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Abstract 

The performance of two methods, termed Manual and Optimization, for determining the values of the 

constitutive-model parameters for Yoshida-Uemori (Y-U) isotropic-kinematic hardening model was 

evaluated. The Y-U parameters were determined for two 6000-series aluminum alloys (AA6XXX-T4 and 

AA6XXX-T81) and two dual-phase steels (DP 980 and DP 1180) using stress-strain data from tension and 

tension-compression tests. In the Manual Method the parameters were calculated by sequentially fitting 

the forward and then the reverse segments of tension-compression stress-strain data. In the 

Optimization Method, the parameters were calculated by systematically reducing the difference 

between the data and stress-strain curves computed from a one-element finite element model coupled 

with the optimization module of the commercial finite-element software package.  

The performance of the methods was evaluated qualitatively by graphically comparing measured and 

computed stress-strain curves and quantitatively by evaluating the residual between the measured and 

computed curves. Although the quality of agreement for the Manual Method was generally good for the 

aluminum alloy tests, the agreement was inferior for the dual-phase steel tests, especially for the 

reverse deformation segment. The Optimization Method produced the best results as evaluated by the 

lowest residual between the measured and computed curves. Of several variants of the Optimization 

Method, simultaneous optimization against all three replicate curves produced Y-U parameters that best 

represented the measured stress-strain curves. Statistical analyses conducted in conjunction with 

optimization studies also established the relative influence for each of the Y-U parameters on the overall 

agreement between measured and computed curves.  

A broader implication is that using a finite element model, rather than the manual methods, should be 

used to determine the Y-U parameters, since those parameters will be eventually used in a finite 

element model to simulate a forming process. This is especially true when determining a single set of 

parameters for repeat tests. 

Keywords 

Tension-compression test; Kinematic hardening; Yoshida-Uemori model; lightweighting material; finite 

element modeling; parameter optimization. 

1. Introduction 
As automotive industries are adopting advanced lightweight alloys for sheet metal components, it is 

becoming more important to predict accurately the mechanical behavior of these alloys during forming 

operations. One major challenge associated with the forming of advanced lightweight materials (e.g., 

advanced high-strength steels or AHSS) is the springback effect, which occurs during shaping and 

forming operations. Advanced alloys tend to show more springback, which is attributed to the 

Bauschinger effect [1]. Predicting and compensating for springback effects have been extensively 
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studied by die makers [2,3]. A sufficiently robust constitutive model must be selected that can capture 

the material behavior throughout the intended forming operations. Such a model can be incorporated in 

a numerical model such as a finite-element analysis (FEA) model. For advanced alloys, accurate 

constitutive models, in addition to proper description of tool and binder geometries and contact 

conditions, are keys to developing a robust numerical model for studying forming of these materials. 

Constitutive models include both isotropic (i.e., expansion of the yield surface is uniform in all directions 

in stress space) and kinematic (i.e., the yield surface translates in stress space, rather than expanding) 

hardening models. Consequently, demand for accurate constitutive models that combine both isotropic 

and kinematic hardening and the data necessary for their calibration is increasing, because such models 

can predict the elastic recovery, residual stresses, and associated springback necessary to model 

complex loading behavior around draw-beads during forming operations.  

Finite-element analysis software for modeling deformation has made it possible to use ever more 

sophisticated and realistic multi-parameter material models. Determining the optimum values of the 

many parameters for a proper constitutive model has progressed from using literature values and 

simple manual determinations [4–8] to simultaneous optimization for some or all of the parameters [8–

22]. Some researchers have used custom code to compute a stress-strain curves for the material and a 

custom optimizer [13,23–25], or used a commercial closed-source package [22] to determine the 

parameters. Because the goal is almost always to eventually use the material model in a finite-element 

model of a more complicated forming operation, it is increasingly common to use the FEA solver to 

generate the stress-strain curve from the model, and then use either a commercial optimizer coupled to 

the FEA package [8,10–12,14,14–16,18–21] or a custom-written optimizer [9,26] to fine tune the 

parameter values based on comparing model data with test results. This optimization approach 

simplifies the determination of the values of the parameters by freeing the user from writing an 

implementation of the model separately.  

Most of these articles focused on determining a set of material model parameters from a set of tension, 

tension-compression [8–11,13,15,17,19,20,22], bending [12,21,27], load-unload [4,9,10,12,16,20,27], or 

other [12,21,27] tests to use later in modeling a more complex forming operation. Comparatively little 

attention [14,19] has been devoted to quantitatively assessing the quality of the fit of the model 

parameters to the input stress-strain curves or their sensitivity [15] to the material model. Instead, 

because of the complexity of the material models, the evaluation of the quality of fit has been primarily 

visual and qualitative.  

The Yoshida-Uemori (Y-U) work-hardening model [28,29] extends previous work-hardening models [30–

42]. It has been widely used for modeling complex sheet-metal forming operations [10–12,14–16,18–

20,22,27,43,44], especially those where springback or reverse deformation is important. It properly 

describes several important phenomena in sheet metal forming such as the transient Bauschinger 

effect, permanent softening, strain-range dependent cyclic hardening, and work-hardening stagnation in 

several steel grades. The Yoshida-Uemori model, described in much greater detail in the appendix, uses 

ten parameters, summarized in Table 1, to describe the evolution of the yield and bounding surfaces 

during both forward and reverse deformation processes. Because of its utility, at least three [45–47] 

major commercial software packages used for simulating sheet-metal forming have implemented this 

model to free users from developing custom implementation of the Y-U model in finite element codes 

using user subroutines. One such software package [45] has been used in this study. Constitutive models 

should comprise a combination of isotropic hardening, kinematic hardening, rotational hardening, and 
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distortional (anisotropic) hardening models. For example, the homogeneous anisotropic hardening 

(HAH) framework[48] includes a combination of isotropic and distortional hardening and can be 

especially relevant for aluminum alloys during necking [49]. However, the strains in this study are small 

and less than the uniform strain. Additionally, our objective is to use the Y-U model, which is widely used 

in the automotive sector, and that has been shown to capture the Bauschinger effect accurately. 

The present study focuses on quantitatively evaluating the performance of methods to calculate the 

parameters of the Yoshida-Uemori model and their sensitivities. Two advanced high-strength steels and 

two aluminum alloys were evaluated. The present contribution is part of the National Institute of 

Standards and Technology (NIST) effort [50–53] to generate test methods, data, and models for uniaxial, 

biaxial, and tension-compression testing of lightweighting alloys. 

The paper proceeds as follows. A brief description of the experimental procedure is presented first. 

Then, two methods, Manual and Optimization, are presented for obtaining the Y-U parameters. The 

Manual Method is a reasonable approach for obtaining the Y-U parameters. However, as it will become 

evident later, the Optimization Method is a superior approach for obtaining the Y-U parameters. The 

predicted stress-strain curves from these methods are then both compared to results from a literature 

determination of the Y-U parameters that employed the same data set. The comparisons are both 

qualitative, using computed stress-strain curves, and quantitative, using the residual difference between 

the measured and computed curves. Finally, the sensitivities of the match between measured and 

computed stress-strain data to variations in the Y-U parameters are summarized.  

2. Experimental procedure 

2.1 Materials and Test Specimens 
As part of the Numisheet 2020 benchmark exercises [54], and at the direction of the Benchmark 

Committee, NIST conducted monotonic uniaxial tension and tension-compression tests on Benchmark 1 

(BM1) DP 980, Benchmark 2 (BM2) DP 1180, BM1 AA6XXX-T4, and BM2 AA6XXX-T81 alloy specimens. 

Reference [55] contains a complete description of the experimental configurations and tension and 

tension-compression data. The rest of Section 2 simply summarizes that report. All test specimens were 

fabricated by abrasive waterjet cutting. Figure 1 shows dimensions of the test specimens. The analysis of 

this study employed only test specimens that were oriented at zero degrees to the rolling direction of 

the sheets. 

2.2 Testing 
Each test was replicated three times. The actuator velocity was maintained at a rate to produce an 

engineering strain rate 2.5×10-4 (mm/mm)/s. Strains were measured using a virtual extensometer with 

nominal gauge length G=50 mm for the tension tests and G=23.8 mm for the tension-compression tests. 

2.2.1 Uniaxial tension tests 
The uniaxial tension tests were performed at constant engineering strain rate through failure. From the 

plots of true stress vs. true strain curves, the 0.2 % offset yield strength and Young’s modulus were 

determined for each test, and the average values for each material were used in Manual Method of 

parameter fitting in Section 3.1. 
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2.2.2 Uniaxial tension-compression tests 
Figure 2 shows the tension-compression test configuration. Anti-buckling guides (ABGs) lubricated by 

polytetrafluoroethylene (PTFE) sheet and petrolatum prevented out-of-plane buckling while minimizing 

friction effects. The left and right ABG pneumatic actuators applied a 3000 N side force to the wide faces 

of the test specimen through the ABGs for the entire test, which produced a compressive stress on the 

face of the specimen of approximately 2.5 MPa. The axial force was defined as the average readings of 

the upper and lower load cells. During the test, the difference between the forces indicated by the 

upper and lower load cells was typically not more than 1.6 %, about 200 N. In the most extreme case, it 

was 3.5 % of the maximum force.  

The tension-compression test protocol, selected by the Numisheet Benchmark Committee, comprised 

three segments in displacement control. Segment 1 was a tensile stretch to a fixed displacement that 

produced a nominal engineering strain of 0.05 mm/mm for DP 980, AA6XXX-T4, and AA6XXX-T81. 

However, due to the limited ductility, the final nominal strain in segment 1 for the DP 1180 tests was 

0.02 mm/mm. Then after a 10 s hold, segment 2 was compression to a fixed displacement determined 

to produce a final specimen engineering strain approximately zero. After another 10 s hold, segment 3 

was a tension stretch until specimen failure. Ref. [55] provides additional details about the tests as well 

as the data. Measured true stress-true strain diagrams for all four materials from Ref. [55] are shown in 

Figure 3. Because segment 3, tension to failure, was not used in this analysis, it is not plotted. The stress-

strain behavior of materials that exhibit tension-compression asymmetry will be different if segment 1 is 

compression, instead of tension; see for example Ref. [56]. These data are not available in Ref. [55], 

however.  

2.2.3 Digital Image Correlation strain measurements. 
A stereo Digital Image Correlation (DIC) system captured strain data for all tests. The speckle pattern 

was applied on the wide face of the tension specimens and on the narrow face of the tension-

compression specimens. See Figure 4 for a graphical description of the tension-compression test 

configuration. The DIC analysis parameters were optimized with “Virtual Strain Gauge” studies, as 

recommended by the Good Practices Guide for DIC [57]. Stress-strain curves for both tension and 

tension-compression tests were created using a DIC-defined virtual extensometer, with gauge length, G, 

also shown in Figure 1. 

2.2.4 Computational software 
The Manual Method for determining the values of the Y-U parameters employed a script written in the 

commercial software package MATLAB. The Optimization Method analyses used the commercial finite-

element analysis (FEA) software package, LS-DYNA, coupled to its optimization software, LS-OPT, 

hereafter referred to as the “commercial FEA package coupled to its optimization software.” Specifically, 

the package implemented the kinematic hardening, transversely anisotropic constitutive material model 

(MAT_125) [45]. The stress-strain curves were computed using the commercial FEA package LS-DYNA as 

well.  

3 Y-U model parameters determination: methods and results 
The focus in this paper is on the Y-U model, which involves determining ten parameters: Y, B, C, Rsat, b, 

h, k, E0, Esat, and ξ summarized in Table 1. Two methods were used. The Manual Method used three 

different approaches to estimate the ten parameters. Two parameters, Y and E0, were determined from 
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the tension stress-strain curves. Three parameters, h, Esat, and ξ, were taken from literature values. The 

remaining five parameters, B, C, 𝑅sat, b, and k, were extracted by fitting the forward (tension) and 

reverse (compression) segments of the tension-compression curve separately. In the Optimization 

Method, all nine parameters were fit simultaneously, and E0 was determined from the tension stress-

strain curves.  

For both the Manual and Optimization Methods, the appropriateness of Y-U model parameters for 

predicting the stress-strain response was verified by creating predicted numerical stress-strain curves 

and comparing them to the experimentally determined curves. Ref. [58] used 100 square shell elements 

in commercial FEA package to model the uniform deformation region in a tension-compression test. 

However, a single element is often desirable in the FEA testing phase because it typically reduces 

convergence issues for a highly nonlinear problem. In addition, it is a preferred approach to test 

complex hyperelastic, creep, or plasticity material models, and it reduces convergence problems that 

might occur especially with badly warped elements possible during the compression cycle. Therefore, a 

single-element, finite-element model that employed the Y-U model was used to create the predicted 

curves for segments 1 (tension, forward) and 2 (compression, reverse).  

3.1 Manual Method 

3.1.1 Determination of the Y-U model parameters by the Manual Method 

3.1.1.1 Determination of Y and E0 

In Ref. [28] an elastic limit value was used for the value of the radius of the yield surface, Y. Experimental 

determination of the elastic limit requires a series of loadings and unloadings to determine when 

plasticity begins. That process is both time consuming and lacks repeatability. Another option is to 

define the radius of the yield surface as the stress at the proportional limit, the deviation from linear 

stress-strain behavior. However, some very small nonlinear behavior can happen well before initial yield, 

which also leads to low repeatability of the value of Y. Therefore, many in the literature choose to use 

the 0.2 % offset yield value for the radius of the yield surface, Y, which is more repeatable, but 

overpredicts the initial yield. For the Manual Method, the average 0.2 % offset yield value from the 

monotonic uniaxial tests (as described in Section 2.2.1) was used for the value of the radius of the yield 

surface, Y, for each material. The value of the Young’s modulus at the initial state, E0, was set to the 

average value, Table 3, for each material of the three determinations in the uniaxial tension tests.  

3.1.1.2 Determination of h, Esat, and 𝜉 

For the dual-phase steel alloys, DP 980 and DP 1180, the values of Esat and ξ were taken from literature 

values [4]. For the aluminum alloys, AA6XXX-T4 and AA6XXX-T81, the Manual Method neglected elastic 

modulus degradation, because no suitable values exist in the literature. 

The parameter h, the fraction of hardening that is kinematic versus isotropic, can be determined from 

the experimental data of stress-strain curve in the plastic strain range of work-hardening stagnation 

(during the reverse transformation) or from studying the cyclic hardening characteristics (multiple 

tension-compression loops). Numerical simulation [4,58] showed that a large value of h results in 

prediction of smaller saturated stress amplitudes under cyclic loading. It is typically determined from a 

modeled best-fit match to the experimental data. In this study for the Manual Method, the value h = 0.5 

was chosen as suggested by researchers [4,58]. 
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3.1.1.3 Determination of B, C, Rsat, b, and k 

The five remaining model parameters, B, C, Rsat, b, and k were determined by fitting the forward, and 

then the reverse, segments of the tension-compression stress-strain curves, using a script that used an 

approach of the minimization of error with a least-squares technique. 

The forward bounding surface, the line connecting point b to point c in Figure 15a in the appendix, was 

fitted with equation 1, which is the same as equation A8, but is rewritten with the notation of σbound
(fow)

 for 

the forward bounding surface to match the notation used in Ref [28]: 

σbound
(fow)

= 𝐵 + 𝑅 + 𝛽 = 𝐵 + (𝑅sat + 𝑏)(1 − 𝑒−𝑘𝜀𝑝
) (1) 

By fitting the forward bounding curve of true stress vs. true plastic strain, obtained from the forward 

deformation with equation 1, (the type of equation is analogous to Voce-type hardening), the 

parameters B, (Rsat +b), and k were obtained. 

From equation A7, the permanent softening at the start of reverse deformation, σ𝐵0
(p)

, when εp = ε0
p

, 

i.e., ε̂p = −(εp − ε0
p

) = 0 in Figure 15a, which is the difference between points j and k in Figure 15a and 

Figure 15b is given as: 

 𝜎𝐵0
(p)

= 2𝛽0 = 2𝑏 (1 − 𝑒−𝑘𝜀0
p

) (2) 

The reverse bounding curve was determined by extrapolating the true stress vs. true plastic strain curve 

from its saturation point as line e-j in Figure 15a. The point k in Figure 15a is known from the forward 

bounding curve; it is the mirror image of the point c. Hence the difference between point j and point k in 

Figure 15a is 2𝛽0 in equation 2. Therefore, this value and the value of k from the fit of equation 1 

determined the value of parameter b. Finally, Rsat was determined, since (𝑅sat + 𝑏) was known from the 

fit of the equation 1. 

The value of the kinematic-hardening-rate parameter, C, was determined from the transient 

Bauschinger deformation as shown in Figure 15a. Researchers have used optimization methods for 

obtaining values of this parameter, and Yoshida and Uemori[28] provided equations for obtaining it. For 

the uniaxial case, the original back stress model of equation A2 results in the following equation: 

 �̇�∗ = 𝐶(𝑎휀̇p − 𝛼∗|휀̇p|) (3) 

where 휀̇p is the plastic strain rate for the uniaxial deformation. It follows from this equation that the 

transient stress offset, σB
(t)

 in Figure 15a, which is the difference between the reverse stress-plastic 

strain curve (line d-e in Figure 15a) and the extrapolated curve of the permanent softening region 

(line e-j in Figure 15a), can be written as: 

 σB
(t)

= 𝑎 + 𝛼∗ ≈ 2𝑎𝑒−𝐶 ε̂p
 (4) 

where ε̂p is the reverse plastic strain. By fitting the σB
(t) vs. ε̂p curve (obtained from the reverse test data) 

with equation 4, the fitted values of coefficient a (i.e., a=B+R-Y) and the parameter C were determined.  

3.1.1.4 Summary of Manual Method parameter values 

Table 3 shows the values of the ten parameters (for DP 980 and DP 1180) and eight parameters (for 

AA6XXX-T4 and AA6XXX-T81) obtained using the Manual Method for all four materials and twelve tests. 

Except for the Rsat values for DP 1180, the parameters are in reasonable agreement between the 
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replicate tests for each material, while the values of each parameter differ between materials, as 

expected.  

The values of Rsat, the saturated value of the hardening at infinitely large plastic strain, reached very low 

values for DP 1180; in two tests its value was negative, which is not realistic. The hardening value 

decreased from the initial values for the bounding surface as a function of the plastic strain. The 

negative values arose because the measured stress-strain curve did not reach a plateau. The bounding-

surface isotropic-hardening-rate exponent, k, controls the rate of isotropic hardening. The values of k 

are large, which indicates much faster isotopic hardening than that would normally be expected [4,58]. 

For DP 1180, the combination of values of B, b, and k represents the scenario where the bounding 

surface is predicted to harden isotopically in a rapid manner to a low saturated hardening of the 

bounding surface.  

3.1.2 Verification of the Y-U model parameters determined by the Manual Method 
To verify the appropriateness of the values of the Y-U model parameters in predicting the stress-strain 

response, the parameters determined by the Manual Method were used in the commercial FEA package 

that modeled the tension and compression segments of the measured stress-strain curve described in 

Section 2.2.2 using a single element. The resulting predicted stress-strain curves were compared to the 

measured tension-compression stress-strain curves.  

The commercial FEA package used to verify the model parameters has implemented the Y-U constitutive 

model as a material model, which was used. (See Section 2.2.4.) A finite-element simulation of a cyclic, 

uniaxial tension-compression test was conducted with the FEA software. As explained earlier, to avoid 

issues such as buckling in the reverse deformation segment, the simulation used a square, one-element 

model, with a fully integrated four-node shell element that allows thickness stretch. The left bottom 

node was constrained in both x- and y-directions, while the right bottom node was constrained in x-

direction. See Figure 5a. A uniform cyclic velocity (with equal positive and negative magnitude) 

boundary condition was applied in the y-direction on the two top nodes of this square element to 

simulate the cyclic, uniaxial loading conditions. A trial-and-error approach was used to determine the 

magnitudes of the velocity needed to produce the maximum strain observed in each test. Predicted axial 

normal y-true stress and mid-surface y-true strains at the element integration point were output and 

compared with measured true-stress-true-strain data for all tests included in this study.  

Figure 6 compares the measured true stress vs. true strain curves to the computed curves from the 

FEA model that used the corresponding values of the Y-U model parameters as listed in Table 1 for each 

test. Qualitatively, the match for the forward deformation for the aluminum alloy tests is better 

compared to the steel tests. The deviation near the transition from the elastic to the plastic region is 

evident and is more pronounced for the dual-phase steel tests. The match for the reverse deformation 

for the dual-phase steel tests is not as good. The match for the DP 1180 steels is worse mainly because 

the test reached a strain level of 0.02 mm/mm (or 2 %), at which point the stress-strain curves did not 

reach a plateau, which is an inherent requirement for the determining the Y-U model parameters. One 

other main assumption of the Y-U model is that the shape of the stress-strain curve for the forward 

deformation is very similar to that for the reverse deformation. Although other researchers have also 

assumed this similarity [36,59–62], it may not be entirely true. The Y-U model traditionally predicts a 

slower change in work-hardening rate after initial yielding than that observed experimentally. This is the 

main cause of discrepancy between the measured and predicted curves because the same C values were 
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used here for both the forward and reverse deformation. To circumvent this problem, Y-U [28] proposed 

a C1+C2 model, where the original kinematic-hardening-rate parameter C takes two different values, C1 

and C2, for forward and reverse deformations respectively. The present study focused on the original 

Y-U model, with a single value of C, as there is not a fundamental approach for obtaining the C2 

parameter [28]. 

3.2 Optimization Method  
Figure 6 indicates that while the qualitative match between the measured and predicted stress-strain 

curves for the Al-alloys is good, there are differences in the dual-phase steel curves, especially for the 

reverse deformation segment. It was difficult to stretch the DP 1180 steel specimens beyond 

0.02 mm/mm strain without exceeding the uniform strain. Even in aluminum alloy curves, the match at 

the transition point between the elastic and plastic regions for the reverse stress-strain curve is poor. 

The problem with the Manual Method in Section 3.1.1 is that each segment of the curve (i.e., forward 

and reverse) was fitted separately. Consequently, the method could not provide a global picture that 

would include interdependence among the Y-U parameters for predicting both the forward and reverse 

deformation. Another unknown is which parameters are most sensitive and have the largest influence 

on the predicted stress-strain curve. Therefore, it was decided to further improve the values of these 

parameters by using a global optimization method that can also assess the parameter sensitivity, as 

explained below.  

3.2.1 Determination of the Y-U model parameters by the Optimization Method 
The goal here was to obtain the optimum values of the ten Y-U model parameters for each test, using 

both the forward and reverse segments simultaneously. A global Optimization Method, using the 

commercial finite-element package coupled to its optimization software was used to determine nine of 

the parameters: Y, B, C, Rsat, b, k, h, Esat, and ξ . The value of the Young’s modulus at the initial state, E0, 

was again taken from the average of the three values determined in the tension tests. As described 

in 3.1.1, there is some disagreement in the literature whether to use the 0.2 % offset yield strength or 

the elastic limit for the radius of the yield surface, Y, of the Y-U model. For this reason, the value of Y 

was also selected as a design parameter, thus allowing the optimized value to potentially be closer to 

the unknown elastic limit. 

The Optimization Method used curve mapping in the optimization software [63], which is appropriate 

for hysteretic curves. A one-element (hexahedral solid element) FEA model was used for obtaining the 

computed stress-strain curve. The solid element model was chosen as it removes the requirement of 

having to choose an arbitrary shell thickness in the shell element model. The side length of the element 

was 1 mm. The nodes at the bottom face were constrained in the y-direction, while the nodes at the left 

face were constrained in the x-direction, as shown in Figure 5b. A cyclic ramped velocity boundary 

condition in the y-direction was applied on the nodes at the top face of the element. The true stress vs. 

true strain values for this FEA solid-element model (y normal stress vs. y normal strain) for the cyclic 

loading tests were compared with measured values from the tests for the forward and reverse loading 

history. 

A polynomial metamodel with linear order and D-optimal point selection was defined for the 

commercial optimization software predictive algorithm [63]. A metamodel is a mathematical 

approximation of computed results so that an optimizer can use predicted results (i.e., approximate 

results) for different combinations of design variable values without requiring additional FEA runs, 
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saving overall computation cost of finding an optimum design. It is a mathematical function of design 

variables, and this function is obtained using regression analysis based on computed results of a few 

sample FEA runs. For traditional optimization based on a single scalar value, the metamodel predicts the 

response value (y) for a given design variable vector (x). In curve matching, since the output is history 

data (not a single value), a metamodel is constructed at each regression point of the curve so that we 

can obtain the entire "predicted" history for a given design variable vector (x). The regression points are 

the points used to fit a metamodel. In the context of curve matching, the regression points are the 

points along the curve where the error between test and computed curve is calculated. The optimizer 

uses these predicted histories instead of computed curves to minimize the error between the measured 

curve and the predicted curve. Note that the use of a metamodel is only to reduce the computation 

cost. In the case of the direct simulation-based curve matching (as opposed to metamodel-based curve 

matching), many FEA runs are needed for an optimum solution, thereby increasing computational cost 

significantly. The regression points are taken from the measured curves in the optimization software 

algorithm. The y-values from the measured curve were compared to interpolated points from the 

computed curve. This happens in normalized space to avoid biases when axis scales differ in magnitude 

for both the measured and computed curves.  

Minimization of the residual that is defined as the sum of the vector of errors between the measured 

and computed curves was defined as the objective function, while the nine Y-U parameters (Y, B, C, Rsat, 

b, k, h, Esat, and ξ ) were the design parameters for the optimization algorithm. The curve-mapping error 

metric calculates the area between the computed curve and measured curve. The curves are normalized 

and if there are m regression points, then there are m−1 segments in the curves. The curves are 

therefore split into (m−1) segments, depending on the number of regression points (m). Each segment 

of the shorter curve is mapped to the longer curve, and the mapping distance between the segments of 

both curves is calculated. The segment length multiplied by this distance between the curves gives the 

area of mismatch between one segment along the two curves. This process is repeated for m−1 

segments; the sum over all the segments represents the total error/mismatch/discrepancy in the curves, 

and this total error is selected as the objective for minimization [63].  

For each Y-U model parameter, the optimization parameter spaces were defined as continuous with 

appropriate and realistic range of values for the specific parameter, summarized in Table 2. The ranges 

were selected by studying the values in the literature [4,28,29,58]. The optimization strategy was 

sequential response surface method (SRSM), where the actual optimization is an iterative process. A 

hybrid optimization algorithm was chosen, where the metamodel optimization started with an adaptive 

simulated annealing (ASA) algorithm to find an approximate global optimum after which a second 

leapfrog optimization algorithm (LFOP) was used to improve the solution[63]. Eight global iterations 

were specified. The Optimization Method specified two criteria: 1) change in the optimum objective 

values (between iteration n and n−1) < 0.01 and 2) change in the optimum design vector < 0.01. 

The flowchart of the Optimization Method is shown in Figure 7. “Setup” is where the initial values and 

the range of values of the nine parameters (Y, B, C, Rsat, b, k, h, 𝐸sat, and 𝜉) were defined ( Table 2). The 

initial values were set to the values determined in the Manual Method. The objective for Optimization 

was defined in this case as minimization of the residual, i.e., the sum of the vector of the difference 

between the measured and model stress strain curves. In “Sampling” the metamodel was defined (a 

polynomial with linear order and D-optimal point selection technique). In “Solver” the FEA software was 

specified as the computation software; the nine design parameters were defined, and the three history 
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data were designated to be extracted (i.e., stress, strain, and stress vs. strain data from the model). In 

“Build Metamodel” a mathematical model was actually constructed (as specified under “Sampling”) for 

conducting a sensitivity study. In “Sensitivity Study” a global sensitivity analysis (GSA) was performed to 

calculate the sensitivity of a response with respect to selected design variables so that insignificant 

variables are eliminated before “Optimization.” In “Convergence Test” the tolerance specified for 

termination is checked and whether maximum number of iterations was reached. This study specified 

design change tolerance = 0.01, objective function tolerance = 0.01, and maximum number of 

iterations = 8  

In “Domain Reduction,” to accelerate convergence, an adaptive domain reduction strategy is used to 

reduce the size of the subregion. Parameters for the Sequential with Domain Reduction (SRSM) method 

used are defined here. Additionally, the user can reset the subdomain range to the initial range values for 

a particular iteration and freeze the subdomain range from a particular iteration. The GSA results were 

evaluated using a large number of samples (10 000 by default) to obtain reasonable accuracy in 

sensitivity results. These samples were selected using Monte Carlo technique, which is simply a random 

point selection method. In “Verification” the final verification was conducted between the model 

prediction and the measured data. During the verification process, stress-strain data obtained from a 

FEA model with optimum design parameters were compared with test data to determine the quality of 

the fit. Note that a verification run of the predicted optimal design parameters was only conducted after 

the last full iteration and a successful convergence test. The “Verification” step is optional but is 

generally recommended as a good practice. 

Table 3 shows the values of the nine Y-U parameters that were obtained by the Optimization Method. In 

general, the optimized Y values for Al alloys were within 10 % of the initial values from the Manual 

Method, but the values for the dual-phase steel decreased from the initial values by between 5 % and 

28 %. This has to do with the nature of the hardening curves for dual-phase steels and their more 

gradual elastic to plastic transition. The optimized values of the bounding-surface isotropic-hardening-

rate exponent, k, decreased overall from their initial values. The optimized values of the parameter h for 

Al alloy tests were lower than the assumed h=0.5 used in the Manual Method and were similar to the 

initial values for the dual-phase steels. The values of the parameters Rsat, b, and k for DP 1180 tests were 

highly variable between tests. This variability probably arose because a plateau was not reached in the 

stress-strain curve at the maximum strain level of 0.02 mm/mm. In the case of DP 1180 steels, the target 

range for optimization of these parameters was widened from typical ranges of parameter values 

reported in the literature by looking at the initial values of Rsat, b, and k obtained from the manual 

approach. (See Table 2.) These resulted in wide variability in values of these three parameters obtained 

using the optimization method for the three DP 1180 tests. 

3.2.2 Verification of the Y-U model parameters determined by the Optimization Method 
Figure 8 compares the measured stress-strain curves to those obtained from the Optimization Method 

with the optimized values of Y-U parameters listed in Table 3. Qualitatively, the match between the 

measured and computed stress-strain curves is much better compared to those from the Manual 

Method, shown in Figure 6. The match for the Al-alloy tests is nearly perfect. Although the match for the 

DP 980 tests is better for the Optimization Method than the Manual Method especially for the reverse 

deformation, noticeable disagreement still exists for the DP 1180 tests. 
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3.3 Numisheet Benchmark Study 2020 Method 
The Numisheet Benchmark Study [54], which also used the stress-strain data [55] analyzed here, also 

reported a set of values of Y-U parameters computed by an optimization method of the commercial 

MatPara [64] software. The Numisheet Benchmark Study [54] did not report specific details of the 

optimization method, however. Instead of the single value for the parameter C, the reported set of 

values  used the C1+C2 approach, equation 43a and 43b of Ref. [28], where individual values of the 

parameter C were used for the forward and reverse deformation segments. In contrast to the present 

study, the Benchmark Study reported only a single set of Y-U parameters for each of the four materials, 

as opposed to a set for each replicate test. Unfortunately, the values of C1 and C2 cannot be directly 

compared to the results for the single parameter value C from the Manual or Optimization Methods 

described in the present study. Therefore, all three Methods (Manual, Optimization, and Numisheet 

Benchmark Study) will be assessed based on the difference between the measured and computed 

stress-strain curves using the determined parameters. 

3.3.1 Determination of the Y-U model parameters by the Numisheet Benchmark Study 2020 

Method 
Table 3 shows the values of the Y-U parameters taken directly from the Numisheet Benchmark 

Study [54], abbreviated as “NBS2020_Opt,” for all four materials, which used the same test data as the 

present study. 

3.3.2 Verification of the Y-U model parameters determined by the Numisheet Benchmark Study 

2020 method 
Figure 9 compares the measured stress-strain curves to those obtained from the Numisheet Benchmark 

Study 2020 Method with the values of Y-U parameters from the Numisheet Benchmark Study [54] listed 

in Table 3. Qualitatively, the match between the measured and computed stress-strain curves using the 

Numisheet Benchmark Study 2020 Method is much better compared to those from the Manual Method, 

shown in Figure 6, and are qualitatively similar to that of the Optimization Method, shown in Figure 8.  

4 Analysis 

4.1 Summary of residual errors in the three methods 

4.1.1 Difference plots 
The quality of the fits from the Manual, Optimization, and Numisheet Benchmark Study 2020 Methods 

shown in Figure 6, Figure 8, and Figure 9 can be better visualized by a difference plot as shown in 

Figure 10 for the first replicated test (R01) of all four alloys. In Figure 10, the difference, Δσ, between the 

measured true stress, σ, and the computed true stress, σc, for each model is plotted separately for the 

forward and reverse deformation segments. 

 𝛥𝜎 = 𝜎 − σc (5) 

Standard interpolation functions were used to calculate the computed stress at each measured strain 

point, because the number of abscissa values differ among the datasets. For both the forward and 

reverse deformation, the differences are large at the elastic/plastic transition region. Otherwise, the 

agreement is good in the fully developed plastic flow region, especially for AA6XXX-T4. The fit in the 

forward deformation is always better than in the reverse deformation, as evaluated by the maximum 

absolute difference. The agreement is best using the parameters determined by the Optimization 
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Method, though the maximum deviations for the Numisheet Benchmark Study 2020 Method are not 

much larger. 

4.1.2 Quantification of the differences between measured and computed stress-strain curves 
The commercial optimization software was used to reduce the difference between the measured and 

computed stress-strain curves to a single value for the entire curve to easily compare the deviations 

among curves. This was accomplished by computing a measure of the total deviation of the computed 

stress-strain curve from the measured stress-strain curve. As part of the curve-mapping process, the 

optimization algorithm reported the residual, δ, which is also called εp . (See chapter 28 of Ref. [63]). This 

value is essentially the difference in areas between the measured and computed curves, as described in 

Section 3.2.1, after the x and y values of both are normalized so that they vary from 0 to 1. 

Figure 11 plots the value of the residual, δ, from Table 3 for each replicate stress-strain curve for all four 

materials and quantifies the qualitative features of Figure 10. For each material, the Optimization 

Method reduced the value of the residual, δ, compared to the Manual Method by more than an order of 

magnitude for the aluminum alloys, and by a factor of 3 and 7 for the DP 1180 and DP 980 respectively. 

Because Ref. [54] only provided a single set of Y-U parameters for all three replicates, Figure 11 omits 

the results of the Numisheet Benchmark Study 2020 Method.  

Because one purpose of this study was to evaluate methods for obtaining one set of the Y-U parameters 

for each material, the performance of two variants of the Manual Method, three variants of the 

Optimization Method, and the Numisheet Benchmark Study 2020 Method were evaluated comparing 

against all the replicate tests using the same data:  

• Manual Method: Average of Parameters variant 

• Manual Method: Individual variant 

• Optimization Method: Average of Parameters variant 

• Optimization Method: Individual variant 

• Optimization Method: Simultaneous variant 

• Numisheet Benchmark Study 2020 Method 

4.1.2.1 Average of Parameters Variant 
In the Average of Parameters variant, the individual Y-U parameters for each replicate test of a given 

material were averaged to produce a single new set of Y-U parameters, also summarized in Table 3, 

which was then used to produce a new computed stress-strain curve. That computed curve was used to 

calculate the value of the residual, δ, for each of the stress-strain curves from the three replicate tests. 

The sum of the three residuals was calculated as the total residual for the variant, δV (in absolute 

values): 

 𝛿V = 𝛿1 + 𝛿2 + 𝛿3 (6) 

where δi= 1,2,3 are the residuals from the first, second, and third replicate tests. 

4.1.2.2 Individual Variant 
In the Individual variant, the individual Y-U parameters for replicate 1 for the Manual and Optimization 

Methods were used to compute a single stress-strain curve. From that curve, the total residual for the 

variant, δV, for the three replicates was calculated in the same way as for the Average of Parameters 
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variant, equation  6. The Individual variant probes the behavior of the repeatability of the actual 

tension-compression test, because replicates 2 and 3 were not used to calculate the Y-U parameters.  

4.1.2.3 Simultaneous Variant 
In the Simultaneous variant, which was only possible with the Optimization Method, the Y-U parameters 

were calculated by optimizing the parameters against all three replicate curves simultaneously, instead 

of against just an individual curve. In this case the total residual for the variant, δV, for all three 

replicates is also what is being minimized as the goal of the optimization. 

4.1.2.4 Numisheet Benchmark Study 2020 Method 
In the Numisheet Benchmark Study 2020 Method, the Y-U parameters from [54] were used to compute 

a single stress-strain curve for each material. That computed curve was used to calculate the value of 

the residual, δ, for each of the stress-strain curves from the three replicate tests. The individual 

residuals, δ, were summed, equation 6, to compute the total residual for the variant, δV. 

4.1.3 Summary of the performance of the variants 
For all four materials, the optimization methods (Optimization and Numisheet Benchmark Study 2020) 

produced fits with residuals that were 2.5 to 12 times smaller than those from the corresponding 

Manual Method. (See Table 3.) Simultaneous Optimization always reduced the error by a factor 

between 1 and 2 compared to the Average of Parameters variant. Apart from the DP 1180 results, which 

suffered from the limited tension strain range, all both optimization methods performed quite well. (See 

Figure 12.) For the Manual Method, the total residual for the Average of Parameters variant, δV, were 

less than or equal to the individual residuals for all the materials except the DP 1180. For the 

Optimization Method, the total residual, δV, for the Average of Parameters variant was always higher 

than the individual determinations for all the materials, however the total residual, δV, for the 

Simultaneous variant was almost always equal to, or lower than, the individual determinations for all 

the materials. The Optimization Method and its variants either matched or outperformed the 

Numisheet Benchmark Study 2020 Method total residual results for all but the Average of Parameters 

variant for the dual-phase steels. This study shows that simultaneous optimization against all three test 

variants produced the least total residual values. 

4.2 Y-U Model parameter sensitivity 
A major goal of this paper is to determine which parameters have the most influence on the match 

between the computed and measured stress-strain responses. A global sensitivity analysis (GSA) was 

chosen over the correlation matrix approach. The correlation matrix can give some preliminary idea 

about sensitivity, but it does not necessarily imply causation. The global sensitivity analysis (GSA) is more 

rigorous. GSA results presented here are based on 10 000 regression points (a user-chosen number) 

selected using the Monte Carlo approach (a random point-selection method) and evaluated using the 

metamodel. The global sensitivity analysis was used to calculate the sensitivity of a design response with 

respect to selected design parameters so that insignificant variables are eliminated before 

optimization—the lower the number of variables, the lower the overall cost of performing the 

optimization. The GSA results were evaluated using a large number of samples to obtain reasonable 

accuracy. While other algorithms usually evaluate the integrand at regular grid points, the Monte Carlo 

approach randomly chose points at which the integrand was evaluated. This method is particularly 

useful for higher-dimensional integrals. Therefore, GSA results can show higher order effects. The 

parameters were scored based on their fractional influence on the response. For example, for the first 
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design parameter, the fractional influence is its main contribution (main variance/total variance). 

Similarly, for the second parameter, the fractional influence is based on its main contribution plus 

interaction with the first parameter, and for the third parameter, the fractional influence is its main 

contribution plus interaction with the first variable plus interaction with the second variable, etc.  

Figure 13 shows the results of the global sensitivity analysis of the Y-U parameters determined for each 

replicate in the Optimization Method. Data points show the mean value for the three replicates, and the 

bars show the minimum and maximum values. By shading, the body of the plot identifies regions of 

large (dark shading), small (light shading), and effectively no influence (no shading). Table 3 uses the 

same color scheme. For both aluminum alloys the influence of parameters k, followed by B are large, 

and Rsat has small influence. Other parameters have no influence. For DP 980 steel tests, three 

parameters have large influence: B, C, k. The influence of Y is small. The large-influence parameters in 

the DP 1180 tests are similar to those for DP 980, but the influence of parameter b is also large. Unlike 

DP 980, Y has effectively no influence while Rsat is seen to have a small influence. 

In addition to the shading in Table 3 that highlights the level of influence, black boxes denote 

parameters that are at or very near minimum or maximum allowable limits for optimization. (See 

Table 2.) For the aluminum alloys, the parameters that reached these optimization limits had no 

influence on the optimization; therefore, these are not of much concern. The case of the DP 980 is 

similar except that the kinematic-hardening-rate parameter, C, had large influence but also frequently 

reached the optimization limit. This suggests either a larger optimization range or a different data set 

was needed to evaluate this parameter. In DP 1180, three parameters that had either large (C and b) or 

small (Rsat) influence also frequently reached an optimization limit. In this case, a different data set that 

extended to larger strain in the forward segment would have aided in the determination of more 

appropriate values of all three parameters. 

For aluminum alloys, the global sensitivity analysis shows that bounding-surface isotropic-hardening rate 

exponent, k, is the parameter with the largest influence, signifying that global work hardening, i.e., 

formation of stable dislocation structures, is the dominant factor. Additionally, the initial radius of the 

bounding surface, B, is also important, because it dictates the initial value of the bounding stress and 

consequently, the radius of the yield surface. The small influence of the saturated value of the hardening 

at infinitely large plastic strain, Rsat, could be due by the fact that the strains in the tests were not large 

enough to produce saturation.  

For the dual-phase steels, the influence of the initial radius of the bounding surface, B, and the 

bounding-surface isotropic-hardening-rate exponent, k, are large, like the aluminum alloys. However, 

the large influence of the kinematic-hardening-rate parameter, C, (transient Bauschinger deformation 

characterized by early re-yielding and subsequent change of work-hardening rate) signifies that motion 

of less stable dislocations, such as piled-up dislocations, is important for dual-phase steels. For DP 1180 

steel, the large influence of the bounding-surface kinematic-hardening-rate parameter, b, signifies that 

the permanent softening and work-hardening stagnation caused by dissolution of dislocation cell walls 

and formation of new dislocation structures during reverse deformation is important to the constitutive 

behavior of this steel. Similar behavior for dual-phase steels was also reported in [27]. 
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5. Summary, conclusions, and broader implications 

5.1 Summary 
This paper evaluated the performance of two methods, Manual and Optimization, for obtaining values 

of the constitutive-model parameters for Yoshida-Uemori (Y-U) isotropic-kinematic hardening model. 

The Y-U parameters were determined for two 6000-series aluminum alloys (AA6XXX-T4 and AA6XXX-T4) 

and two dual-phase steels (DP 980 and DP 1180) based on stress-strain data obtained from uniaxial 

tension and uniaxial tension-compression tests. In the first approach, a Manual Method was used to 

obtain these parameters by sequentially fitting the forward and then the reverse segments of stress-

strain data obtained from tension-compression tests. In the second approach, an Optimization Method 

that used the curve-mapping feature of optimization software was used to obtain optimum values of the 

Y-U parameters by systematically reducing the difference between the measured stress-strain data and 

those computed from a one-element FEA model that employed those parameters. In addition, a third 

approach, termed the Numisheet Benchmark Study 2020 Method, computed stress-strain curves from a 

one-element model that employed literature values [54] of the Y-U parameters that had been computed 

from the same data set. 

The performance of the methods was evaluated qualitatively by graphically comparing measured and 

computed stress-strain curves (Figure 6, Figure 8, and Figure 9), and quantitatively by evaluating the 

residual, δ, between the measured and computed curves (Figure 11). Although the quality of agreement 

for the Manual Method was generally good for each of the aluminum alloy tests fit individually, the 

agreement was inferior for each of the dual-phase steel tests when fit individually, especially for the 

reverse deformation segment. The Optimization Method produced better results, evaluated as the 

lower residual, δ, between the measured and computed stress-strain curves for each test. Several 

variants of the Manual and Optimization Methods were also evaluated to assess how well one set of 

parameters (from one test or the average of three tests) can reproduce all three replicate tests 

(Figure 12). However, applying the Optimization Method to all three replicate tests simultaneously 

produced the lowest total residual. 

Statistical analyses conducted in conjunction with optimization studies established the relative influence 

each of the Y-U parameters on the overall agreement between measured and computed curves. For the 

aluminum alloys the most influential parameters were bounding-surface isotropic-hardening-rate 

exponent, k, followed by the initial radius of the bounding surface, B, and the saturated value of the 

hardening at infinitely large plastic strain, Rsat. For DP 980 steel tests, the most influential parameters 

were B, the kinematic-hardening-rate parameter, C, and k. For DP 1180 tests the trends were similar, 

except that the influence of the bounding-surface kinematic-hardening-rate parameter b was larger and 

that of C was somewhat smaller. 

5.2 Conclusions 
The Manual Method was inferior to Optimization Method for obtaining the values for the Y-U 

parameters, although it was relatively easy to implement. Averaging of the parameters from repeat 

tests could result in lower total residual than using parameters based on one test, however this was not 

always the case. Simultaneous optimization of the Y-U parameters against replicate stress-strain curves 

always produced fits that were better than averaging the values of the parameters from the individual 

fits.  
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The small strains achieved in the DP 1180 tests were likely the cause of the relatively poorer fits for the 

DP 1180 tests. The allowable ranges of the parameters, used for optimization constraint, had to be 

drastically expanded for the model to match the test data, which led to highly variable values for the 

saturated value of the hardening at infinitely large plastic strain, Rsat, the bounding-surface kinematic-

hardening-rate parameter, b, and bounding-surface isotropic-hardening-rate exponent, k. (See Table 3.) 

In addition, some of the values were highly unlikely, e.g., Rsat = 1. 

5.3 Broader Implications 
Optimization methods, using a finite element model, like the one implemented in this manuscript, 

rather than the manual methods, should be used to determine the Y-U parameters, since those 

parameters will be eventually used in a finite element model to simulate a forming process. The higher-

quality fits justify the small added difficulty. This is especially true when determining a single set of 

parameters for repeat tests. 

The quality of the measured stress-strain data can strongly influence the optimum Y-U parameters. If 

the stress-strain curve fails to reach a saturation or plateau, spurious values of Y-U parameters can be 

generated. For this reason, replicate tests should be performed to diagnose potential problems, where 

separate fittings of each test will result in inconsistent sets of parameter values when the data quality is 

insufficient. Based on these results, a single stress-strain curve should never be used to determine the 

Y-U parameters. Either replicate tests or a combination of tests with different strain histories should 

always be used. Furthermore, the optimization to calculate the Y-U parameters should be carried out 

against all the replicate curves simultaneously rather than using the values of the parameters from any 

one of the individual tests, because this method produced a superior fit to all the data.  

Appendix. The Yoshida-Uemori model 
The Y-U model incorporates a two-surface modeling approach, where the yield surface moves within the 

so-called bounding surface in a kinematic manner. (See Section 1 and Figure 14.) Furthermore, only 

kinematic hardening is assumed for the yield surface, while mixed isotropic-kinematic hardening is 

assumed for the bounding surface. During plastic loading, both the bounding surface and the yield 

surface may move and change size. However, the bounding surface always encloses the yield surface. In 

cyclic tension-compression tests, the stress-strain responses are bounded by two lines in the uniaxial 

case. (See solid lines in Figure 15b.) In the multiaxial cases, the projections of the points generate a so-

called bounding surface [38–40]. The region inside the yield surface corresponds to an elastic response. 

Plastic loading requires that the current stress point is located on the current yield surface boundary. 

The increase in the stress required to cause new plastic deformation because of the existence of the 

previous plastic deformation is known as strain hardening or work hardening. This is caused by 

dislocations interacting with each other and with barriers that impede their motion. It is well known that 

number of dislocations increases significantly in a crystal with increase in plastic strain. Dislocation pile-

up on slip planes produces a “back stress,” which opposes the applied stress. Isotropic hardening of the 

bounding surface is due to the formation of these stable dislocation structures. The formation of these 

stable dislocation structures results in global work hardening. The Y-U constitutive model considers both 

translation and expansion of the bounding surface. On reverse loading, the material yields at a lower 

stress because the back stress developed during the forward deformation aids in dislocation movement 

when the deformation direction is reversed. Further softening occurs on stress reversal because 

dislocations of opposing signs attract and annihilate each other. This explains the well-known fact that 



Page: 17 

the flow curve during reverse deformation is of less magnitude than the original, continuous flow curve 

in the forward direction. The reduction of the yield stress when the deformation in one direction is 

followed by deformation in the reverse or opposite direction is defined as the Bauschinger effect, which 

is characterized by early re-yielding that has been observed in tests. This early re-yielding is the reason 

why the Y-U model considers only kinematic hardening of the yield surface. The kinematic hardening of 

the yield surface is characterized by a rapid change of work-hardening rate, possibly due to two 

competing events: (a) creation of new dislocation structures during reverse deformation and (b) 

annihilation of dislocation structures created during the forward deformation.  

To determine the necessary parameters for the Y-U model, a basic understanding of the specific purpose 

of each parameter involved is needed. Figure 14 shows a schematic of yield and bounding surfaces 

according to the Y-U model [28], and Table 1 lists the different parameters used in this model. In 

Figure 14, O is the original center of the yield surface; α defines the center of the current yield surface;  

defines the center of the bounding surface; 𝛼∗ refers to the relative kinematic motion of the yield 

surface in reference to the bounding surface. B is the initial radius of the bounding surface; R is the 

isotropic hardening parameter; B+R represents the current radius of the bounding surface; Dp is the 

plastic portion of the rate of deformation, and Y is the radius of the yield surface. The equations of this 

section, and in Figure 14 and Figure 15, preserve the notation that Yoshida and Uemori used. Figure 15a 

illustrates schematically the stress-strain response in a uniaxial forward-reverse deformation. The 

isotropic-kinematic hardening of the bounding surface is depicted in Figure 15b. The kinematic 

hardening of the yield surface is described as follows. The back stresses, α and , can be expressed by 

the following equations. Note that the subscript (obj) represents the objective rate; for example, the 

objective stress rates are time derivatives of stress that do not depend on the frame of reference. Also 

note that the quantities that result from a double contraction operation such as the left-hand side 

quantities in equations A3 and A4 are defined with appropriate symbols with an overbar. This was done 

to preserve the notations used by Yoshida and Uemori [28]. 

 α∗ = α − 𝛽 (A1) 

 𝛼∗,obj = 𝐶 [
𝑎

𝑌
(σ − α) − α ∗√

𝑎

𝛼∗
 ] 휀ṗ (A2) 

 εṗ̅ =  √
2

3
𝐷p: 𝐷p  (A3) 

 𝛼∗̅̅ ̅ = 𝜙(𝛼∗) =  √
3

2
𝛼∗ ∶  𝛼∗   (A4) 

 𝑎 = 𝐵 + 𝑅 − 𝑌 (A5) 

where 𝐶 is a material parameter that controls the kinematic-hardening rate; 휀ṗ is the effective plastic 

strain rate; 𝜙 is a function of the Cauchy stress, and 𝑎 represents the size difference between the 

bounding surface and the yield surface. 

Y-U [28] used the following equation for the isotropic hardening of the bounding surface: 

 �̇� = 𝑘i (𝑅sat − 𝑅) 휀ṗ  (A6) 

where Rsat is the saturated value of the hardening at infinitely large plastic strain, and �̇� is the rate of the 

isotropic hardening stress, R; ki is a material parameter that governs the isotropic hardening rate of the 
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bounding surface. Here as in Y-U [28], the value of ki is assumed to be equal to the bounding-surface 

isotropic-hardening-rate exponent, k. Y-U assumed the following equation for the kinematic hardening 

of the bounding surface (assuming k = 𝑘i): 

  𝛽obj = 𝑘 (
2

3
 𝑏 𝐷p −  𝛽 εṗ ) (A7) 

where b is the bounding-surface kinematic-hardening-rate parameter. For the case of uniaxial tension, 

the bounding surface is defined as: 

 𝜎bound = 𝐵 + 𝑅 + 𝛽 = 𝐵 + (𝑅sat + 𝑏)(1 − 𝑒−𝑘εp
) (A8) 

where εp is the plastic strain. During reverse deformation, early re-yielding is followed by smooth 

elastic-plastic transition accompanied by a rapid change in work-hardening rate. This is also termed as 

non-isotropic hardening, which results in work-hardening stagnation. In the Y-U model, this work-

hardening stagnation is assumed to develop due to the dissolution of the dislocation cell walls during 

the reverse loading. This work-hardening stagnation was expressed by the non-isotropic hardening of 

the bounding surface. The Y-U model accounts for this work-hardening stagnation with a non-isotropic 

hardening surface, 𝑔(𝜎), in the stress space [28]. Note that isotropic hardening of the bounding surface 

is due to global work hardening, which is due to the formation of stable dislocation structures. The Y-U 

model also assumes that the center of the bounding surface, β, resides either on or inside 𝑔(𝜎), which is 

referred as the consistency condition. Isotropic hardening of the bounding surface only takes place 

when the center of the bounding surface, β, stays on the boundary of 𝑔(𝜎) [28][18]. Experimental 

observations [65,66]indicate that work-hardening stagnation increases with the accumulated plastic 

strain, which is expressed by the expansion of g() with increasing plastic strain. From the consistency 

condition stated above, the evolution equation of the radius of the non-isotropic hardening surface, r, 

can be expressed as 

 �̇� = ℎ 
3(𝛽−𝑞)  : 𝛽obj

2𝑟
 when �̇� > 0  

  (A9) 

  �̇� = 0,   when  �̇� = 0  

Note that r is not shown in Figure 14. A schematic illustration of non-isotropic hardening surface is 

shown in Ref. [28]. In Fig. 3 of Ref. [28], q denotes the center of the non-isotropic hardening surface. The 

material parameter h, which is the fraction of hardening that is kinematic versus isotropic, determines 

the rate of expansion of 𝑔(𝜎)and can assume values between 0 and 1. A larger value of h allows for the 

rapid expansion of the non-isotropic hardening surface, leading to smaller cyclic hardening. 

The degradation of the elastic modulus during plastic deformation is considered in the Y-U model. It is 

important to consider this aspect when addressing a springback problem. Y-U proposed the following 

equation to describe the degradation of the Young’s modulus, E: 

 𝐸 = 𝐸0 −  (𝐸0 −  𝐸sat) [1 − 𝑒(− 𝜀p̅̅ ̅ )] (A10) 

where 𝐸0 and 𝐸sat are Young’s modulus at the initial state and at infinitely large pre-strain respectively, 

and 𝜉 is a material parameter that determines the degradation rate of Young’s modulus with plastic 

strain. 

-------------------------------- 
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Certain commercial equipment, instruments, or materials are identified in this paper in order to specify 

the experimental procedure adequately. Such identification is not intended to imply recommendation or 

endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the 

materials or equipment identified are necessarily the best available for the purpose. 
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Figure 1 Test specimen nominal dimensions for tension and tension-compression tests. 
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Figure 2 A close-up view of the tension-compression testing machine anti-buckling guides. 
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Figure 3  A plot of true stress vs. true strain from three replicate tension-compression tests on all four alloys. 
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Figure 4 A schematic of the DIC strain measurement system used for tension-compression testing, along 

with typical image (from Camera 1 perspective) with DIC true strain contour map on an image of the 

specimen plus anti-buckling guides. The specimen outline in the side view image shows the relative 

positions of the gauge length on the same scale as the specimen in the front view. The plot in the lower 

right corner shows the point on the stress-strain curve that corresponds to the strain map.  
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(a) 

 

(b) 

Figure 5 Single-element boundary conditions for (a) shell and (b) solid elements. 
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Figure 6 Comparison of measured true stress vs. true strain data and FEA-computed true-stress-true-

strain data determined using the Y-U parameters from the Manual Method for top to bottom: DP 980, 

DP 1180, AA6XXX-T81, and AA6XXX-T4. 
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Figure 7 Flow chart for the Optimization Method. 
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Figure 8 Comparison of measured true stress vs. true strain data and FEA-computed true-stress-true-

strain data determined using the Y-U parameters from the Optimization Method for top to bottom: 

DP 980, DP 1180, AA6XXX-T81, and AA6XXX-T4. 
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Figure 9 Comparison of measured true stress vs. true strain data and FEA-computed true-stress-true-

strain data determined using the Y-U parameters from the Numisheet Benchmark Study 2020 Method, 

abbreviated NBS2020_Opt, for top to bottom: DP 980, DP 1180, AA6XXX-T81, and AA6XXX-T4. 
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Figure 10 Comparison of difference between measured and computed stress-strain curves for all three 

methods.  
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Figure 11 Residual (normalized), δ, for each stress-strain curve for each Method grouped by material. The 

x-axis values are shifted to minimize overplotting. 
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Figure 12 Total residual (normalized), δV, for the four alloys, separated by Method and the variant 

(“Method: variant”) used to compute it. 
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Figure 13 Global sensitivity analysis (GSA). Average (points) and range (bars) for the fraction of influence 

of each Y-U parameter determined using the Optimization Method. Shading in the body of the plot 

denotes region of large (dark shading), small (light shading), and no (no shading) influence. Numerical 

values of the fraction of influence are plotted above the symbol. 
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Figure 14 A schematic illustration of the Yoshida-Uemori two-surface model [28]. 
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(a) (b) 

 

  

Figure 15  A schematic of the changes in the true stress, 𝜎, and true plastic strain,휀p, (a) yield surface and (b) 

bounding surface (solid lines) during a uniaxial tension-compression test (Y-U). 
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Table 1 Summary of the ten Y-U parameters. 

Symbol Description FEA-model designation* 

Y radius of the yield surface  Y 

B initial radius of the bounding surface CB 

C kinematic-hardening-rate parameter SC1, and SC2=0 

𝑅sat saturated value of the hardening at infinitely large 
plastic strain 

RSAT 

b bounding-surface kinematic-hardening-rate 
parameter 

SB 

k bounding-surface isotropic-hardening-rate exponent  K 

h fraction of hardening that is kinematic, versus 
isotropic 
A value of h = 0 signifies fully isotropic hardening, 
while a value of h = 1 indicates fully kinematic 
hardening. 

H 

E0 Young’s modulus at the initial state E 

Esat Young’s modulus at infinitely large pre-strain  ESAT 

ξ Young’s modulus degradation rate parameter  COE 

* These are the names of the parameters named in the LS-DYNA MAT_125 model [45] 

*MAT_KINEMATIC_HARDENING_TRANSVERSELY_ANISOTROPIC that this study used. 

Table 2 Ranges of Y-U parameters constrained in the Optimization Method. 

  AA6XXX-T4  AA6XXX-T81  DP 1180  DP 980 
 units Min Max  Min Max  Min Max  Min Max 
Y MPa 100 200  100 300  600 900  500 800 
B MPa 100 300  100 325  500 1300  600 1025 
C  250 900  150 900  100 800  115 450 
Rsat MPa 80 400  80 325  1 300  100 225 
b MPa 1 50  1 50  80 500  30 110 
k  2 50  2 50  1 130  2 75 
h  0.05 0.7  0.05 0.7  0.1 0.75  0.3 0.7 
Esat MPa 60000 70000  60000 76000  160000 175000  160000 174000 
ξ  80 150  80 200  25 125  25 110 
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Table 3 Values of ten Y-U parameters for all four materials for all methods. 

Method Variant Replicate Y B C Rsat b k h E0 Esat ξ δ δV 
   MPa MPa  MPa MPa   MPa MPa    

 AA6XXX-T4 

Manual Individual R01 176.8 174.2 419.3 142.7 4.05 18.6 0.5 69160 NA 0 5.798E-04 2.010E-03 
Manual Individual R02 176.8 173.5 444.2 128.6 7.8 23.2 0.5 69160 NA 0 5.250E-04 NA 
Manual Individual R03 176.8 174.3 449.9 164.7 6.99 14.9 0.5 69160 NA 0 6.133E-04 NA 
Manual Avg. of param. NA 176.8 174 437.8 145.3 6.28 18.9 0.5 69160 NA 0 NA 1.410E-03 

Optimization Individual R01 161.4 181.6 523.2 220.3 26.5 9.3 0.1 69160 66928.2 126.6 3.060E-05 1.410E-04 
Optimization Individual R02 180.6 185.8 434.8 226.4 21.9 9.2 0.07 69160 64416.8 98.5 2.280E-05 NA 
Optimization Individual R03 182.1 180.7 500.6 257.5 30.2 7.9 0.08 69160 68380.6 147.1 2.860E-05 NA 
Optimization Avg. of param. NA 174.7 182.7 486.2 234.7 26.2 8.8 0.07 69160 66575.2 124.1 NA 2.260E-04 

Optimization Simultaneous NA 151.2 184.8 564.4 286.9 35.3 6.5 0.05 69160 68819.3 150 NA 1.150E-04 

NBS2020_Opt Numisheet2021 NA 113 193 (850, 500) 230 10 7.7 0.12 70000 65000 110 NA 6.750E-04 
 AA6XXX-T81 

Manual Individual R01 260 257.2 215.7 173.8 12.9 9.7 0.5 69100 NA 0 4.782E-04 1.530E-03 
Manual Individual R02 260 259.3 212.3 174.4 12.6 9.5 0.5 69100 NA 0 4.105E-04 NA 
Manual Individual R03 260 259.7 289.9 187.4 15.75 8.7 0.5 69100 NA 0 4.606E-04 NA 
Manual Avg. of param. NA 260 258.7 239.3 178.5 13.75 9.3 0.5 69100 NA 0 NA 1.280E-03 

Optimization Individual R01 255 260 302.9 219.3 32.7 7.6 0.09 69100 68115.4 125.3 3.350E-05 2.060E-04 
Optimization Individual R02 251.8 263.3 307.4 285.2 35.5 5.5 0.1 69100 66952.7 150.8 2.340E-05 NA 
Optimization Individual R03 238 261.7 408.4 256.7 49.9 6.1 0.06 69100 70345.7 180.7 3.230E-05 NA 
Optimization Avg. of param. NA 248.3 261.7 339.6 253.7 39.4 6.4 0.09 69100 68471.3 152.3 NA 2.150E-04 
Optimization Simultaneous NA 249.5 261.7 318.7 228.7 28.3 7.3 0.12 69100 68282.3 103.7 NA 2.090E-04 

NBS2020_Opt Numisheet2021 NA 175 267 (900, 450) 190 15 8.5 0.2 72000 68000 150 NA 5.590E-04 
DP 980                

Manual Individual R01 770 804.6 143.2 186.7 60.99 59.8 0.5 211833 168625 37.046 1.412E-03 4.550E-03 
Manual Individual R02 770 817.4 156.4 153.02 85.7 56.03 0.5 211833 168625 37.046 1.347E-03 NA 
Manual Individual R03 770 817.3 159.9 150.2 93.3 57.3 0.5 211833 168625 37.046 1.471E-03 NA 
Manual Avg. of param. NA 770 813.1 153.2 163.3 80 57.7 0.5 211833 168625 37 NA 4.560E-03 

Optimization Individual R01 680.6 965.1 125 100 110 12.6 0.7 211833 162118.2 80.9 1.621E-04 1.110E-03 

Optimization Individual R02 650.9 978 115.6 100 110 9.2 0.5 211833 160000 100.1 1.785E-04 NA 

Optimization Individual R03 659.4 967.4 115 100 110 11.8 0.69 211833 160000.1 100.2 1.923E-04 NA 

Optimization Avg. of param. NA 663.6 970.2 118.5 100 110 11.2 0.63 211833 160706.1 93.7 NA 1.400E-03 

Optimization Simultaneous NA 640.3 990.4 115.4 100 100.9 7.4 0.5 211833 161002 71.9 NA 8.180E-04 

NBS2020_Opt Numisheet2021 NA 590 990 (400, 120) 130 50 10.6 0.5 206000 170000 100 NA 1.240E-03 
DP 1180                

Manual Individual R01 842 758.7 626.4 -6.9 451.6 118 0.5 203000 168625 37.046 2.245E-03 8.920E-03 
Manual Individual R02 842 742.1 678.8 28.7 420.1 120 0.5 203000 168625 37.046 3.107E-03 NA 
Manual Individual R03 842 747.1 633.7 -5.4 451.6 120 0.5 203000 168625 37.046 2.934E-03 NA 
Manual Avg. of param. NA 842 749.3 646.3 5.5 441.1 119.3 0.5 203000 168625 37 NA 9.620E-03 

Optimization Individual R01 762.6 1042 100 1 464.1 46 0.32 203000 169074.6 123.9 6.305E-04 3.830E-03 

Optimization Individual R02 799.8 934.3 100 68.4 500 57.7 0.49 203000 164042.2 105.1 1.145E-03 NA 

Optimization Individual R03 659.4 967.4 115 100 110 11.8 0.69 203000 160000.1 100.2 1.103E-03 NA 

Optimization Avg. of param. NA 740.6 981.2 105 56.5 358 38.5 0.5 203000 164372.3 109.7 NA 9.510E-03 

Optimization Simultaneous NA 763.1 930.1 100 1 500 59.4 0.53 203000 160000 125 NA 3.430E-03 

NBS2020_Opt Numisheet2021 NA 650 1240 (300, 150) 230 100 3 0.2 200000 165000 100 NA 4.950E-03 
 Notes 

NA : not applicable 
“Avg. of param.” is an abbreviation for the Average of Parameters variant described in 4.1.2.1 
The parameters in rows where Variant=Individual were calculated from the individual replicate curves the Manual and Optimization Methods.  

 Y, B, C, Rsat, b, k, h, E0, Esat, and ξ are defined in Table 1. 
Values in parentheses in rows where Method=NBS2020_Opt under heading C are the values of C1 and C2 from the NBS2020_Opt Method. See Section 3.1.2 
and Section 3.3. 
δ:  residual (See Section 4.1.2.1)       δV , total residual for the variant calculated from equation 6 
Cells shaded in dark gold denote parameters that had large influence determined by the global sensitivity analysis. 
Cells shaded in light gold denote parameters that had small influence determined by the global sensitivity analysis. 
Color shading is the same as in Figure 13. 
Cells boxed in black denote parameters where the optimization reached or nearly reached an optimization limit. (See Table 2.)  

 


