ε = BPexperiment − BPpredicted. The sample standard 
deviation, s, is calculated for the signed and unsigned errors.  

Quantity Training Validation Testing 

n 3080 385 385 
mean ε − 0.54 − 0.58 0.37 
RMSE 3.40 8.84 10.05 
min ε 27 63 61 
max ε − 37 − 54 − 59 
median |ε| 1.53 3.00 3.17 
mean |ε| 2.20 5.04 5.78 
s(|ε|) 2.60 7.28 8.24 
median |%ε| 0.35 0.70 0.78 
mean |%ε| 0.50 1.15 1.32 
s(|%ε|) 0.58 1.62 1.94 
max |%ε| 9.28 15.79 19.40  
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possible that another methodology might produce lower error statistics 
when applied to the present data set, our experience indicates that we 
are at or near the limit of model accuracy. 

This conclusion is partially supported by the work of Stein and 
Brown who noted an estimated error in the experimental source data for 
their model of approximately 12 K that was similar to the error of the 
training set [12]. The limit on accuracy is also supported by the work of 
Zang et al. who used an experimental database taken from the EPI Suite 
collection and noted that the larger error produced by their support 
vector regression (SVR) model may have been due to experimental er
rors in the source data [13,38]. 

In order to improve and test the robustness of our approach, we used 
a synthetic data technique to expand the sizes of the training, validation, 
and testing sets by an order of magnitude. We did this by replicating 
each molecule in the set 10 times, each time scrambling the order of the 
atoms. As our model is sensitive to the order in which the atoms are 
input, this provided a critical test of how well predictions could be made 
when identical structures that differed only in the atomic ordering were 
input. We found that predictions using varying atomic ordering were 
different, with a mean span (defined as the difference between the 
largest and smallest predictions of the normal boiling point) of 1.22 K 
(standard deviation = 2.82 K) for the testing set. These values were 
derived from a 10-fold cross-validation procedure as described above. 
The mean absolute error of the predictions was 5.37 K with a median 
absolute error of 3.08 K and a standard deviation of 0.36 K. Outliers 
could be quite large (our largest outlier was an error of 70.81 K), but 
were rare. Nevertheless, this points to an area in which the current 
model could be improved to make it insensitive to the order in which 
atoms are input. 

4. Conclusion 

In this article, we have described the application of a graph neural 
network model to fit normal boiling point data for a diverse collection of 
molecules. Our model reproduces the data well, with mean absolute 
errors of less than 6 K produced by a 10-fold cross-validation procedure. 
During our study, we found that the neural network model itself was 
capable of detecting errors in the source data, and we used this to make 
corrections to the original data set. Based on our studies, we feel that 
more accurate models will require a larger set of source data with even 
better accuracy. 
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