
P
os
te
d
on

5
N
ov

20
20

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
69
26
69
4.
v
1
—

e-
P
ri
n
ts

p
o
st
ed

on
T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Time-series Imputation Algorithm

David Howe 1

1NIST

October 30, 2023

Abstract

Statistical imputation is a field of study that attempts to fill missing data. It is commonly applied to population statistics whose

data have no correlation with running time. For a time series, data is typically analyzed using the autocorrelation function

(ACF), the Fourier transform to estimate power spectral densities (PSD), the Allan deviation (ADEV), trend extensions, and

basically any analysis that depends on uniform time indexes. We explain the rationale for an imputation algorithm that fills

gaps in a time series by applying a backward, inverted replica of adjacent live data. To illustrate, four intentional massive

gaps that exceed 100% of the original time series are recovered. The L(f) PSD with imputation applied to the gaps is nearly

indistinguishable from the original. Also, the confidence of ADEV with imputation falls within 90% of the original ADEV with

mixtures of power-law noises. The algorithm in Python is included for those wishing to try it.

1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Statistical imputation is a field of study that

attempts to fill missing data. It is commonly applied to

population statistics whose data have no correlation with

running time. For a time series, data is typically analyzed

using the autocorrelation function (ACF), the Fourier

transform to estimate power spectral densities (PSD), the

Allan deviation (ADEV), trend extensions, and basically

any analysis that depends on uniform time indexes. We

explain the rationale for an imputation algorithm that fills

gaps in a time series by applying a backward, inverted

replica of adjacent live data. To illustrate, four intentional

massive gaps that exceed 100% of the original time series

are recovered. The L(f) PSD with imputation applied to the

gaps is nearly indistinguishable from the original. Also, the

confidence of ADEV with imputation falls within 90% of the

original ADEV with mixtures of power-law noises. The

algorithm in Python is included for those wishing to try it.

Index Terms— ADEV, convolution, dead-time, frequency, gaps,

imputation, missing data, power-law noise models, power

spectrum, Python, sparce, time, time-series.

I. INTRODUCTION

AVEFORMS are not continuous but are instead discrete-

continuous because a sampler acts on an input signal, like

signal y(t) of block-length T with τ0 intervals, thereby creating

the time series. Time-series statistics transform this sampled

signal, generally decomposing parameters vs. frequencies in a

particular descriptive way as if the input signal is passed

through a tunable spectrum analyzer with a center frequency at

1/(2nτ0). This requires that measurements be evenly sampled,

without interruptions or “gaps,” to extract and delineate spectral

frequencies. The effect of sampling in the frequency and time

domains use convolution in one domain (e.g., time domain) to

determine point-wise multiplication in the other domain (e.g.,

frequency domain) and vice-versa. Convolution determines

impulse response. To improve precision, we circularize the

data as a method of invoking a circular convolution to replace

linear convolution of a data-run T [1,2]. This is the basis of our

Manuscript received November 3, 2021. This work was supported in part by

the Department of Commerce and Office of Naval Research.
First Author is with the National Institute of Standards and Technology,

Boulder, CO 80305 USA (e-mail: David.Howe@nist.gov).

Second Author is with Space Science Division, U.S. Naval Research Lab,
Wash. DC 20375 USA (email: Chloe.A.Champagne@vanderbilt.edu).

Third Author is with the University of Colorado, Boulder, CO 80303 USA

(e-mail: Noah.Schlossberger@colorado.edu).
Work of US Government, not subject to copyright. Any mention of products

in this document is not to be regarded as an endorsement.

time-series imputation method. From a Fourier decomposition

perspective, a T-length block of data is interpreted as periodic

with infinite extent beyond a data run of length T. We reason

that by a conservation principle, a data’s variance does not

diminish for intervals beyond the measured, observed block T,

i.e., > T, thus periodic extensions are assumed [3]. This paper

applies periodic extensions as a strategy to fill unmeasured data

between measured data. Representations of data in either the

frequency or time domains share certain properties that directly

depend on the details of specific sampling mentioned above [4].

It is only important to know that these samples create stationary

increments, thus are ergodic [5]. In Sec. II, we build an

algorithm that fills gaps with periodically extended live data. In

Sec. III, we test it using L(f) and ADEV characterizations.

II. IMPUTATION ALGORITHM

The algorithm extends a data run by adding replicas of it to

both its ends. Fig. 1 shows various extensions. For example,

Type 3 in Fig. 1(a) shows the middle portion as the “live” data

and the left and right portions are replicas of the middle and

extending the series by 3X. “Left” and “right” will henceforth

denote replicas before and after the live data, respectively.

Time-series Imputation Algorithm

D. A. Howe, Fellow, IEEE, C. Champagne, and N. Schlossberger

W

Fig. 1. (a) Four methods of extending original data between t0 to (t0+T) are

shown. Type 1: reflect (mirror), Type 2: reflect+invert, Type 3: replica, Type

4: shifted replica, that matches ends. Gaps (dead-times) would be in intervals
(t0-T) → t0 and (t0+T) → (t0+2T) that are filled with surrogate data on either

side of the original “live-time” data shown in between as t0 → (t0+T). (b)

Extension of original by reflection + inversion (Type 2) with slope removed.
Imputed noise extensions are iid, that is, independent and identically

distributed at the range of lags in the autocorrelation function (ACF). We find

that imputed noise is iid to the same degree as the original live noise is already
inherently independent, which is quantified as “self-similarity” [10,11].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

A. Types of Data Extensions

Four methods of taking the original data series and adding

various replicas of it to both its ends are shown in Fig. 1(a).

Type 3 is the simplest in which the point following the last point

in the live data run becomes the first point in the extension. The

Type 4 modifies Type 3 by removing an endpoint discontinuity.

Type 1 is more interesting by creating a visual mirror image of

the original data run at its first and last points by reversing the

direction of the data. Type 2 inverts the sign of the Type 1

extension, thus Type 2 is a reflected plus inverted extension.

Note that Types 1 and 2 have no endpoint discontinuities. Fig.

1(b) shows Type 2 left and right extended noise without the

background slope. The reflected-inverted extensions of live

data, a Type 2 method, is best for reasons explained next.

B. Filling Gaps with Independent Identically Distributed (iid)

Imputed Extensions

Extensions as described are essentially extrapolations of key

noise properties, i.e., surrogate data. The astute observer will

note that Type 3 and 4 extensions are certainly identically

distributed as the live data but not clearly independent of the

live data. In fact, replicas are completely correlated with live

data at lag-T. But only a T-long data run can practically be

considered in analyses. Thus, T-long data runs with gaps

require the imputations to be independent. We temporally

reverse live data, making the data recede backwards as shown

as Type 1 and 2 by reflection (creating a visual mirror image)

of the original data run to the left of its first and to the right of

its last points. Note that trends in the data now repeat with

period 2T instead of T so are outside the T-block limit used in

frequency-time statistics. Nevertheless, we can remove this

effect by either removing the trend (a T-long slope) or naturally

by inverting the sign of the reflected extension as seen in Type

2 which is visualized in Fig. 1(b). This is allowed because the

frequency-time statistics we’ve described are invariant to either

method of trend removal [6-9].

C. Autocorrelation Function and Degrees of Freedom to test

Imputed Extensions are Independent Identically Distributed

The Types 1 and 2 methods of extending the data series meet

significant criteria, namely, they are iid, that is, independent and

identically distributed but Type 2 is better as determined by the

autocorrelation function (ACF). ACF is a serial correlation plot

primarily used to assess the independence (i.e., randomness) of

a set of observations compared to a set that lags by a constant

number of samples [10]. The ACF of a time series multiplies

data by a delayed version of itself, thereby showing the degree

to which its value at one time is similar to its value at a certain

later time. More specifically, the autocorrelation at lag k is

defined as


 


k

t t k

z

E z z
=

− −+[()()]
2

 , (1)

where zt is the time series,  is its mean value, z
2 is its variance,

and E denotes the expected value. Its estimate is the expression

r

N
z z z z

N
z z

k

t t k

t

N k

t

t

N
=

− −

−

+

=

−

=





1

1
1

2

1

()()

()

 , (2)

where z is the mean value of the time series and N is the

number of data points. The ACF would be 0 starting at lag-1 for

completely uncorrelated points in the time-series.

Fig. 2 is representative of a typical ACF of data in which

numerous extensions were imputed to multiple-gapped live

measurements. The scatter plot lag 10 of the gap-filled data is

shown and no new correlation is seen compared to the ACF of

the original data as indicated by slopes in the ACF. Slopes are

preserved, indicating “self-similarity” or underlying long-

memory properties have not changed [11]. More discussion

follows in Sec. III. To review, white-noise data is uncorrelated,

whereas random-walk data is correlated being an integral of

white noise and flicker data is correlated being a fractional

integral [12]. Superposition of slopes of the ACF is often used

to delineate these and other noises. Based on the ACF, Type 2

is preferred instead of Types 1, 3 and 4 in order to decorrelate

the imputed data while preserving low-frequency trends and

slopes from lag-1 to lag-2T [13].

Further evidence that imputed data is iid is also shown in that

the equivalent degrees of freedom, a measure of data-point

independence in a statistical average, always increases with

Type 1 and 2 extensions and most dramatically increases for

white noise by up to 6X, and less so for flicker and random-

walk noise [14-17]. It would seem preposterous to report a

reliable estimate of frequency stability with massive gaps.

However, we find that with care, the procedure in the next

section fills large, multiple gaps such that statistics have the

same descriptive properties to within 90% confidence of the

original time-series [18].

D. Procedure

For datasets with multiple gaps of dead time, the algorithm

is as follows:

1. Find single-point gaps in the data set and fill them by

taking the average of the points on either side.

2. Find the largest continuous run of data and impute the gap

immediately to its right.

3. Continue until the end of the dataset is reached.

4. Then reverse the dataset and resume this algorithm until

the beginning of the dataset is reached. This in essence creates

double-sided extensions before and after live segments to

Fig. 2. Autocorrelation function (ACF) of typical Type 2 imputation of time-

series data that has T = 700 increments. Inset is the cross-correlation scatter
plot of on-time vs. 10-point lag. Note the significant data independence (de-

correlation) using this inverted-reflection Type 2 imputation shown in Fig. 1.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

balance and avoid only-left or only-right extensions in gaps

while maximally filling them.

5. If a gap size is sufficiently small so imputation from the

left fills it, then apply Type 2 extensions. If the left does not

contain enough points, check the right and match averages in

the middle. If there are still not enough data points, try to impute

an additional half from each side. In situations where the gap

size is too large for all of these, the gap is skipped and returned

to after the forward and reversed imputation. This process is

repeated until there are no gaps remaining.

The data with gaps is time series {xn}, n=1, 2 … N-1, N. The

procedure above determines the number and length of gaps with

zeroes, i.e., finds the ith gap length in the list of gaps, designated

as ngap-i. Then we choose ngap-i live points that precede the gap

at xn to its left. The span xn-N to xn are extended to fill in the gap

from xn+1 to x at ngap-i. At this point, we can apply a Type 2

(inverted-reflected) right extension of the live sequence such

that xn+i =
𝑥𝑛+𝑥𝑛−1

2
+ 𝑥𝑛 − 𝑥𝑛−𝑖+1.

Now we add a slope to the gap sequence xn+1 to [x at ngap-i]

so that xi = [x at ngap-i] – xn + ci, i = n, n+1, n+2 … ngap-i. This

is so that the end of the Type 2 extension doesn’t present a

mismatch to the beginning of the next live segment. A new

sequence {xi} that once had live, then dead, and resumed live

data should now include the imputed data in the previously dead

portion. The desired slope ci is calculated by taking the

endpoints of the gap, subtracting to obtain Δx, and dividing by

the difference in the time. A low-pass filtered version of the data

is used to match the endpoints, which is necessary to avoid the

creation of a sawtooth jump in the gap [19]. This procedure can

create iid surrogates for unprecedented gap lengths that can be

greater than 100% of the live data before and after the gap.

Frequency-time variances are invariant to adding matched

slope ci. The difference between the desired and current slope

is the slope to apply to the reflected points. Time indexes are

chosen to advance monotonically through the gap’s start and

end zones.

Simulations of white, flicker, and random-walk noise types

show 512-length datasets vs. the same with 150 values removed

and gap-filled yield matching ADEV(τ) within 90% confidence

[19]. We illustrate the effectiveness of the algorithm in a

particularly extreme example. Referring to Fig. 3, the top plot

is original data that are the time differences between a NIST H-

maser and the NIST time scale, UTC(NIST). Here, 8.4 x 106

measurements are taken with 240s between each measurement;

the unit of the vertical scale is nanoseconds. Four large

segments of the original data have been removed in the middle

plot. The imputation algorithm applied to the middle plot

produced the bottom plot whose spectral properties replicate as

shown next.

III. L(F) AND ADEV

L(f) is a ratio of the carrier-to-noise in logarithmic units of

dBc/Hz versus log SSB Fourier frequency in hertz. For small

phase deviations, L(f) measures the power spectral density

(PSD) of frequency noise y(t), i.e., Sy(f). L(f) = (𝜈0/𝑓)
2Sy(f), at

frequency ν0. The Allan deviation (ADEV) is a different

spectrum analyzer that determines power-law FM noises [6-8].

The PSD in the form of L(f) and ADEV reveal substantially

equal information about autocorrelation. ADEV is a bit easier

Fig. 3. TOP: Time-series measurements of NIST H-maser vs. UTC(NIST);

MIDDLE: Four large gaps >100% of live data are intentionally created;
BOTTOM: Test showing the gaps are filled in by the imputation algorithm.

Fig. 4. TOP: Two overlaid L(f) plots, 80 µHz < f < 2 mHz, of original and

recovered time-series measurements with gaps filled by imputation as in Fig.

3; BOTTOM: Two overlaid plots of widest-τ ADEV+THEO. Note the H-
maser data exhibit both white FM noise τ -1/2 slope is in the range 200s < τ < 3

x 104s, and flicker FM noise (zero-slope) at τ > 3 x 104s long-term for the T-

block of data in Fig. 3 that ends at slightly over T =105 s in the original (dashed
line) and recovered (solid) data runs [19,20]. Note that even with massive gaps

filled by imputation, white and flicker FM power-law slopes (clock models)

are still characterized with the correct, unbiased levels and slopes with 90%
confidence.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

to use as an uncertainty of systematics, such as linear frequency

drift, in convenient units of averaging time. In contrast, Sy(f) is

in units of (frac freq)2 /Hz evaluated at f in microhertz.

Fig. 4 shows the differences between original and imputed

L(f) and ADEV for the H-maser measurements represented in

Fig. 3. A computation of THEO, which is the best long-term

estimator of ADEV, is added as the longest two τ-values beyond

3 x 104s to see the flicker noise, i.e., zero-slope flicker FM [20-

22]. Note that even with massive gaps filled by the imputation

algorithm, white and flicker frequency models are still

characterized with the correct, unbiased levels and slopes.

IV. IMPLEMENTATION IN PYTHON

A program written in Python called “fillgaps.py” is available

at: https://zenodo.org/record/5594587. The following software

packages are required for the code to properly execute:

• Python (developed in version 3.10.10)

• NumPy (developed with version 1.20.0) [23]

• SciPy (developed with version 1.7.1) [24]

• Matplotlib (developed with version 3.3.3) [25]

The versions listed above are not necessarily required, but the

script implementation is guaranteed to be compatible with these

versions. All the above are open source and, thus, free and

easily accessible on the internet. The user can run the script

through terminal commands or a Python-compatible IDE.

To execute, the user inputs the file containing the gap-laden

data with the time stamp in one column and data in a second

column. Both csv and txt input file formats are supported. Gaps

are determined by finding the smallest difference between

consecutive time stamps and recreating the data set with

equally-spaced intervals. Since the program imputes at irregular

time jumps and then reindexes the time stamp, remove pre-

existing imputations of zeroes or interpolations. Otherwise, “No

Gaps detected” is outputted. Finally, the user inputs an output

file name with the .csv extension and adds it at the end of the

command line. An example call in Linux command line is:

‘python3 fillgaps.py <input_file> <output_file>.

Upon completion, the script outputs a graph of the data before

and after the imputation and an output file in a csv format of the

filled data in the same directory the script is run.

Intervals with no data are the ‘gaps’ and are filled with

NumPy’s nan constant (representative of ‘not a number’). Both

time stamps and data are stored in NumPy arrays and are

manipulated in-place.

An executable version with a GUI that takes a csv input is also

available at: https://zenodo.org/record/5595200. It contains a

55MB .exe file for inclusion of all libraries and features of the

above non-GUI Python version.

ACKNOWLEDGMENT

The authors thank Paul Ray, Julia Deneva, and Andrea

Lommen of NASA’s NICER Working Group for x-ray Pulsar

timing data and discussions that motivated the algorithm.

REFERENCES

[1] C.A. Greenhall, D.A. Howe and D.B Percival, “Total variance, an

estimator of long-term frequency stability”, IEEE Trans. Ultrasonics,
Ferroelectrics and Freq. Control., Vol. UFFC-46, No. 5, pp. 1183-1191,

Sept. 1999.

[2] N. Schlossberger and D. Howe, “Analysis of powers-of-two calculations
of the Allan variance and their relation to the standard variance,” Proc.

2019 Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., 5 p.

[3] D. A. Howe, “Circular representation of infinitely extended sequences,”

Proc. 1995 IEEE Intl. Freq. Cont. Symposium, pp. 337-346.

[4] D. W. Allan, M. A. Weiss, and J. L. Jespersen, “A frequency-domain

view of time-domain characterization of clocks and time and frequency
distribution systems,” Proc. 1991 IEEE Freq. Cont. Symp., pp. 667-678.

[5] Halmos, P. R., Lectures on Ergodic Theory, The Mathematical Society of

Japan, Kenkyushu Printing Co., Ltd., Tokyo, 1956.
[6] Howe, D.A., Allan, D.W., Barnes, J.A., “Properties of signal sources and

measurement methods,” Proc IEEE International Symp on Freq Control,

May, 1981, pp. A1-A47.
[7] D.B Sullivan, D.W Allan, D.A Howe, and F.L Walls, eds.,

Characterization of clocks and oscillators, Natl. Inst. Stand. Technol.

Technical Note 1337, http://tf.nist.gov/timefreq/general/pdf/868.pdf
(March 1990).

[8] P1139™/D1 (Draft) Standard Definitions of Physical Quantities for

Fundamental Frequency and Time Metrology – Random Instabilities,
IEEE-SA Standards Board, The Institute of Electrical and Electronics

Engineers, New York 10016-5997, USA (in process).

[9] NIST/SEMATECH e-Handbook of Statistical Methods,

http://www.itl.nist.gov/div898/handbook/

[10] G. Box and G. Jenkins, Time Series Analysis, forecasting and control,

Holden-Day, San Francisco, 1976.
[11] D. B. Percival, “The statistics of long memory processes,” Ph.D.

dissertation, Department of Statistics, University of Washington, Seattle,
WA, 1983.

[12] Mandelbrot, B., “Statistical self-similarity and fractional dimension,”

Science 05 May 1967, Vol. 156, Issue 3775, pp. 636-638
[13] W.J. Riley and C.A. Greenhall, “Power law noise identification using the

lag 1 autocorrelation,” Proc. 18th European Frequency and Time Forum

(EFTF), 2004.
[14] D. A. Howe and F. Vernotte,” Generalization of the Total variance

approach to the modified allan variance,” Proc. 1999 PTTI Mtg.

[15] D. A. Howe, R. Beard, C. A. Greenhall, F. Vernotte, and B. Riley,
 “Total Hadamard variance: application to clock steering by kalman

filtering,” Proc. 2001 EFTF Conf., pp. 423-427.

[16] F. Vernotte and D. A. Howe, “Generalization of the Total variance
approach to the different classes of structure functions,” Proc. 2000

EFTF Conf., pp. 375-379.

[17] D. B. Percival, D.A. Howe. “Total variance as an exact analysis of the
sample variance,” 29th Annual Precise Time and Time Interval (PTTI)

Meeting. Dec, 1997.

[18] D. Mondal and D. B. Percival, `Wavelet variance analysis for gappy time
series,' Annals of the Institute of Statistical Mathematics, 62, no. 5, pp.

943-966 (2010).

[19] D. A. Howe and N. Schlossberger, “Characterizing frequency stability
measurements having multiple data gaps,” in process, dhowe@nist.gov.

[20] D. A. Howe, “TheoH: a hybrid, high-confidence, statistic that improves

on the Allan deviation,” Metrologia, 43 (2006) S322–S331.
[21] B. Lewis, “A fast algorithm for calculation of Thêo1”, IEEE Transactions

on Ultrasonics, Ferroelectrics and Frequency Control, 67, 10, pp. 2187-

2190, 1 Oct 2020.
[22] W. J. Riley, “Handbook of Frequency and Stability Analysis,” NIST

Special Publication SP1065.

[23] C.R. Harris, K.J. Millman, S.J. van der Walt, et al., “Array programming
with NumPy,” Nature, 585, 357–362 (2020). DOI: 0.1038/s41586-020-

2649-2.

[24] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental

algorithms for scientific computing in Python,” Nature Methods, 17(3),

261-272 (2020).

[25] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
Science & Engineering, 9, 90-95 (2007). DOI:10.1109/MCSE.2007.55.

https://zenodo.org/record/5595200
http://www.itl.nist.gov/div898/handbook/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55

