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Abstract

Statistical imputation is a field of study that attempts to fill missing data. It is commonly applied to population statistics whose

data have no correlation with running time. For a time series, data is typically analyzed using the autocorrelation function

(ACF), the Fourier transform to estimate power spectral densities (PSD), the Allan deviation (ADEV), trend extensions, and

basically any analysis that depends on uniform time indexes. We explain the rationale for an imputation algorithm that fills

gaps in a time series by applying a backward, inverted replica of adjacent live data. To illustrate, four intentional massive

gaps that exceed 100% of the original time series are recovered. The L(f) PSD with imputation applied to the gaps is nearly

indistinguishable from the original. Also, the confidence of ADEV with imputation falls within 90% of the original ADEV with

mixtures of power-law noises. The algorithm in Python is included for those wishing to try it.
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Abstract— Statistical imputation is a field of study that 

attempts to fill missing data. It is commonly applied to 

population statistics whose data have no correlation with 

running time. For a time series, data is typically analyzed 

using the autocorrelation function (ACF), the Fourier 

transform to estimate power spectral densities (PSD), the 

Allan deviation (ADEV), trend extensions, and basically 

any analysis that depends on uniform time indexes.  We 

explain the rationale for an imputation algorithm that fills 

gaps in a time series by applying a backward, inverted 

replica of adjacent live data.  To illustrate, four intentional 

massive gaps that exceed 100% of the original time series 

are recovered.  The L(f) PSD with imputation applied to the 

gaps is nearly indistinguishable from the original. Also, the 

confidence of ADEV with imputation falls within 90% of the 

original ADEV with mixtures of power-law noises. The 

algorithm in Python is included for those wishing to try it. 

 
Index Terms— ADEV, convolution, dead-time, frequency, gaps, 

imputation, missing data, power-law noise models, power 

spectrum, Python, sparce, time, time-series. 

 

I. INTRODUCTION 

AVEFORMS are not continuous but are instead discrete-

continuous because a sampler acts on an input signal, like 

signal y(t) of block-length T with τ0 intervals, thereby creating 

the time series. Time-series statistics transform this sampled 

signal, generally decomposing parameters vs. frequencies in a 

particular descriptive way as if the input signal is passed 

through a tunable spectrum analyzer with a center frequency at 

1/(2nτ0).  This requires that measurements be evenly sampled, 

without interruptions or “gaps,” to extract and delineate spectral 

frequencies. The effect of sampling in the frequency and time 

domains use convolution in one domain (e.g., time domain) to 

determine point-wise multiplication in the other domain (e.g., 

frequency domain) and vice-versa.   Convolution determines 

impulse response.  To improve precision, we circularize the 

data as a method of invoking a circular convolution to replace 

linear convolution of a data-run T [1,2]. This is the basis of our 
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time-series imputation method. From a Fourier decomposition 

perspective, a T-length block of data is interpreted as periodic 

with infinite extent beyond a data run of length T.  We reason 

that by a conservation principle, a data’s variance does not 

diminish for intervals beyond the measured, observed block T, 

i.e., > T, thus periodic extensions are assumed [3]. This paper 

applies periodic extensions as a strategy to fill unmeasured data 

between measured data. Representations of data in either the 

frequency or time domains share certain properties that directly 

depend on the details of specific sampling mentioned above [4]. 

It is only important to know that these samples create stationary 

increments, thus are ergodic [5]. In Sec. II, we build an 

algorithm that fills gaps with periodically extended live data.  In 

Sec. III, we test it using L(f) and ADEV characterizations.  

II. IMPUTATION ALGORITHM 

The algorithm extends a data run by adding replicas of it to 

both its ends.  Fig. 1 shows various extensions.  For example, 

Type 3 in Fig. 1(a) shows the middle portion as the “live” data 

and the left and right portions are replicas of the middle and 

extending the series by 3X. “Left” and “right” will henceforth 

denote replicas before and after the live data, respectively.  
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W 

 
Fig. 1. (a) Four methods of extending original data between t0 to (t0+T) are 

shown. Type 1: reflect (mirror), Type 2: reflect+invert, Type 3: replica, Type 

4: shifted replica, that matches ends. Gaps (dead-times) would be in intervals 
(t0-T) → t0 and (t0+T) → (t0+2T) that are filled with surrogate data on either 

side of the original “live-time” data shown in between as t0 → (t0+T). (b) 

Extension of original by reflection + inversion (Type 2) with slope removed. 
Imputed noise extensions are iid, that is, independent and identically 

distributed at the range of lags in the autocorrelation function (ACF).  We find 

that imputed noise is iid to the same degree as the original live noise is already 
inherently independent, which is quantified as “self-similarity” [10,11].   
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A. Types of Data Extensions 

Four methods of taking the original data series and adding 

various replicas of it to both its ends are shown in Fig. 1(a).  

Type 3 is the simplest in which the point following the last point 

in the live data run becomes the first point in the extension.  The 

Type 4 modifies Type 3 by removing an endpoint discontinuity.  

Type 1 is more interesting by creating a visual mirror image of 

the original data run at its first and last points by reversing the 

direction of the data. Type 2 inverts the sign of the Type 1 

extension, thus Type 2 is a reflected plus inverted extension.  

Note that Types 1 and 2 have no endpoint discontinuities.  Fig. 

1(b) shows Type 2 left and right extended noise without the 

background slope.   The reflected-inverted extensions of live 

data, a Type 2 method, is best for reasons explained next. 

B. Filling Gaps with Independent Identically Distributed (iid) 

Imputed Extensions 

Extensions as described are essentially extrapolations of key 

noise properties, i.e., surrogate data. The astute observer will 

note that Type 3 and 4 extensions are certainly identically 

distributed as the live data but not clearly independent of the 

live data.  In fact, replicas are completely correlated with live 

data at lag-T.  But only a T-long data run can practically be 

considered in analyses.  Thus, T-long data runs with gaps 

require the imputations to be independent. We temporally 

reverse live data, making the data recede backwards as shown 

as Type 1 and 2 by reflection (creating a visual mirror image) 

of the original data run to the left of its first and to the right of 

its last points. Note that trends in the data now repeat with 

period 2T instead of T so are outside the T-block limit used in 

frequency-time statistics.  Nevertheless, we can remove this 

effect by either removing the trend (a T-long slope) or naturally 

by inverting the sign of the reflected extension as seen in Type 

2 which is visualized in Fig. 1(b).  This is allowed because the 

frequency-time statistics we’ve described are invariant to either 

method of trend removal [6-9]. 

C. Autocorrelation Function and Degrees of Freedom to test 

Imputed Extensions are Independent Identically Distributed 

The Types 1 and 2 methods of extending the data series meet 

significant criteria, namely, they are iid, that is, independent and 

identically distributed but Type 2 is better as determined by the 

autocorrelation function (ACF). ACF is a serial correlation plot 

primarily used to assess the independence (i.e., randomness) of 

a set of observations compared to a set that lags by a constant 

number of samples [10].  The ACF of a time series multiplies 

data by a delayed version of itself, thereby showing the degree 

to which its value at one time is similar to its value at a certain 

later time.  More specifically, the autocorrelation at lag k is 

defined as 


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where z  is the mean value of the time series and N is the 

number of data points. The ACF would be 0 starting at lag-1 for 

completely uncorrelated points in the time-series. 

Fig. 2 is representative of a typical ACF of data in which 

numerous extensions were imputed to multiple-gapped live 

measurements. The scatter plot lag 10 of the gap-filled data is 

shown and no new correlation is seen compared to the ACF of 

the original data as indicated by slopes in the ACF. Slopes are 

preserved, indicating “self-similarity” or underlying long-

memory properties have not changed [11]. More discussion 

follows in Sec. III.  To review, white-noise data is uncorrelated, 

whereas random-walk data is correlated being an integral of 

white noise and flicker data is correlated being a fractional 

integral [12]. Superposition of slopes of the ACF is often used 

to delineate these and other noises.  Based on the ACF, Type 2 

is preferred instead of Types 1, 3 and 4 in order to decorrelate 

the imputed data while preserving low-frequency trends and 

slopes from lag-1 to lag-2T [13].  

Further evidence that imputed data is iid is also shown in that 

the equivalent degrees of freedom, a measure of data-point 

independence in a statistical average, always increases with 

Type 1 and 2 extensions and most dramatically increases for 

white noise by up to 6X, and less so for flicker and random-

walk noise [14-17]. It would seem preposterous to report a 

reliable estimate of frequency stability with massive gaps.  

However, we find that with care, the procedure in the next 

section fills large, multiple gaps such that statistics have the 

same descriptive properties to within 90% confidence of the 

original time-series [18]. 

D. Procedure 

For datasets with multiple gaps of dead time, the algorithm 

is as follows:  

1. Find single-point gaps in the data set and fill them by 

taking the average of the points on either side.  

2. Find the largest continuous run of data and impute the gap 

immediately to its right.  

3. Continue until the end of the dataset is reached.  

4. Then reverse the dataset and resume this algorithm until 

the beginning of the dataset is reached. This in essence creates 

double-sided extensions before and after live segments to 

 
Fig. 2. Autocorrelation function (ACF) of typical Type 2 imputation of time-

series data that has T = 700 increments.  Inset is the cross-correlation scatter 
plot of on-time vs. 10-point lag.  Note the significant data independence (de-

correlation) using this inverted-reflection Type 2 imputation shown in Fig. 1. 
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balance and avoid only-left or only-right extensions in gaps 

while maximally filling them. 

5. If a gap size is sufficiently small so imputation from the 

left fills it, then apply Type 2 extensions. If the left does not 

contain enough points, check the right and match averages in 

the middle. If there are still not enough data points, try to impute 

an additional half from each side. In situations where the gap 

size is too large for all of these, the gap is skipped and returned 

to after the forward and reversed imputation.  This process is 

repeated until there are no gaps remaining. 

The data with gaps is time series {xn}, n=1, 2 … N-1, N. The 

procedure above determines the number and length of gaps with 

zeroes, i.e., finds the ith gap length in the list of gaps, designated 

as ngap-i. Then we choose ngap-i live points that precede the gap 

at xn to its left. The span xn-N to xn are extended to fill in the gap 

from xn+1 to x at ngap-i. At this point, we can apply a Type 2 

(inverted-reflected) right extension of the live sequence such 

that xn+i = 
𝑥𝑛+𝑥𝑛−1

2
+ 𝑥𝑛 − 𝑥𝑛−𝑖+1.  

Now we add a slope to the gap sequence xn+1 to [x at ngap-i] 

so that xi = [x at ngap-i] – xn + ci, i = n, n+1, n+2 … ngap-i.  This 

is so that the end of the Type 2 extension doesn’t present a 

mismatch to the beginning of the next live segment. A new 

sequence {xi} that once had live, then dead, and resumed live 

data should now include the imputed data in the previously dead 

portion. The desired slope ci is calculated by taking the 

endpoints of the gap, subtracting to obtain Δx, and dividing by 

the difference in the time. A low-pass filtered version of the data 

is used to match the endpoints, which is necessary to avoid the 

creation of a sawtooth jump in the gap [19].  This procedure can 

create iid surrogates for unprecedented gap lengths that can be 

greater than 100% of the live data before and after the gap. 

Frequency-time variances are invariant to adding matched 

slope ci. The difference between the desired and current slope 

is the slope to apply to the reflected points. Time indexes are 

chosen to advance monotonically through the gap’s start and 

end zones. 

Simulations of white, flicker, and random-walk noise types 

show 512-length datasets vs. the same with 150 values removed 

and gap-filled yield matching ADEV(τ) within 90% confidence 

[19]. We illustrate the effectiveness of the algorithm in a 

particularly extreme example.  Referring to Fig. 3, the top plot 

is original data that are the time differences between a NIST H-

maser and the NIST time scale, UTC(NIST).  Here, 8.4 x 106 

measurements are taken with 240s between each measurement; 

the unit of the vertical scale is nanoseconds. Four large 

segments of the original data have been removed in the middle 

plot.  The imputation algorithm applied to the middle plot 

produced the bottom plot whose spectral properties replicate as 

shown next. 

III. L(F) AND ADEV 

L(f) is a ratio of the carrier-to-noise in logarithmic units of 

dBc/Hz versus log SSB Fourier frequency in hertz. For small 

phase deviations, L(f) measures the power spectral density 

(PSD) of frequency noise y(t), i.e., Sy(f). L(f) = (𝜈0/𝑓)
2Sy(f), at 

frequency ν0.  The Allan deviation (ADEV) is a different 

spectrum analyzer that determines power-law FM noises [6-8]. 

The PSD in the form of L(f) and ADEV reveal substantially 

equal information about autocorrelation. ADEV is a bit easier 

 
Fig. 3. TOP: Time-series measurements of NIST H-maser vs. UTC(NIST); 

MIDDLE: Four large gaps >100% of live data are intentionally created; 
BOTTOM: Test showing the gaps are filled in by the imputation algorithm.  

 
Fig. 4. TOP: Two overlaid L(f) plots, 80 µHz < f < 2 mHz, of original and 

recovered time-series measurements with gaps filled by imputation as in Fig. 

3; BOTTOM: Two overlaid plots of widest-τ ADEV+THEO. Note the H-
maser data exhibit both white FM noise τ -1/2 slope is in the range 200s < τ < 3 

x 104s, and flicker FM noise (zero-slope) at τ > 3 x 104s long-term for the T-

block of data in Fig. 3 that ends at slightly over T =105 s in the original (dashed 
line) and recovered (solid) data runs [19,20]. Note that even with massive gaps 

filled by imputation, white and flicker FM power-law slopes (clock models) 

are still characterized with the correct, unbiased levels and slopes with 90% 
confidence. 
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to use as an uncertainty of systematics, such as linear frequency 

drift, in convenient units of averaging time. In contrast, Sy(f) is 

in units of (frac freq)2 /Hz evaluated at f in microhertz. 

Fig. 4 shows the differences between original and imputed 

L(f) and ADEV for the H-maser measurements represented in 

Fig. 3. A computation of THEO, which is the best long-term 

estimator of ADEV, is added as the longest two τ-values beyond 

3 x 104s to see the flicker noise, i.e., zero-slope flicker FM [20-

22]. Note that even with massive gaps filled by the imputation 

algorithm, white and flicker frequency models are still 

characterized with the correct, unbiased levels and slopes. 

IV. IMPLEMENTATION IN PYTHON 

A program written in Python called “fillgaps.py” is available 

at: https://zenodo.org/record/5594587. The following software 

packages are required for the code to properly execute: 

• Python (developed in version 3.10.10) 

• NumPy (developed with version 1.20.0) [23] 

• SciPy (developed with version 1.7.1) [24] 

• Matplotlib (developed with version 3.3.3) [25] 

The versions listed above are not necessarily required, but the 

script implementation is guaranteed to be compatible with these 

versions. All the above are open source and, thus, free and 

easily accessible on the internet. The user can run the script 

through terminal commands or a Python-compatible IDE. 

To execute, the user inputs the file containing the gap-laden 

data with the time stamp in one column and data in a second 

column. Both csv and txt input file formats are supported. Gaps 

are determined by finding the smallest difference between 

consecutive time stamps and recreating the data set with 

equally-spaced intervals. Since the program imputes at irregular 

time jumps and then reindexes the time stamp, remove pre-

existing imputations of zeroes or interpolations. Otherwise, “No 

Gaps detected” is outputted. Finally, the user inputs an output 

file name with the .csv extension and adds it at the end of the 

command line. An example call in Linux command line is: 

‘python3 fillgaps.py <input_file> <output_file>. 

Upon completion, the script outputs a graph of the data before 

and after the imputation and an output file in a csv format of the 

filled data in the same directory the script is run. 

Intervals with no data are the ‘gaps’ and are filled with 

NumPy’s nan constant (representative of ‘not a number’). Both 

time stamps and data are stored in NumPy arrays and are 

manipulated in-place. 

An executable version with a GUI that takes a csv input is also 

available at: https://zenodo.org/record/5595200. It contains a 

55MB .exe file for inclusion of all libraries and features of the 

above non-GUI Python version. 
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