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Abstract—Machine learning, as a viable way of conducting
data analytics, has been successfully applied to a number of
areas. Nonetheless, the lack of sufficient data is one critical issue
for applying machine learning in Industrial Internet of Things
(IIoT) systems. Insufficient data raises could negatively affect the
accuracy of machine learning models. To tackle this issue, we
design a framework to systematically investigate the impacts of
insufficient data on model training. This framework employs the
Generative Adversarial Network (GAN) and continuous learning
to generate and engage new data in model training, enabling us
to study the security risks of introducing new data in the model
training process and develop countermeasures to mitigate these
risks. To validate the efficacy of our framework, we consider a
representative IIoT scenario, in which a variety of industrial
components need to be recognized by Convolutional Neural
Networks (CNNs), and design and implement three evaluation
scenarios that are based on a real-world IIoT dataset. Our
experimental results confirm that insufficient data can have a
significant impact on the model accuracy, but that new data
generated by GAN and continuous learning can greatly improve
the model accuracy. Our experimental results also show that the
data poisoning threat posed by the GAN can significantly reduce
the model accuracy. However, our proposed defensive mechanism
is capable of securing the model learning process. We conclude
the paper by discussing some emerging issues that need to be
addressed in future work.

Keywords-Industrial Internet of Things, GAN, Machine Learn-
ing

I. INTRODUCTION

The Industrial Internet of Things (IIoT), also known as
Industry 4.0, has been widely considered for a variety of
industry and manufacturing systems [1], [2]. In IIoT systems,
massive numbers of smart sensing and actuating devices are
deployed and interconnected to enable efficient and intelligent
monitoring and control of systems. As smart sensing devices
are deployed to monitor things/objects in the system, massive
amounts of data will be collected. By analyzing collected
data, the states and operational conditions of systems can be
accurately estimated so that efficient monitoring and control
of IIoT systems can be realized.

Machine learning is a viable technique for conducting data
analytics in IIoT systems. Advancements in machine learning
techniques have demonstrated great success in a variety of
areas, including image recognition, object classification, nat-
ural language processing, and security [3], [4], [5]. Generally
speaking, machine learning techniques can be categorized into

three classes: supervised learning, unsupervised learning, and
reinforcement learning.

Nonetheless, applying machine learning techniques to IIoT
systems poses some challenges [1], [6]. For example, one
challenge is designing machine models that can assist the
co-design of larger, more complex IIoT systems. Another
challenge is that decisions made by machine learning tech-
niques need to satisfy the strict performance requirements
of IIoT systems with respect to accuracy, latency, reliability,
dependability, and safety, among others. Accuracy is an essen-
tial performance requirement for machine learning techniques.
For example, when training a supervised machine model, a
sufficient amount of data is required to avoid under-fitting the
model. An under-fit model can cause classification failure, high
loss, and low classification accuracy, significantly affecting
the operations of IIoT systems. In an IIoT environment, the
lack of training data can occur when an IIoT system is newly
implemented and deployed but has not been operating for a
sufficiently long time. Considering the smart manufacturing
system as an example, product quality inspection using ma-
chine learning techniques requires sufficient data to ensure that
the model correctly identifies components. Also, such a system
could operate in a complex environment, and the operating
environment may change over time. Thus, it is difficult to
obtain sufficient data for model training in such a complex
and dynamic environment. To address this issue, we use the
GAN model to generate additional data to assist the CNN
model training.

To address this issue, we design a framework to understand
three fundamental problems when dealing with insufficient
data in IIoT systems: (i) what is the impact of insufficient
data on the performance of models? (ii) How can new data be
generated from existing available data such that its inclusion
in the system can improve the performance of models? (iii)
What are the security risks of providing generated data to the
learning process and how can the learning process and model
be secured?

Using our framework, we study the effect of data on model
training performance. We leverage a GAN to generate new
data samples in example IIoT systems. GAN consists of two
key components: generator and discriminator, which compete
against one another to achieve their opposite objectives. The
generator fabricates samples based on the features and statis-
tics of original (real) samples, with the goal of deceiving
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the discriminator. In opposition, the discriminator attempts to
distinguish synthetic (generated) samples from original (real)
samples. We systematically investigate the use of GAN for
improving the performance of the model and understanding
its security risks.

To summarize, our contributions in this paper are two-fold:
First, we design a framework that addresses the issue of

insufficient data in IIoT systems. We use a typical CNN for
industrial component recognition, which has broader appli-
cations in IIoT systems, as a case study to demonstrate the
use of our framework. We define three scenarios. The first
scenario considers deploying the CNN to recognize industrial
components automatically, but where insufficient data may
be available for model training. In the second scenario, we
study how to apply the GAN to generate a sufficient volume
of samples based upon real data that are available. We also
leverage continuous learning to engage newly data collected
from sensors, such that the model is continuously updated.
In the third scenario, we investigate the security threats of
using new and generated data for model training, which
enables an adversary to launch data poisoning attacks by
injecting adversarial examples of their own to negatively affect
model accuracy. To defend against such a threat, we design a
defensive mechanism to filter out adversarial examples from
training data input to secure the training process of the model.

Second, we carry out extensive experiments to validate
the efficacy of our framework based on a real-world IIoT
dataset. Our experimental results show that our model without
GAN data generation and continuous learning can suffer low
accuracy when there is insufficient data available. After using
the data generated by the GAN and new data collected by
sensors, the accuracy of model can be significantly improved.
Our experimental results also show that the data poisoning
attack can significantly affect the learning accuracy, and that
our designed filter-based countermeasure can effectively deal
with such an attack.

The remainder of this paper is organized as follows: In
Section II, we review the concept of machine learning tech-
niques and GAN. In Section III, we propose the framework
to address insufficient data in IIoT systems and describe the
three scenarios, along with designed strategies. In Section IV,
we present performance evaluation results. In Section V, we
discuss some open issues and our future research directions.
In Section VI, we review the existing research efforts that are
closely relevant to our study. Finally, we conclude the paper
in Section VII.

II. PRELIMINARY

In this section, we briefly review machine learning tech-
niques and GAN architecture.

Machine learning has shown great potential in conducting
data analytics and providing intelligence and automation to
a number of areas, including image and video recognition,
natural language process, and others [3], [7], [8], [9], [10].
It has also been applied to a variety of IoT systems, in-
cluding smart health, smart grid, smart transportation, and
smart manufacturing, among others [11], [6], [12]. Generally

speaking, applying machine learning has two essential steps:
perception and cognition. As shown in Fig. 1, perception
involves data collection while cognition involves building the
model. Supervised learning usually involves classification and
regression. It uses labeled training data to build a model
through a training process so that the actual label of testing
data can be provided subjected to a level of accuracy. This
type of machine learning can be used in IIoT such as industrial
component recognition systems.

GAN is a specific machine learning technique tailored for
generating new data based on the existing data [13]. GAN
consists of two key components: generator and discriminator.
The generator learns the knowledge from the existing real
data samples and generates new data samples based on the
knowledge while the discriminator distinguishes the generated
data samples from the real data samples. The generator updates
its model based on the feedback from the discriminator and
the discriminator updates its model based on the updated
generated data samples and real data samples.

The architecture of GAN is shown in Fig. 2 that consists of
two networks: generator G and discriminator D. Here, X is
the training dataset that consists of real data examples, which
is required to learn by the generator G. This dataset serves
as input(x) to the discriminator network D. The random
noise vector(z) contains random numbers that the generator
uses as an entry point for synthesizing fake data samples. The
generator G takes a vector of random number z as input and
output fake data samples X∗. Its goal is to make fake samples
indistinguishable from real samples in the training dataset.
Also, G(z) represents samples generated by G following the
distribution of real data samples Pd. The discriminator network
D takes the input from either a real data sample X from the
training dataset or a fake data sample X∗ produced by the
generator G. In each sample, the discriminator D determines
and outputs the probability of whether the data sample is real
or not. If the data sample is real, the output is 1; otherwise,
the output is 0.

In the iterative training process, we use the results from
the generator and discriminator to iteratively tune the dis-
criminator and generator network through backpropagation.
To improve the performance of the discriminator, the weights
and biases in the discriminator can be updated to maximize
its classification accuracy. Meanwhile, if the performance of
the generator needs to be updated, its weights and bias can
be updated to maximize the probability that the discriminator
misclassifies X∗ as real.

Since GAN was introduced, a number of GAN models
have been proposed [14], including the convolution-based
GAN and condition-based GAN. In convolution-based GAN,
there is one network called Deep Convolutional Generative
Adversarial Network (DCGAN). Different from the origi-
nal GAN, DCGAN uses the CNN model instead of Multi-
Layer Perceptron (MLP) to improve the performance. Also,
the condition-based GAN leverages an additional variable to
control the noise vector so that the vanishing gradient issue in
the training process can be overcome. Conditional Generative
Adversarial Network (CGAN) [15], Information Maximizing
Generative Adversarial Network (InfoGAN) [16], and Auxil-
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iary Classifier Generative Adversarial Network (ACGAN) [17]
are some examples of condition-based GAN. For instance,
Chen [16] et al. proposed InfoGAN, which leverages a latent
code to modify the noise (i.e., generating the same digit
with different shapes). Likewise, ACGAN is an improvement
to the CGAN proposed by Odena et al. [17]. Compared to
DCGAN, ACGAN provides the capability of generating high
resolution images. By introducing a class label, the generator
can generate a specific class of images (e.g., flowers).

Fig. 1. Perception and Cognition Process

Fig. 2. GAN Architecture

III. OUR APPROACH

In this section, we present our approach in detail.

A. Framework

In this paper, we aim to address the insufficient data issue of
machine model training in IIoT systems. In Fig. 3, we design
a framework that considers the following three fundamental
problems: (i) Problem A: How can we understand the impact
of insufficient data on model training? (ii) Problem B: How
can we generate new data and/or engage new data from the
system to improve the model accuracy? (iii) Problem C: What
is the security risk of using new data in the model training
and how can we deal with such a risk?

To demonstrate the use of our designed framework, we
consider the IIoT scenario that applies the CNN model to
carry out the recognition of images of industrial components.
This scenario is generic and can be applied to numerous

Fig. 3. Framework for addressing insufficient data in CNN training

industrial applications. Recall that, as a common problem in
IIoT systems, at the beginning of training process, we may not
have sufficient data (e.g., images) to train an accurate CNN
model.

For Problem A, we study the accuracy of the CNN model
by varying the number of data samples for model training.
For Problem B, we leverage GAN to automatically generate
more data samples based on the distribution of existing data
samples that are available. We also engage continuous learning
to incorporate newly collected data samples from sensors.
Both data samples generated by GAN and/or collected by
sensors can be further used as inputs to train the machine
model. For Problem C, we study the security risk of new data
generation, which can be used by an adversary to generate
adversarial examples and launch data poisoning attacks against
the training process of the model. After understanding the
negative impact of adversarial examples on the accuracy of
model, we design a defensive mechanism that leverages the
discriminator of GAN to filter the adversarial examples. By
doing this, the data poisoning threat via adversarial examples
will not have much impact on the model.

DCGAN is one scheme that has been widely used in image
processing [18]. Similar to the the original GAN [13], DCGAN
consists of one generator and one discriminator. However, the
generator of DCGAN is based on CNN, while the original
GAN is based on MLP. Fig. 5 illustrates the architecture of
the generator in DCGAN, in which the input is a list of random
noise samples represented as a vector (say a size of 100). With
the input, four deconvolution layers are employed to generate
data, which is approximate to the distribution of real data
samples. As the output of generator, a 64 pixel × 64 pixel
three-layer Red-Green-Blue (RGB) color image is generated.

Similar to the original GAN, the generator and discriminator
in GCGAN are learning networks that have their own loss
functions. We denote the loss functions of the generator and
discriminator as JG and JD, respectively. According to [13],
the discriminator D is defined as a binary classifier. The
loss function is represented by the cross-entropy as J (D) =
− 1

2 [Ex∼pd
log(D(x))−Ez∼Pz(z)(log(1−D(G(z))))], where

x is sampled from the training data with the distribution Pd(x),
z is a noise vector sampled from the prior distribution Pz(z)
based on uniform or Gaussian distribution. Also, denote E(·)
as the expectation operator, G(z) as the data generated by the
generator G, D(x) as the probability that the discriminator D
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discriminates x as real data, and D(G(z)) as the probability
that the discriminator successfully determines whether the data
is generated or real. The goal of the discriminator D is to
distinguish the data successfully, so that the target value of
D(G(z)) should approach 0. The goal of the generator G is
the opposite; its goal is to bring D(G(z)) to 1. Based on
this idea, there is a conflict between the generator and the
discriminator.

The loss of the generator can be derived by defin-
ing it to be the additive inverse of the loss function of
the discriminator: JG = −JD. Thus, the optimization
problem of GAN can be transformed into the min-max
game as, minG maxD{Ex∼p d(x)[logD(x)]+Ez∼p(z)[log(1−
D(G(z)))]}. In the training process, the parameters in G and
D are updated. When D(G(z)) is 0.5, the discriminator cannot
distinguish the real and generated data. When this occurs, the
model achieves the optimal solution.

Note that there are several differences between the original
GAN and DCGAN. First, in DCGAN, the generator and
discriminator networks do not employ all the polling layers.
Second, the full connected layer is not used in DCGAN. Third,
in DCGAN, ReLU activation function is used in the generator
network and then the hyperbolic tangent (tanh) activation
function is used in the last layer of the generator network.
Lastly, Batch Normalization (BN) is used in both generator
and discriminator networks in DCGAN, which can improve
the performance when dealing with the initialization of the
noise vector. Note that the BN layer is not recommended for
the output layer of the generator network and the input layer
of the discriminator network since including it could cause
oscillation and model instability.

Related to aforementioned three problems, following three
scenarios are designed: (i) Traditional model training (Sce-
nario A): In this scenario, we build a traditional CNN model
to evaluate its ability to recognize industrial components based
upon the given image samples. This scenario can be used to
assess the impact of sufficient data samples on model accuracy.
(ii) GAN assist model training (Scenario B): In this scenario,
we design the DCGAN-based scheme to generate new image
samples based on image samples that are available. Recall
that in many IIoT applications, the lack of sufficient image
samples of industrial components limits the training ability
of machine learning models. We employ GAN and use the
generated image samples by GAN as additional training input
of model in order to improve the accuracy of model. (iii)
GAN-based data poisoning attack and defense (Scenario C):
In this scenario, we investigate the GAN-based data poisoning
threat, which enables an adversary to use DCGAN to generate
adversarial image examples and launch the data poisoning
attack against the model training. To defend against such an
attack, we leverage the discriminator of DCGAN to generate
adversarial image examples and record them. Thus, we can
remove any adversarial image examples from the input of
model training.

Our designed framework is generic and can be used as a
foundation to overcome the insufficient data issue in a variety
of IIoT systems. In the following, to demonstrate the use of
our framework, we consider an IIoT system that leverages

CNN to automatically recognize the image of critical industrial
components, leading to the automation of IIoT systems. The
system architecture is shown in Fig. 4. As shown in the figure,
IoT sensors deployed in industrial systems have the ability of
capturing the images of objects (e.g., manufacture components
in an assembly line). The CNN model is used to automatically
recognize different types of IIoT components. When the IIoT
system starts to operate, we assume there are limited image
samples of IIoT components to use. To overcome the issue
of lacking sufficient image samples for accurate model, we
leverage DCGAN, which uses the existing image samples to
generate synthetic image samples based on the distribution of
original images samples. The newly generated image samples
DCGAN produces will be fed into the CNN model to perform
the training process. In addition, new image samples collected
by IoT sensors can be fed into the CNN model so that the
model can be further updated.

Fig. 4. Component Recognition of IIoT Systems

Fig. 5. DCGAN Generator Architecture

B. Scenario A: Traditional Model Training

In this scenario, we use the traditional CNN model to
perform image classification so that the IIoT system can
recognize industrial components to automate the manufactur-
ing process. The CNN model consists of two convolutional
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layers, two max-pooling layers, one flatten layer, two fully
connected layers, and one dropout layer. The structure of the
CNN model is shown in Fig. 6. The convolutional layer is
used to extract features in the examined images. The max-
pooling layer is used to compress the information of images
extracted by the convolutional layer so that the size of image
and computational complexity can be reduced. Also, max-
pooling layer with a flatten layer is used to convert the image
feature information to a 1-dimensional array and provides the
classification information. FC (fully-connected) layer is used
to classify the input data into various classes. The dropout
layer is used to prevent a model from over-fitting.

Fig. 6. CNN Architecture

C. Scenario B: GAN Assist Model Training
In this scenario, we propose the DCGAN-based scheme to

automatically generate image samples so that the accuracy of
CNN model can be improved. Again, in many IIoT appli-
cations, there are not enough data samples to build accurate
models. To address this issue, we leverage DCGAN to generate
additional image samples based on available image samples.

Our scheme in this scenario is shown in Algorithm 1. We
first initialize the epochs of the whole training process that
represents the training time of DCGAN model. Also, denote
m as the number of the image samples for training both the
generator and discriminator, n as the number of the generated
data, and iteration as training stage (e.g., epoch), respectively.
Further, balance refers to the relationship between the learning
rate of generator and discriminator, which is set to 0.5 to make
the generator and discriminator have the same learning rate.
Also, g threshold is configured to determine the time when
the generated images are ready to use. Denote z as the noise
vector of the generator and G(z) as the generator output, D(t)
as the discriminator output for a given input t, which is the
real data sample from the dataset or the data sample from the
generator G(z). Also, denote Pz(z) as the distribution of the
generated samples from the generator.

Algorithm 1: Algorithm for Scenario B
1 Initialization: epochs, m, n iteration, balance=0.5, g threshold z;

while iteration < epochs do
2 iteration++
3 Extract n samples from G(z) with the distribution Pz(z)
4 Extract m samples from real dataset with the distribution Pd(x)
5 Samples from both G(z) and real image are sent to D(t)
6 D(t) sends the results (fake/real)(d loss) to G(z)
7 G(z) adjusts the distribution Pz(z) based on the result of D(t)

and output g loss
8 if g loss < g threshold then
9 Save images G(z)

10 Send images G(z) to the training set of the CNN model
11 end
12 end

During each step of training, we first extract the same
number of image samples from both the generator and the
real dataset whose distribution is Pd(z). Then, all the image
samples from both the generator and the dataset are sent to
the discriminator. The discriminator evaluates the generated
and real image samples based on the different distribution
of the image samples and outputs the binary result (0 means
generated image and 1 means real image). Based on the results
from the discriminator, the generator adjusts the distribution
of generated image samples Pz(z) and outputs the loss of
the generator g loss. If the loss of the generator reaches a
threshold g threshold, the DCGAN training is marked as
completion. In this case, we store the image samples, and use
them later for training the CNN model. The complexity of this
algorithm is O(n), where n represents the number of epochs
of the training process.

The new image samples that are collected by IIoT sensors
over time can also be used to update the CNN model. To
this end, to improve the learning accuracy, we leverage the
concept of continuous learning and design Algorithm 2, which
incorporates new data samples collected by sensors to retrain
the model. The parameters for Algorithm 2 are listed in
Table I. In our algorithm, several parameters need to be
initialized: epochs as the training time of CNN model with
generated data, m as the number of generated data samples,
real num as the number of images collected from sensors,
real threshold as the minimum quantity of the image sam-
ples collected from sensors that will trigger a retraining of
the CNN model, and epochsr as the number of epochs to
train the CNN model with the samples collected from sensors.
After the initialization, we first train the CNN model with the
generated images by DCGAN and save the trained model.
After the training process, we record the updated CNN model
for future use. Then, we enter the continuous learning phase,
where the system collects sensor images. Once the number of
new images exceeds the threshold, the CNN model retraining
triggers, after which the updated CNN model is saved and
the algorithm returns to collecting new sensor images. The
complexity of this algorithm is O(n), where n represents the
number of epochs of the training process.
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TABLE I
LIST OF KEY NOTATIONS FOR SCENARIO B

m Amount of generated data
real num Number of images collected from sensors m

real threshold Minimal image samples to trigger the model retraining
epochsr Number of epochs to train the CNN model

Algorithm 2: CNN model update using continuous
learning

1 Initialization: epochs, m, real num, iteration, real threshold, epochsr
2 while iteration < epochs do
3 iteration++
4 Train CNN model with m generated images from Algorithm 1
5 end
6 Save the trained model
7 while true do
8 Get new sensor images
9 Increase real num by new image count

10 if real num >= real threshold then
11 load real images and train the CNN model
12 while iteration < epochsr do
13 iteration++
14 Update the CNN model using real images
15 end
16 Save updated model
17 real num = 0
18 end
19 end

D. Scenario C: GAN based Data Poisoning Attack and De-
fense

In this scenario, we focus on the security issue of GAN-
based IoT component recognition from both attack and defense
perspectives. First, the GAN can be used by the adversary to
generate adversarial image examples based on available image
samples. Such adversarial image examples can be used to
launch the data poisoning attack to affect the training process,
which can further disrupt the operation of IIoT systems. Sec-
ond, to defend against the data poisoning attack, we design the
data filtering mechanism to remove the adversarial examples
from the model input during training. We use the discriminator
of DCGAN to collect adversarial image examples. Based on
the collected adversarial examples, we can filter any adversar-
ial image examples in the training input so that the training
process is secured.

For generating adversarial image examples, Algorithm 3
shows the detailed procedure. Similar to other algorithms, we
initialize a number of parameters: the epochs as the total train-
ing time of the model, m as the number of data samples for the
discriminator, n as the number of data samples generated by
the generator, and the iteration as a counter for training steps.
Again, balance refers to the learning rate of the generator.
The learning rate of the discriminator is set to 1 − balance.
Note that the learning rate represents the update frequency
of the discriminator and generator of the GAN model. The
learning rate ranges in [0, 1]. When the learning rate of the
generator is higher than that of the discriminator, the GAN-
generated images can then be used as adversarial examples for
the CNN model and affect the classification accuracy. At the
same time, if the learning rate of the discriminator is higher

than the learning rate of the generator of the GAN model, the
discriminator can then distinguish adversarial samples from
real samples. Only when the learning rates of the generator
and the discriminator are the same, the samples from the
generator can more closely follow the distribution of real data
samples. By using GAN generated samples, we can improve
the classification accuracy of CNN model when the dataset is
insufficient. Also, g threshold is used to determine whether
the adversarial samples are ready to use and z refers to the
noise vector for the generator.

To generate adversarial image examples, we first reduce the
balance. In this case, the generator has the smaller learning
rate than the discriminator, meaning that the discriminator
has higher updating rate than the generator. In such a case,
the generated image samples will not be likely to follow the
distribution of the original images. Thus, when the adversary
examples are used in the training process, the accuracy of
the model will be reduced. When the adversarial examples
are generated, the adversary can launch the data poisoning
attack by injecting the generated adversarial image examples
as inputs to model training. In real-world practice, the data
poisoning attacks based on the generated adversarial examples
are feasible when the adversary finds ways to compromise
either the image sensors of the IIoT system that generates
training samples, network components, or computing servers
that collect and process image samples [19], [20]. When the
sensors, networking components, or computing servers are
compromised, the adversary can launch data poison attacks
or false data injection attacks to inject adversarial samples
into training samples or even online recognition samples.
By doing this, the component recognition accuracy of IIoT
systems will be affected. In either case, the adversary can inject
the generated adversarial examples into the model training
process. On one hand, the adversary can directly launch the
attack against the DCGAN model (e.g., modifying the learning
rate to enable the generator generates adversarial samples). On
the other hand, we leverage continuous learning discussed in
Scenario B and use the newly collected data samples from
sensors to retrain the CNN model. Thus, the adversary can
find ways of compromising sensors, networking components,
or computing servers, and launching a data poisoning attack to
inject the adversarial data examples into the retraining process
of model. The complexity of Algorithm 3 is O(n), where n
represents the epochs of the training process.

Algorithm 3: Algorithm for Scenario C (Attack)
1 Initialization: epochs, m, n, iteration, balance=0.1, g threshold z;

while iteration < epochs do
2 iteration++
3 Extract n samples from G(z) with the distribution Pz(z)
4 Extract m samples from real dataset with the distribution

Pdata(x)
5 Samples from both G(z) and real image are sent to D(z)
6 D(z) sends the result (fake/real)(d loss) to G(z)
7 G(z) adjusts the distribution Pz(z) based on the result of

D(z) and output g loss
8 if g loss < g threshold then
9 Save images G(z)

10 end
11 end
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To defend against the data poisoning attack imposed by
DCGAN, we now describe our countermeasure as shown in
Algorithm 4. Here, denote A as the set that consists of the
collected adversarial image examples and denote I as a set
that consists of images as training input, which include image
samples generated by GAN and image samples collected
by sensors. We assume some adversarial image examples
may be injected into training input I by the data poisoning
attack that we discussed before. To defend against the data
poisoning attack, we consider the filter mechanism to remove
the adversarial image examples before entering into the model
training process. When adversarial samples enter the training
process, the accuracy of the model may be affected. To deal
with such an issue, we then design Algorithm 4 to filter
adversarial examples to mitigate the adversarial impact on
the performance of the CNN model. The iteration in this
algorithm is used to examine all images in I and remove
adversarial image samples in I that match the adversarial
image samples in A. The computational complexity is deter-
mined by the size of I . Thus, the computational complexity of
Algorithm 4 is O(r) where r is the size of set I . To generate
the adversarial samples, we adjust the balance to 0.1, which
makes the discriminator have a higher learning rate than the
generator. In this case, the generator is less likely to follow
the distribution of the original images so that the adversarial
image example can be generated. To deal with the adversarial
samples, the defender can utilize the GAN as a defensive tool
and increase the learning rate of the discriminator, enabling it
to identify adversarial images from real images. In this way,
the adversarial impact on the classification accuracy of CNN
model can be mitigated. If any adversarial image example is
identified, it will be removed from the training input. Note that
in Algorithm 4, we leverage the discriminator to distinguish
the adversarial images. The matches in Algorithm 4 represent
that the adversarial images are identified by the discriminator.

Algorithm 4: Algorithm for Scenario C (Defense)
1 Initialization: epochs, m, iteration, balance=0.1, g threshold, z, A, I
2 Call Algorithm 3 to generate adversarial examples and store them in

A
3 while p in I do
4 if p matches any image in A then
5 Remove p from I
6 end
7 end
8 Train CNN model using I

IV. PERFORMANCE EVALUATION

In this section, we show the efficacy of our approach. In
the following, we first introduce the methodology and then
discuss the evaluation results.

A. Methodology

In our experiment, we use the T-LESS dataset [21] as the
IIoT component images. Recall that automatically recognizing
images in T-LESS dataset is important in the automation of
IIoT systems. The T-LESS dataset has 1296 images for each

category (30 categories in total). For insufficient data, we
leverage 20 %, 40 % as the training dataset and 30 % of the
original set as testing dataset. Since the goal of our study
is to investigate the impact of insufficient data on model
accuracy, we use the relatively small amount of data, say
20 %, 40 % as training data to emulate such insufficient data
situations. Meanwhile, we determine whether the data size is
sufficient based on the accuracy of the learning model. For
Scenarios B and C, we use 50 % images for each category
to train the DCGAN model to generate image samples for
model improvement and defend against the data poisoning
attack. Note that Scenario A is for assessing the performance
of model when different levels of data are available. We expect
the learning accurate will increase after DCGAN is involved
in Scenario B. Furthermore, in Scenario C, we expect that the
adversarial examples generated by the adversary’s DCGAN
can reduce the model accuracy and the issue can be resolved
after the defender uses their own DCGAN to filter out the
adversarial image examples.

To measure the accuracy of the model, we define two
metrics. One is the classification accuracy in range of [0, 1],
which is the ratio of the number of image samples that
are successfully categorized to the total number of image
samples. A greater value of the ratio indicates better per-
formance of the model. The other metric is the loss of
learning objective function, which is defined by the cross
entropy CrossEntropy = −

∑M
c=1 yo,c log (po,c), where M

represents the number of categories (i.e., the T-LESS dataset
has 30 categories), y is the binary indicator (0 represents that
the classification is not correct while 1 represents that the
classification is correct), and p represents the probability of
the observation o of class c.

The software that we used in our experiment is MATLAB
r2021a, Pytorch 1.8, and Tensorflow 2.4 1. The software were
run on a PC with Windows 10 version 2004. The hardware in
the PC is an Intel i7 8700 CPU and 16 G DDR4 RAM. We
evaluate the results for 8 times and show the results with 95 %
confidence intervals in all figures.

B. Results

In the following, we show the evaluation results for the three
scenarios defined in our framework. All colored regions in all
figures represent the designated confidence intervals and the
results in the figures represent the validation results. Note that
if there exists overfitting, we expect the accuracy will have
poor performance during the validation when experiencing
unseen data.

1) Scenario A: Traditional Model Training: In Scenario A,
the CNN model for IIoT component classification is used
to classify different IIoT components from various image
samples. As the output image size of DCGAN in Scenarios B
and C is 64x64, we resize the input image of CNN model

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.
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Fig. 7. Accuracy of Scenario A using 20 %, 40 %, and 100 % of
the data set for training

Fig. 8. Loss of of Scenario A using 20 %, 40 %, and 100 % of
the data set for training

into 64x64 in Scenario A. As our focus is to recognize the
shape of industrial components, we map the input image
from RGB to gray-scale. In our CNN model, we leverage 32
convolution kernels (kernel size of 5x5), the stride of 1, and
use ReLU activation function in the first convolution layer
to perform feature extraction. Then, we implement a max-
pooling layer with stride of 2 and padding of 2 to remove the
redundant information from the original image. For the second
convolutional layer, we leverage 64 convolution kernels with
3x3 kernel size, stride of 1, and ReLU activation function
to further extract the information. Also, we leverage the
second max-pooling layer with the same setting to remove the
redundant information. After that, we leverage fully connected
layers with 1024 output space feature maps to classify the
features extracted by the convolutional layer. Furthermore, we
use a dropout layer with a dropout rate of 0.3 to prevent
over-fitting. Finally, a fully connected layer is implemented
to classify the features with the output space set of 30.

We set the total training epochs to 600 and conduct the
training and validation process. The results are shown in
Fig. 7 and Fig. 8. From both figures, we can observe that
when the training process is complete, the accuracy ratio
approaches 0.998 and the loss value drops to around 0.002.
From the results observed, we can see that the CNN model can
successfully classify different IIoT components if sufficient
amount of data are available.

To evaluate the impact of insufficient data on the accuracy
of CNN model, we examine two cases, where we use 20 % and
40 % of original training set to perform training. The results
of the CNN training with 20 % of the original dataset are
in Fig. 7 and Fig. 8. From the figures, we can see that the
accuracy ratio after 600 epochs reaches 0.713 and the loss
value drops to around 0.287. The result of the CNN training
with 40 % of the original training set is also in Fig. 7 and
Fig. 8. The accuracy ratio reaches 0.791 and the loss value
drops to around 0.209 when 40 % of original training set
is used. Our experimental results confirm that the accuracy
of CNN model can be significantly reduced with insufficient
dataset and that the marginal improvement associated with
doubling the training data fraction from 20 % to 40 % is small,
which indicates that we need large amounts of data to properly

train the model. We also tested 60 % and 80 % of the original
dataset to train the CNN model, the accuracy is in range
of 80 % to 91 %. This justifies the reason why we need to
automatically generate data samples to address the insufficient
data issue and improve the accuracy of CNN model.

2) Scenario B: GAN Assist Model Training: In this sce-
nario, we first leverage the DCGAN to generate IIoT compo-
nent images based on 50 % of the available images for training
an accurate machine model. Then, we train the CNN model
with the generated image samples to evaluate the accuracy
of our model. In addition, we leverage the continuous model
given in Algorithm 2 in Section III to simulate the real-world
practice of the IIoT system, in which new images are collected
over time and such images should be employed to update the
model.

When we implement Algorithm 1, we set the number of
training epochs to 60. The image sample m is set to 648,
which is 50 % of the total images for each category. The
balance is set to 0.5 to balance the learning rate on the
generator and discriminator. Also, g threshold is set to 3 to
control when DCGAN is completed. The length of the noise
vector z is set to 100. After the initialization, we load the
T-LESS dataset into the model. The generator generates the
images based on the distribution of the real image, while the
discriminator distinguishes the real/generated data samples and
send its feedback to the generator. Based on the feedback, the
generator adjusts the image distribution. When the loss of the
generator is less than 3, the generated images are ready to use.
As an example, we show the initial output of the generator in
Fig. 9. From the figure, we can see that there is only noise
in the generated images in the initial stage. After 60 epochs
of training process, the outputted image is shown in Fig. 10,
which is much similar to the original image shown in Fig. 11.

The accuracy of DCGAN is shown in Fig. 12. From the
figure, we observe that the accuracy of the discriminator
remains the range of between 0.730 and 1 from epochs 0 to 30.
This is because the generator is still updating its parameters
based on the output of the discriminator and the original
images. After epoch 30, the accuracy of both the generator and
discriminator are changing more rapidly than previous epochs.
Nonetheless, the accuracy of the generator increases while the
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Fig. 9. Initial output of DCGAN for Scenario B Fig. 10. Example of Generated Images by
DCGAN based on T-LESS for Scenario B

Fig. 11. Example of Original T-LESS Images
for Scenario B

Fig. 12. Accuracy of Scenario B with DCGAN Fig. 13. Loss of Scenario B with DCGAN

accuracy of the generator declines. At the end of the training
process, the generator achieves an accuracy score of 0.814,
while the discriminator achieves a score of 0.781 in average.

The loss of the DCGAN determined by cross-entropy is
shown in Fig. 13. From the figure, we observe that generator
incurs a high loss during the training epochs from 0 to 26.
Starting from epoch 26, we can see highly variation on both
generator loss and discriminator loss. This is because both the
generator and discriminator are actively updating their models
based on the feedback (e.g., a binary decision of either real
or fake image from the discriminator) and the actions for
generating the images from the generator.

After we collect the images from the DCGAN model, we
implement Algorithm 2 to demonstrate how the generated
image samples and continuous learning can jointly improve
the learning accuracy of the CNN model. In the algorithm,
we set the epochs for CNN training as 600, the quantity of
generated images m as 1296. Also, real num and iteration
are initialized to 0 and real threshold is set to 1296 which
means the IIoT sensor will send the collected images to
the CNN model after collecting 1296 images. Then, the
CNN model will be updated based on newly collected image
samples from IIoT sensors. The epochs is set to 350, which
refers to the training time of the continuous learning process.
In the continuous learning process, we leverage the IIoT sensor

collected images (over or equal to 1296) to update the CNN
model.

We plot the evolution of the accuracy and the loss versus
the epoch number of the CNN model in Figs. 14 and 15,
respectively. During the initial training period of 600 epochs,
we train the CNN model based on the DCGAN generated
samples. We observe that the accuracy ratio is 0.889 at
epoch 600. From epoch 600 to 950, we add the generated
image data samples collected by sensors, which enables the
CNN model to update itself via continuous learning process.
After updating the CNN model, the accuracy ratio approaches
0.998. Based on our experimental results, we confirm that
the DCGAN along with continuous learning is capable of
improving the learning accuracy of CNN model when the
initial data samples is not sufficient, which is a common
problem in numerous IIoT systems. As seen in Fig. 14, the
validation accuracy increases with the growth of epochs so
that the overfitting problem is not a concern in our proposed
model.

3) Scenario C: GAN based Data Poisoning Attack and De-
fense: We now investigate the security impact of DCGAN on
model training in the investigated IIoT system. The adversary
can use DCGAN to generate adversarial image examples to
bypass the recognition of CNN model, which can significantly
affect the component recognition process in the investigated
IIoT system. To address this issue, We implemented Algo-
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Fig. 14. Accuracy of Scenario B with Continuous Learning Fig. 15. Loss of Scenario B with Continuous Learning

Fig. 16. Accuracy of Scenario C (Attack and Defense) Fig. 17. Loss of Scenario C (Attack and Defense)

rithm 3. In our experiment, we set the number of training
epochs to 600, image quantity m to 1296, iteration to 0, and
g threshold to 4, and z to 100. At this stage, the generated
sample is not likely to follow the distribution of the original
images that can be regarded as the adversarial examples so
that the accuracy of the model will be affected. The balance
is set to 0.1, which ensures the generator does not get updated
as frequently as the discriminator. After training, the newly
generated image samples will be used as inputs to confirm the
performance impact of adversarial image examples generated
by DCGAN on the trained CNN model.

To demonstrate the attack impact of DCGAN as an attacking
strategy, Fig. 16 shows the accuracy of model and Fig. 17
shows the loss of model. From both figures, we can observe
that, after the attack is launched, the accuracy ratio is plateaus
at 0.635 and the loss can reach to 0.33. Note that the
accuracy is significantly lower than that in both Scenarios A
and B and the loss is much higher than that Scenarios A
and B, respectively. Our experimental results confirm that
the adversarial image examples by DCGAN can significantly
affect the performance of our model.

The discriminator of DCGAN can be used as a defensive
strategy to classify and filter the adversarial image exam-
ples so that the security resilience of CNN model can be
achieved. Similar to the attack investigated in this scenario,
we implement Algorithm 4. We set the number of training

epochs to 600, image quantity m to 1296, iteration to 0,
d threshold to 1, I to 1296, A to 1616, and z to 100.
During the training process, since the discriminator has higher
learning rate, it has better performance than the generator.
In this paper, we leverage the discriminator of the DCGAN
to classify the adversarial image examples from the real
examples. To simulate the knowledge that the defender knows
the adversarial examples, we use the filtered image samples
to train the CNN model in Scenario A. The experimental
results are shown in Fig. 16 and Fig. 17. As seen in both
figures, with the defensive strategy, the accuracy ratio can
approach 0.967 while the loss approaches 0.150, showing
that our defensive strategy is capable of dealing with data
poisoning attacks against the model training process. To deal
with the scenario where the adversary uses a different balance
value to generate adversarial samples, the defender can use
different balance values to generate adversarial examples and
train the discriminator with those samples. By doing this, the
discriminator will have the ability to filtering the adversarial
samples under other balance values.

V. DISCUSSION

There are still several remaining issues that need to be
addressed in our future study.

Improving GAN on IIoT Component Recognition: In
our implementation, the generator of DCGAN may encounter
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mode collapse when dealing with complex data samples. Thus,
one issue is how to select different cost functions for further
performance gain. Also, additional tuning can be conducted
for DCGAN model so that the generator can generate more
realistic image samples for the model. With respect to feature
extraction, it will be interesting to explore various techniques
so that the discriminator can easily recognize adversarial
image examples. Another issue is how to select and prioritize
the features of images so that we can not only reduce training
data size, but also reduce computational overhead. As IIoT
systems could collect high resolution images, how to make
the discriminator and generator networks in DCGAN adapt
images with different resolutions is another issue to study in
our future work.

Extending our framework to other IIoT Systems: Re-
call that in this study, we have proposed the framework
to establish the foundations of addressing the problem of
insufficient data in IIoT systems, including the study of the
impact of insufficient data on the performance of models, the
techniques that enable new data generation, collection, and
use in model training, as well as the security risk of using
new data in model training process. Our framework can be
extended to study other GAN models to provide new insights
that support the performance improvement of models. Our
framework can also be extended to other IIoT applications
such as smart cities, smart healthcare, smart transportation, and
others. For example, GAN can be used to synthesize new data
to build robust models to characterize communication channels
and networking environments in complex IIoT systems, in
which only limited measurement data could be available.
Furthermore, other data security and privacy issues posed by
machine learning use in IIoT systems are interesting problems
to explore in our future work [22], [20].

VI. RELATED WORK

In this section, we review the existing efforts on applying
GAN in different problem domains. One important applica-
tion of GAN is computer vision. GANs are used for image
super-resolution, image translation, image texture synthesis,
face synthesis, video generation, and text-to-image translation,
among others. For instance, Ledgi et al. [23] proposed a
Super-resolution GAN (SRGAN) to improve the resolution
of images. The designed model can take a low-resolution
image as input and generates high-resolution image of four
times up-scale. Also, You et al. [24] leveraged the GAN-
Cycle and Super-Resolution Generative Adversarial Network
(SRGAN) to improve the quality of Computed Tomography
(CT) images. To improve the texture generated by SRGAN,
Wang et al. [25] proposed an Enhanced SRGAN (ESRGAN)
to improve the adversarial loss and perceptual loss. Likewise,
Xiong et al. [26] improved the loss function of the SRGAN to
assist image sensing. Also, Zeng et al. [27] integrated Super
Resolution with Invert Tone Mapping (SR-ITM) with SRGAN
named SR-ITM-GAN to generate 4K images.

Image translation is a way of converting the image content
from one domain to another. There are a number of efforts
in this aspect. For example, Isola et al. [28] designed a

Conditional GAN (CGAN), namely as pix2pix (image-to-
image translation), to show its effectiveness on both graphics
and vision tasks. Wang et al. [29] proposed an enhanced
strategy called pix2pixHD, which uses a global generator
and a local generator to generate images with a specific
resolution. Also, Annop et al. [30] proposed Sem-GAN to
generate higher quality images than other GAN networks.
Furthermore, to improve the scalability of the output image,
Cycle GAN [31], Disco GAN [32] and Dual GAN [33] were
designed to leverage the encoder-decoder framework and use
the principle of cyclic consistency to enable the arbitrary size
of the input image.

Image texture synthesis can construct large image based on
a small digital sample from its structure of the digital sample.
For example, Li et al. [34] proposed a texture synthesis scheme
based on GANs, namely Markovian GANs (MGANs). Their
proposed scheme can capture the texture data of Markovian
patches and generate the stylized images and videos. Jetchev et
al. [35] proposed a SpatialGAN (SGAN) that applies full un-
supervised learning to texture synthesis. Likewise, Bergmann
et al. [36] proposed an enhanced SGAN called PeriodicSGAN
(PSGAN), which can handle texture information in noise
space, synthesis high-resolution textures, and learn periodic
textures from a single image or complex dataset. Face syn-
thesis is a method used to generate realistic faces. Related to
this aspect, Huang et al. [37] proposed a Two-Pathway GAN
(TP-GAN) to synthesize high-resolution frontal face images
with different directions from a single side photo. Zhang et
al. [38] designed the self-attention block with GAN (SAGAN)
to improve the quality of image synthesis. Also based on
SAGAN, Brock et al. [39] proposed BigGAN to increase the
diversity and fidelity of generated samples. Furthermore, for
video generation, Tulyakvo et al. [40] proposed unsupervised
learning based MoCoGAN to carry out the video generation.
For text-to-image translation, Reed et al. [41] and Zhang et
al. [42] designed schemes to generate images based on texture
description.

Natural language processing (NLP) is another application
that GANs have been applied to. For example, Yu et al. [43]
proposed SeqGAN using the policy gradient to train the
generator, which achieves desirable performance in speech,
poetry, and music generation. Lin et al. [44] leveraged a
margin-based loss function to the discriminator of GAN,
named RankGAN, to improve the performance. Likewise, Li
et al. [45] designed a scheme to generate an open-domain
dialogue through adversarial training. Furthermore, GANs can
be integrated with reinforcement learning to carry out NLP.
For example, Mnih et al. [46] leveraged the results of the
discriminator as a reward to the generator so that human-like
conversations can be generated automatically.

In addition to image processing and NLP, GANs have been
applied to other problem domains. For example, anomaly
detection (i.e., outlier analysis) tends to recognize data points,
events, and/or observations that deviate from normal behav-
iors, which has broader applications. Related to such areas,
Schlegl et al. [47] leveraged GAN to carry out the outlier
detection in the healthcare system. Liu et al. [48] used GAN
to generate malware on Android devices. Cai et al. [49]
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systematically reviewed the privacy and security of GAN.
Likewise, Jordon et al. [50] leveraged GAN to generate data
that complies to defined privacy policies.

VII. FINAL REMARKS

In this paper, we proposed a framework to address the
issue of insufficient data for training accurate machine learning
models in IIoT systems. In our framework, we designed
three scenarios to investigate the impacts of data volume on
model accuracy, apply DCGAN to generate additional data
samples and leverage continuous learning to improve model
accuracy, study the data poisoning attack raised by DCGAN
for data generation, as well as design a countermeasure for
deal with this attack. To demonstrate the efficacy of our
proposed framework, based on a real-world IIoT dataset, we
implemented the three scenarios. Our experimental results
show that insufficient data can significantly affect model
accuracy, and that generated data samples from DCGAN can
greatly improve the model accuracy. Our experimental results
also show that adversarial examples generated by DCGAN can
significantly reduce model accuracy in an attack scenario, and
our proposed countermeasure is effective in dealing with such
an attack. Finally, we discussed some remaining issues that
we plan to address in our future work.
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