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Abstract—The ubiquitous deployment and availability of wire-
less communications devices, coupled with recent technical ad-
vancements, provide a unique opportunity to enable wireless sens-
ing applications, leveraging existing communications equipment
and signals. The availability of modeling tools and dataset is
crucial to support the development of sensing techniques and
to understand the end-to-end performance of a joint wireless
communication and sensing system. However, most of the sensing
performance evaluations are carried out using proprietary tools
and dataset. In this paper, we present a set of open source tools
and models enabling the evaluation of future WLAN sensing
systems. Our framework is composed of a ray-tracing imple-
mentation specific for sensing application, an IEEE 802.11ay
physical layer (PHY) digital transceiver model and a visualization
application. Using these tools, we design a dataset consisting of
more than 14 000 entries of millimeter wave channels and IEEE
802.11 ay signals to democratize the design of both data-driven
and model driven communication and sensing algorithms. We
also provide a preliminary evaluation of a CSI-based WLAN
sensing system using IEEE 802.11 ay signals. The results indicate
that existing communication systems can be used to enable
sensing applications.

I. INTRODUCTION

Wireless channels can only provide finite resources for
sensing and wireless data communication. These systems have
been historically designed and used independently, thus com-
peting against each other for spectrum usage. While spectrum
sharing techniques are available [1], use cases for simultaneous
sensing and wireless communication systems have gained a
tremendous interest in the recent past. Although the current
sensing radar systems can achieve a centimeter level resolution
[2], and the wireless networks can support a multi-Gbps
throughput [3], both wireless systems use the same spectrum
and hence, act as interferer to each other, which negatively im-
pacts their respective performance. To optimize the spectrum
utilization, a joint communication and sensing system design
should minimize the mutual interference, thereby improving
the performance of both the systems.

Sensing through wireless communication networks aims at
utilizing communication signals to detect and sense targets
enabling application such as human presence detection, gesture
recognition, or object tracking, while still providing com-
munication. Remote monitoring can be achieved using the
illumination offered by Wi-Fi signals. Hence, Wi-Fi devices
can act as sensing nodes, using the principles of bistatic or
multistatic radar [4]. The ubiquitous deployment and avail-
ability of wireless communication devices open the door to

new sensing opportunities by leveraging existing communi-
cations equipment and signals. Thus, future generation of
wireless communication systems are envisioned to support
sensing capabilities. For instance, IEEE 802.11bf Task Group
(TGbf) [5] is currently defining the appropriate amendments
to existing Wi-Fi standards (IEEE 802.11 ad/ay/ax/ac/n) to
enhance sensing capabilities through IEEE 802.11 devices.

The availability of modeling tools and dataset is crucial
to support the development of sensing techniques and to
understand the end-to-end performance of a joint wireless
communication and sensing system. Currently, almost all sens-
ing performance evaluations are carried out using proprietary
dataset, obtained trough private measurements campaign [6].
Usually, system designer recruits participants to collect data,
for instance, channel state information (CSI), received signal
strength indicator (RSSI), or raw signals and the experiment
is designed according to the requirements of the application.
Thus, a comprehensive evaluation and comparison among dif-
ferent algorithms and design solutions is not straightforward.
Only few dataset are currently publicly available. [7] and [8]
provide radar received signal measurements at 5.8 GHz with
80 MHz bandwidth and at 77 GHz with 3.6 GHz bandwidth
respectively. They provide a dataset of human actions such
as walking, walking with hands in pockets, sitting down,
standing up, picking an object, drinking and falling. [9], [10],
[11] are based on an open dataset of wireless communica-
tion measurements at 60 GHz with 1.76 GHz bandwidth. The
dataset consists of spatial beam signal to noise ratio (SNR),
i.e., the SNR achieved with different beam combinations
at the transmitter and the receiver, and RSSI in an indoor
environment.

However, a dataset providing the raw received wireless
communication signal and the full CSI with one or multiple
active targets in the scenario is yet to be made available to
the community. In this paper, we provide a sensing frame-
work, publicly available on GitHub [12], composed by a ray-
tracing implementation specific for sensing application, an
IEEE 802.11ay PHY digital transceiver model and a visu-
alization application. Using these tools, we design a dataset
of millimeter wave (mmWave) channels and IEEE 802.11 ay
received signals tailored to human sensing studies [13].

The main contributions of this paper can be summarized as
follows:

1) We extend the quasi-deterministic (Q-D) channel
methodology used in IEEE 802.11 ay, introducing the
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notion of target. The contribution of the target(s) to the
channel impulse response (CIR) is an additional cluster
of rays that we obtain thanks to ray tracing techniques,
as considered in the most recent TGbf contributions [14],
[15], [16].

2) We share a public dataset, which consists of synthet-
ically generated indoor mmWave channels between a
multi-antenna transmitter and a multi-antenna receiver
for various targets and channel configurations. The num-
ber of targets, velocity of each target and trajectory are
randomized across the dataset. The dataset also contains
received IEEE 802.11 ay signals.

3) We provide a performance evaluation of future WLAN
sensing systems based on a IEEE 802.11ay waveform.
Considering a CSI based sensing architecture, a SISO
communication link is established between two nodes.
The sensing processor estimates the CSI and computes
the range-doppler map to detect motion.

The rest of the paper is organized as follows: Section
II introduces a channel model for sensing systems based
on ray tracing. Section III describes the signal model and
the receiver signal processing. Section IV presents the open-
source software and dataset design. Section V proposes a first
evaluation of a future WLAN sensing system, based on a IEEE
802.11ay waveform. Section VI concludes the paper.

II. CHANNEL MODEL FOR JOINT COMMUNICATION AND
SENSING

A. Preliminaries

The channel modeling effort performed at IEEE for
mmWave Wi-Fi selected the Q-D methodology as the refer-
ence channel model [17]. The Q-D methodology is based on
the observation that the wireless channel can be well described
with a set of distinct geometry-based propagation paths [18].
This approach represents the millimeter-wave channel CIR by
classifying a set of all CIR rays in a few deterministic strong
rays (D-rays, originating from macro-objects reflections), and
a number of relatively weak random rays (R-rays, originating
from other static surfaces reflections). Dynamic objects are
described through flashing rays (F-rays, originating by reflec-
tions from moving cars, buses and other dynamic objects)
as stochastic processes which do not include any spatial or
temporal constraints.

While this model has been successful in designing IEEE
802.11ad/ay algorithms, a wireless channel model for sensing
applications should also provide consistency in both spatial
and time domains to enable a realistic micro-doppler descrip-
tion, which is the most common signal processing technique
for extrapolating dynamic information, such as speed and
range of a moving target.

B. T-Rays Modeling

A new entity needs to be defined in a sensing channel model
to enable the analysis of remote monitoring applications: the
target, i.e., a dynamic object or person, moving with spatial
and temporal consistency. Both large-scale and small-scale

TX RX

TG

AOD AOA

Fig. 1: T-rays modeling in a bi-static sensing system.

parameters of the channel need to vary with the position of
the WLAN nodes, the targets, and the environment. Moreover,
large-scale and small-scale parameters needs to be correlated
over time when the WLAN nodes or targets move.

Motivated by these requirements, observed in experimental
measurements [19], we introduce target related rays (T-rays),
defined as relatively weak deterministic rays originated from
dynamic targets scattering. Ray tracing, already used for the
description of the reflections from macro-object [17], can also
be an effective technique to provide a first order approximation
of the interaction between the wireless signals and the targets.
While both D-Rays and T-rays use ray tracing techniques, they
represent two different electromagnetic phenomena. D-Rays
describe strong reflections from macro-objects, also referred
as specular components. On the contrary T-rays are defined
as deterministic rays describing the backscattering signal.
The backscattering signal includes a broader spectrum of
electromagnetic phenomena beyond reflection, such as diffuse
reflections and diffraction caused by irregular and finite targets.

Figure 1 shows a T-rays modeling for sensing applications
in a bi-static configuration, i.e., the transmitter (Tx) and
the receiver (Rx) are not co-located, but the proposed T-ray
modeling is valid also for mono-static configurations, i.e.,
when Tx and Rx are co-located. Direct backscattering ray,
i.e., the ray following the path originated at the Tx, impinging
on a target and bouncing off the target, until reaching the
Rx, is deterministically modeled to guarantee the spatial and
temporal consistency required by sensing applications. The
direct backscattering ray delay τ is computed from the model
geometry:

τ =
dtx,tg + dtg,rx

c
, (1)

where dtx,tg is the distance between the transmitter and the
target, dtg,rx is the distance between the target and the receiver
and c is the speed of light. The distance dtx,tg + dtg,rx is
referred as the bi-static distance. The direct backscattering ray
power is computed from the free space bi-static path loss βtg,
defined as:

βtg =
σtg(Ω

AOA
tg ,ΩAOD

tg )λ20
(4π)3d2tx,tgd

2
tg,rx

, (2)

where λ0 is the wavelength and σtg(ΩAOA
tg ,ΩAOD

tg ) is the bi-
static radar cross section (RCS), i.e., an attenuation coefficient,
which depends on the vector ΩAOA

tg , i.e., the Angle of Arrivals
(AOAs) at the target in both azimuth and elevation and the
vector ΩAOD

tg , i.e., the Angle of Departures (AODs) from the
target in both azimuth and elevation. AODs and AOAs can
be easily computed using the geometry of the environment

2022 IEEE Wireless Communications and Networking Conference (WCNC)

663Authorized licensed use limited to: Boulder Labs Library. Downloaded on August 29,2022 at 18:17:37 UTC from IEEE Xplore.  Restrictions apply. 



and the position of targets and WLAN nodes, for example, by
applying the method of images [20].

In general, a complex target can be modeled as a group
of individual NT scattering centers distributed over the 3
dimensional space. Each scattering center contributes to the
RCS of the complex target. Decomposing a complex target into
multiple scattering centers is necessary especially in wideband
applications, having a very high delay resolution. Since the
target backscattered energy may span multiple delay (range)
bins, for each delay bin, the average RCS represents the
contributions from all scattering centers that fall within that
bin [21].

C. Channel Model Including Human Targets: Boulic Model

Human sensing is considered in most of the IEEE 802.11bf
use cases [22], hence it is of paramount importance to ac-
curately model these applications. Human gait modeling has
been an active research area in many fields such as biomedical
engineering and sports medicine. A global human walking
model based on an empirical mathematical models using
biomechanical experimental data was proposed by Boulic
et al. in [23]. The global walking model averages out the
personification of walking and it has been successfully used
in radar system design [24]. The Boulic model proposes a set
of parameterized trajectories to represent both the position of
the body in space and the internal body configuration and it
is designed to keep the spatial and temporal correlation of an
average human body. The model describes the motion of 17
joints (16 body segments) as shown in Figure 2a.

In the channel model presented in this paper, each joint is
considered as a scattering center of the human target. Thus
the human shape is simplified into a group of NT = 17
individual target scattering centers. As shown in Figure 2b,
each scattering center contributes to the channels response
with a unique ray, which is accurately ray traced. The proposed
ray tracing method also allows to analyze higher order multi-
path reflections, for instance, to include the target’s projection
on walls, ceiling and floor, as depicted in Figure 2b. This
artifact caused by the multipath propagation, usually known
as multiple ghosts, induces the sensing device to declare the
presence of targets that do not physically exist in the actual
scene.

Note that each of the scattering center might have a different
scattering property, i.e. a different bi-static RCS. Thus, each
joint can be described with a unique σtg(ΩAOA

tg ,ΩAOD
tg ).

D. Communication and Sensing Channel Model

The double directional channel impulse response (DDIR) of
a static (we do not consider F-rays in this work) environment
with moving targets can be expressed as:

h(t, τ,ΩAOD,ΩAOA) = hu + hr. (3)

hu refers to the target-unrelated channel, i.e., the channel
relative to the environment, which can be modeled with
the conventional IEEE 802.11 ay channel model described in
Section II-A. hr refers to the target-related channel, which can

(a) Boulic
Model

(b) T-rays ray tracing including direct backscattering
and ghosts reflections

Fig. 2: Channel model including human targets.

be modeled as a superposition of T-Rays in both space and
time domain, formally as:

hr(t, τ,Ω
AOD,ΩAOA) =

Nt∑
n=1

an(t, σtg)e
−j2πfntδ(τ − τn(t))·

δ(ΩAOD −ΩAOD
n (t), ΩAOA −ΩAOA

n (t)),

(4)

where an represents the complex amplitude of the n-th T-ray
and implicitly depends on ΩAOA

tg , and ΩAOD
tg , since it is a

function of σtg. τn and fn are the delay and the Doppler shift,
respectively. ΩAOD

n and ΩAOA
n are the AOD at the Tx and

AOA at the Rx, respectively. The DDIR in Eq. (3) describes
the propagation channel, without including the effect of the
system. It can be converted into the system level CIR by
applying antenna effects and band-limiting filters [17].

III. WI-FI SENSING SYSTEM MODEL AND SIGNAL
PROCESSING

In this paper, we consider an IEEE 802.11ay single carrier
(SC) system to enable sensing applications. We assume a SISO
link composed of a transmitter and a receiver, in an indoor
environment, which is generating a significant multipath effect
and dense clutters, as shown in Figure 2. In the following,
we consider a CSI based sensing WLAN scenario. The CSI,
which is already available in a conventional IEEE 802.11ay
system, is used to sense the environment by tracking the
channel variations over time. Assuming static transmitter and
receiver, a perturbation of the CSI is caused by a change
in the environment, such as a moving target. We assume
that the receiver is the initiator of the sensing session, i.e.,
it is the node requesting sensing information. Moreover, we
assume that the receiver acts as the sensing processor, beyond a
communication receiver. The transmitter sends IEEE 802.11ay
packets continuously.

The EDMG SC frame is made of two main parts: the
preamble and the data. The preamble contains known pilots
sequence, namely Golay sequences, in the legacy short time
field (L-STF), in the EDMG-STF, in the legacy channel
estimation field (L-CEF) and in the EDMG-CEF.

STF and CEF are used in the communication receiver
signal processing, for time and frequency synchronizations and
channel estimation. These operations are achieved in multiple
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steps: i) First, the frame is detected and synchronized by
finding the peak of the correlation between the received signal
and the known STF pilots. ii) Then coarse frequency offset is
computed by comparing the phase changes into the peaks of
the STF correlation. iii) Finally, joint frequency offset and
channel estimation is performed by correlating the received
CEF with the known CEF.

From a remote sensing perspective, the channel estimated
using the preamble can be seen as echoes from the targets
and the environment. The delay of the echoes from the targets
MPCs are proportional to the bi-static distance dtx,tg+dtg,rx,
as shown in Eq. (1). As the IEEE 802.11ay packets are sent
continuously over time, the sensing processor can build the
radar data matrix, collecting the estimated CIR at each packet
reception in a 2-dimensional matrix, i.e., the delay (referred
also as fast time) and the evolution over the time (referred
also as also slow time). To obtain the velocity of the targets, a
discrete Fourier transform (DFT) is applied on the slow time
dimension of the radar data matrix to allow the estimation of
the target speed. Component with null velocity are considered
static clutter, i.e., echoes coming from the static environments,
thus they are not relevant to the remote monitoring. They can
be filtered out, by removing the continuous component along
the slow time dimension of the radar data matrix.

IV. OPEN SOURCE TOOLS AND DATASET

In this section, we review a set of open source tools that we
have developed and publicly shared in [12], to support joint
communication and sensing system design and evaluation.
Using these tools, we have designed a dataset [13] of more
than 14 000 channels and received IEEE 802.11 ay signals,
which can be used to design both data-driven or model driven
receiver algorithms.

A. NIST Q-D channel realization software

The NIST Q-D channel realization software provides a
flexible, scalable and realistic channel model based on mea-
surement campaigns to promote the design of new generation
wireless communication and sensing systems at mmWave
bands. The software is a full 3D ray tracing model that
captures the geometrical properties of the channel between
two reference points in space. The software generates a 3D
multi-point to multi-point double directional CIR providing
the magnitude, phase, time of arrival, AOD, and AOA of
individual propagation paths between multiple points in space,
thus supporting spatial correlation between different MIMO
streams. The software has been enhanced to support the ray
tracing of targets as explained in Section II.

B. NIST IEEE 802.11ay PHY

The NIST IEEE 802.11ay PHY [25] is a digital transceiver
model including the main features of the IEEE 802.11ay PHY.
It supports SU-MIMO and MU-MIMO for both OFDM and
SC modes. It also supports several precoder and equalizer
options, such as SVD, ZF precoder, block diagonalized-
ZF precoder, and MMSE equalizer. The proposed digital

NIST Q-D Channel
Realization software

Channel 
resample at

1.76GHz

NoiseNIST IEEE 802.11ay

Q-D Input

Environment Geometry,
WLANSensing topology: 
position and orientation of the
nodes,Number ofantennas, 
Targets: joints trajectories

Received
Signal

PHY input

WLAN Sensing topology: 
number of nodes, Number of
MIMO streams

Q-D Output

MPCs (AOA, AOD, 
Phase, delay and
amplitude)

PHY Output

Transmit signal

Fig. 3: Open source tools used to generate the dataset.

transceiver can perform time synchronization of the received
signal, frequency correction as well as estimating the channel
using the preamble provided in the IEEE 802.11ay packet.
The software has been enhanced to support the sensing signal
processing presented in Section III, generating range-doppler
maps from the estimated CSI.

C. NIST Q-D Interpreter Software

The NIST Q-D Interpreter software has been developed to
help visualizing the wireless signal propagation and investigate
IEEE 802.11ad/802.11ay algorithms results using 3D visual-
ization. This software uses input from both the NIST Q-D
Channel Realization software and the NIST IEEE 802.11ay
PHY. The software visualizes the interaction between the
wireless signals and human moving targets, as shown for
instance in Figure 2b and it displays range-Doppler maps time
synchronized with the targets motion.

D. Dataset

Using the NIST Q-D channel realization software and the
NIST IEEE 802.11ay PHY, we have generated a dataset
consisting of more than 14 000 entries to engage the broad
community to develop and test algorithms for communication
and sensing in the 60 GHz band.

The process of generation of the dataset is illustrated in
Figure 3. The geometry of the environment and the geometry
of the WLAN scenario, e.g., position of the nodes and targets
are defined in the NIST Q-D channel realization software. The
target model is given as input to the Q-D software, which re-
turns the MPCs as given in Eq. (4). The NIST IEEE 802.11ay
PHY is configured with the number of MIMO streams and
the MIMO precoding scheme (hadamard precoding) and it
generates the IEEE 802.11ay waveform. To keep the size of the
dataset limited, the transmit signal includes only the EDMG-
CEF.

The dataset consists of synthetically generated indoor
mmWave MIMO channels between a 4 antenna transmit-
ter and a 4-antennas receiver. The room is of dimension
7m×7m×3m and the WLAN devices are placed just below
the ceiling level in the left and right walls as shown in Figure
2b.

Multiple human targets are moving in the room. We con-
sider only direct backscattering signals coming from the
targets, i.e., no ghosts are presents. The number of targets is
randomized across the dataset. Each entry can have a random
number of targets between 1 and 8. Also the velocity of each
target and the trajectory are randomized across the dataset. The
targets trajectories are generated with an acceptance-rejection
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(a) Power Delay Profile (b) Phase vs Delay

Fig. 4: Time domain DDIR of a SISO WLAN sensing topol-
ogy, including a moving human target.

method to avoid targets crossing each other. Each dataset point
contains 128 channel realizations, with a sampling rate of
1 ms, thus describing a motion of 128 ms.

In the following, we analyze the main properties of a
SISO bi-static channel with a single moving target. The
RCS σtg(Ω

AOA
tg ,ΩAOD

tg ) is considered isotropic, i.e., each
scatter center after being illuminated by RF energy radiates
uniformly towards all the directions. Thus, σtg is constant over
the angular dimensions. In the generation of the DDIR we
consider only the deterministic rays, i.e., T-rays and D-rays.

1) Time Domain: Figure 4 shows a sequence of 128 con-
secutive channel impulse response realizations. Each channel
realization is held on the figure, to show the temporal evolution
(over the slow time) of the channel impulse response. Figure
4a shows the power delay profile of the channel impulse
response. Since the WLAN nodes and the environment are
assumed static, the power of the D-rays MPCs does not change
over time. On the contrary, since the human target is moving,
the T-rays, describing the target related channel, present a
power variation over time. The T-rays cluster is composed
of NT = 17 different joints and each joint contributes
differently over time, due to their different motion pattern.
For example, the figure zooms into the dynamics of the first
joint, showing a variation of 0.5 dB in a 1.34 s of simulated
motion. Figure 4b shows instead the variation of the phase
over time. As for the power description, the phase of the
environment is static over time, hence D-rays do not present
any phase fluctuation over time. The T-rays instead exhibit
time-correlated phase fluctuation. The figure zooms into the
last target MPC contribution that corresponds to the joint of
the right foot. The phase variation shows the bio-mechanic of
the gait cycle with a deceleration phase, a stance phase with
very slow phase variation over time, and a final acceleration.

2) Angular Domain: The DDIR provides a discrimination
of the different paths also in the spatial dimension, which
can be used, for example, to design beamforming algorithms.
Figure 5a and 5b show the evolution over the slow time of
AOA vs AOD in azimuth and elevation, respectively. In the
azimuth dimension the T-Rays are very close together and
a small angular variation over time can be observed (see the

(a) Azimuth AOA vs AOD (b) Elevation AOA vs AOD

Fig. 5: Angular Domain DDIR of a SISO WLAN sensing
topology including a moving human target.

inset in Figure 5a) in azimuth (3◦ fluctuation in AOD). As also
shown in Figure 2b, in the considered configuration, the target
provides a larger angular spread in the elevation plane. All the
joints show a large fluctuation over time, for example, in the
inset figure a variation of around 15◦ in AOD is observed.

V. EVALUATION OF CSI-BASED WLAN SENSING WITH
IEEE 802.11AY SIGNALS

In this section we investigate the performance of an
IEEE 802.11ay PHY as a sensing technology. We consider the
scenario presented in Figure 2, consisting of two WLAN nodes
and a single human target moving. The channel includes only
deterministic components, i.e., D-Rays up to first order reflec-
tions and direct backscattering T-Rays. We consider a SISO
EDMG SC transmission. The transmitter, includes scram-
bler, LDPC encoder, stream parser and constellation mapper.
The receiver, after frame synchronization, frequency offset
compensation and channel estimation, demodulates the SC
symbols. Subsequently, the constellation demapping, stream
deparsing and LPDC decoding are carried out to complete
the PHY signal processing procedure. In the following we
consider the modulation and coding scheme index 12, i.e.,
the SC blocks contain π/2 16-QAM symbols with a coding
rate of 1/2. The packet repetition frequency is 2 KHz and we
assume a system bandwidth of 1.76 GHz. We assume an SNR
of 30 dB. The sensing processor at the receiver collects N = 64
channel estimations to compute the radar data matrix. When
the radar matrix is completed, the sensing processor performs
a 64-length doppler FFT and converts the fast time bins into
range bins. Figure 6 shows the simultaneous processing of
the receiver WLAN node. The figure on the left shows the
received 16 QAM constellation after the frequency domain
channel equalization, with a measured EVM of −26 dB. On
the right is the range-doppler map computed after the doppler
FFT. The range-doppler map shows one stronger point, i.e.,
a major spike at around 1 m/s, which corresponds to the
velocity of the target. The other points in the range-doppler
map around the main spike are caused by the presence of
other joints, which move at the walking speed of the target
but they have also velocity and trajectory associated with the
walking dynamics. By integrating the range-doppler map over
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Fig. 6: Joint communication and sensing processing. A re-
ceived 16-QAM constellation and range-Doppler map.

Fig. 7: Target velocity estimation over time using CSI.

the range domain, we present the analysis of the estimated
velocity over time. Figure 7 shows the estimated velocity using
the CSI. The figure shows that the target can be detected
over time by using IEEE 802.11 ay signals. The stronger
curve in the plot represents the walking speed of the target.
The estimated values perfectly matches the true velocity,
which is obtained assuming perfect CSI knowledge. The larger
oscillations around the average speed indicate the presence of
the other moving body parts.

VI. CONCLUSION

In this paper we have proposed a set of tools and models
to design future joint communication and sensing systems.
We have first presented an extension of the IEEE 802.11ay
channel model introducing the notion of target. Thanks to
the proposed models implemented in our open source frame-
work, we designed a dataset of mmWave channels and IEEE
802.11ay received signals. The dataset, which is also shared
publicly, can be used to investigate the performance of future
communication systems as well as to design new data driven
or model driven algorithms. Finally, we have provided a pre-
liminary sensing performance evaluation using IEEE 802.11ay
signals. Considering a CSI based sensing architecture, a SISO
communication link is established between two nodes. The
receiver measures the CSI and computes the range-doppler
map to detect motion. The results indicate that existing com-
munication system can be used to enable sensing applications.
Joint communication and sensing systems are in their early
stages and a significant amount of research still needs to be
done to properly model and simulate their performance. For

instance, the reflections properties of target objects needs to
be accurately measured and modeled.
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