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Abstract—The interconnection and digitization of the physical
world has increased dramatically with the widespread deploy-
ment of network communication and the rapid development of
the Internet of Things (IoT). Application scenarios and require-
ments in IoT are more complex and diverse than ever before. To
successfully support the design and development of complex IoT
systems, a realistic evaluation platform that can accurately simu-
late both the physical world and network communications is nec-
essary. Yet, most existing simulation tools are limited, simulating
only specific subsets of IoT environments, such as communication
network simulation or mobility simulation, rather than complete
IoT scenarios. Thus, in this paper, we propose a new framework,
in which several modules can work together to achieve more
realistic simulation of IoT environments. Specifically, we integrate
three-dimensional object motion with the OMNET++ network
simulator. In our framework, we can configure and direct object
movement in 3D and compute the received power of transmitted
signals using ray tracing techniques. Within the framework,
OMNET++ simulates the communication process based on the
received power and communication protocol. As a demonstration
of our framework, we conduct several experiments on two classic
Internet of Vehicles (IoV) scenarios. The results indicate that our
proposed framework can accurately simulate both the physical
and communication aspects of IoT systems.

Index Terms—Internet of Things, Integrated simulation, Inter-
net of Vehicles

I. INTRODUCTION

With the deployment of massive numbers of smart devices, a
complete vision of the Internet of Things (IoT) is increasingly
being realized, through the development and implementation
of numerous smart-world systems in the areas of transporta-
tion, manufacturing, energy, and others [1]. These smart
devices are connected through IoT networking infrastructure
to sense a variety of physical properties and environments
and communicate with each other so that they can collect
data to support intelligent decisions. IoT applications cover
a number of aspects relevant to human livelihood and soci-
etal wellbeing, such as smart homes, smart electrical grids,
smart transportation systems, smart manufacturing systems,
and smart healthcare systems, among others. Through these
IoT applications, human life can become more convenient and
efficient.

Although the topic of IoT has been extensively explored
in a variety of research works, a number of issues remain
to be addressed. Specifically, there remains a lack of high-
fidelity integrated simulation platforms, which are capable

of characterizing interactions between cyber and physical
components in complex IoT systems, as well as evaluating
designed models, algorithms, and protocols. For instance, in
the area of smart transportation systems, to simulate a realistic,
urban Internet of Vehicles (IoV) scenario, a simulation should
consider the mobility of vehicles, conditions of roads, interfer-
ence from buildings, and other factors. Nonetheless, traditional
traffic [2] and network [3] simulation tools are not suitable for
such IoV simulation because they lack the necessary level of
detail, and cannot reflect the interactions between the cyber
and the physical worlds appropriately.

At the same time, machine learning techniques have been
widely adopted to assist in data analysis for IoT applica-
tions [4]. When using machine learning algorithms in IoT
scenarios, it is necessary to collect significant amounts of
data from specific training scenarios to achieve high accuracy.
Moreover, these trained machine learning models are generally
suitable for the trained scenario only. When we apply model to
another scenario, we need to at least retrain the model, which
requires collecting a large amount of data in the new scenario.
Nonetheless, in many scenarios, there will not be enough data
to train machine learning models. Thus, many IoT applications
cannot achieve their desired outcomes with machine learning.

Developing a general framework that can be used to evaluate
IoT applications and generate realistic IoT data for machine
learning is of great importance. A realistic IoT evaluation
environment should be able to accurately reflect the interac-
tions between cyber and physical domains. For example, in
an IoV system, messages exchanged between vehicles will
affect the behaviors of the vehicles. A vehicle should also be
able to transmit different messages based on driving status. All
events occurring during simulation should be able to be stored
and retrieved. In this way, we can develop machine learning
algorithms for IoV based on the collected data.

To this end, in this paper, we propose a general framework
to carry out realistic IoT simulation of IoV. Our designed
framework consists of four modules: Scenario Generation,
Mobility Simulation, Network Simulation, and Visualization. In
each module, we combine several tools to improve the simula-
tion accuracy. In the Scenario Generation module, we convert
OpenStreetMap (OSM) [5] data to realistic 3D models for a
selected area. We use the Java OSM (JOSM) editor [6] to clear
the data of OSM and use the Houdini 3D modeling engine [7]



to generate the 3D objects. In the Mobility Simulation module,
we leverage the open-source Simulation of Urban MObility
(SUMO) to generate moving objects for the simulation [8].
SUMO supports a high degree of customization, making it
suitable for simulating IoT environments that are typically
heterogeneous. In the Network Simulation module, we use
the Objective Modular Network Testbed in C++ (OMNET++)
to perform network simulation [9]1. OMNET++, as a discrete
event simulator, can evaluate large scale IoT deployments. We
also use Optix to introduce ray tracing technology to further
improve the accuracy of simulation results. Finally, in the
Visualization module, we use the Unity game engine [10]
to graphically display the simulation. During simulation, the
Mobility Simulation module, Network Simulation module and
Visualization module can work collaboratively via communi-
cation over TCP/IP (Transmission Control Protocol/Internet
Protocol) ports.

To summarize, we make the following contributions: (i)
Framework: We propose a general framework to perform
realistic IoT simulations. In detail, we use a combination of
simulation tools to simulate real-world IoT scenarios to the
greatest extent currently possible. Additionally, we visualize
the simulation to generate image data for future machine
learning research and development purposes. (ii) Extensive
Validation: We conduct an extensive performance evaluation
to show that our proposed framework can accurately reflect the
interactions between communication and physical domains.
We validate our framework on two classic IoV scenarios: an
urban area and a highway area. In each scenario, we design
two cases: accident and non-accident. The simulation results
are discussed from the perspectives of communication and
physical. From the communication perspective, we focus on
the received power signals and the packet delivery rate. From
the physical perspective, we focus on the vehicle travel time.

The remainder of this paper is organized as follows: In
Section II, we conduct a brief review of relevant studies
regarding IoT simulation. In Section III, we present our
proposed framework in detail. In Section IV, we describe the
simulation scenarios that we used to test our framework and
discuss the evaluation results. Finally, we summarize the paper
in Section V.

II. RELATED WORK

With the development of research work on IoT applications,
the demand for IoT simulation tools is growing [11]. The state-
of-art simulation tools can be categorized into several major
types: full-stack simulators, data processing driven simulators,
and network simulators. The full stack simulators provide the
end-to-end support of all IoT elements. The data processing
driven simulators focus on enabling applying big data analysis

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

techniques to the applications [12]. Finally, network simulators
support the evaluation of various network protocols in IoT
scenarios. For instance, the bidirectional integration capability
of OMNET++ makes it viable as a network simulator for
heterogeneous IoT applications.

The role of game engines in IoT applications can be divided
into two categories: reproducing 3D scenes and creating user
interaction interfaces for IoT applications. For example, Yu et
al. [13] used the Unity game engine to provide a virtual reality
environment for college physical education using the data
collected from IoT devices. The game engine can also create
user interaction interfaces for IoT applications. For example,
Olaverei-Monreal et al. [14] installed the traffic light assist
(TLA) system into a virtual environment developed by a unity
game engine.

Finally, because simple models of fading and shadowing
effects can be inadequate, ray tracing techniques can be used
to provide a high level of detail in the characterization of
multipath channels in wireless communication systems. For
instance, He et al. [15] designed a high performance ray trac-
ing simulation platform specifically for 5G communications.

Fig. 1. Simulation Framework

III. OUR APPROACH

In this section, we present our proposed framework for
simulating realistic IoT systems.

A. Overview

Our approach consists of four modules: Scenario Gener-
ation, Mobility Simulation, Network Simulation, and Visu-
alization. Fig. 1 illustrates steps in the simulation process.
In scenario generation module, the map data is converted
into a 3D model that can be recognized by the Unity game
engine. This allows us to accurately reproduce geographic
environments for IoT scenarios in a virtual environment. We
use OSM data as the input of this module. The OSM data
includes buildings, roads, intersections, and traffic lights. We
use the JOSM editor to fix errors and missing information in
the OSM data. Finally, we use the processed OSM data to
generate the 3D model for the scenarios in the Houdini 3D
modeling engine.

In mobility simulation module, the behavior of any moving
object in the IoT scenario is defined by an Extensible Markup



Language (XML) file. This includes the source location, des-
tination location, speed, type, and other properties of mobile
objects. Based on the XML file, SUMO will simulate the
movement of mobile objects in the IoT scenario that we
defined.

In network simulation module, we leverage OMNET++ to
provide network simulation. First, we define the IoT appli-
cations to be evaluated. Normally, these applications include
network configurations (e.g., data rate, routing strategy, encod-
ing method, packet size, and others). Then, OMNET++ will
deploy the network configurations on objects in the evaluated
IoT scenario. The received power level that OMNET++ uses
in the communication simulation is derived from Optix using
real-time ray tracing techniques.

In visualization module, the Unity game engine visualizes
the buildings, streets and moving objects in the defined IoT
scenarios.

As shown in Fig. 1, the overall simulation process is carried
out according to the following steps:

• We obtain the geographic data from OpenStreetMap in
the form of OSM data.

• In the Scenario Generating Module, the OSM data is sent
to the JOSM editor so that unnecessary information can
be removed.

• The processed OSM data are sent to SUMO to build
the mobility simulation scenario. At the same time, the
Houdini 3D modeling engine will take processed OSM
data from the JOSM editor and generate the 3D scenario.

• Within the mobility simulation, the behavior data, such
as moving objects, are written to XML so that SUMO
can directly recognize.

• SUMO uses the behavior XML file and the geographic
data to conduct the mobility simulation.

• The position and the velocity of moving objects are sent
to the Unity game engine in the Visualization Module and
OMNET++ in the Network Simulation module through
TCP/IP messages.

• The Unity game engine visualizes the IoT scenario based
on the received TCP/IP messages and the 3D model
generated by Houdini 3D.

• The Unity engine sends building material and shape
information to Optix in the Network Simulation module
for ray tracing calculation.

• Optix computes the received signal power and sends it to
OMNET++.

• OMNET++ simulates the network communications based
on the IoT application, the IoT scenario, and the received
signal power.

• OMNET++ sends the network simulation results to
SUMO to update the behaviour status of objects.

• The simulation repeats all above steps until the simulation
is complete.

B. Scenario Generation

In our approach, we convert real-world scenarios into digital
3D models to build realistic IoT scenarios. The OSM data

TABLE I. Simulation Parameters

Parameter Value
MAC type IEEE 802.11p
Simulation volume 500 m x 500 m x 50 m
Transmission range 500 m
Vehicle max speed (45,25,15) m/s
Packet size 32 bytes
DCF Inter-Frame Space (DIFS) 34 µs
Short Inter-Frame Space (SIFS) 16 µs
Number of vehicles 200

that we use in this framework contains sufficiently detailed
information about IoT scenarios, including buildings, roads,
traffic lights, and the speed limit on each road, among others.
In addition, the JOSM editor allows us to further streamline
the process through the removal of unnecessary information,
reducing the complexity of the 3D modeling process. For
instance, if pedestrians on the road are not considered in
the current IoT scenario, the sidewalk data can be removed.
Moreover, we leverage the capabilities of the Houdini 3D
modeling engine for generating accurate digital IoT scenarios.
The generated digital IoT scenarios can be directly exported
to the Unity game engine for visualization.

C. Mobility Simulation

Typical scenarios in IoT consist of a number of moving
objects, including vehicles, pedestrians, drones, and others. We
leverage the SUMO simulator for generating road networks
and traffic in the IoT scenario. SUMO can identify edges,
lanes, intersections, and connections in the processed OSM
data, to generate a road network. With the generated network,
we can then use the trip builder in SUMO to generate the
traffic flow of the simulation. We can also customize the
mobility of each object manually, enabling a variety of distinct
and unique IoT scenarios.

D. Network Simulation

OMNET++ has a well-developed open-source library, which
can meet the simulation requirements of heterogeneous net-
work communication for most IoT scenarios. Thus, we lever-
age OMNET++ as the network simulator to interact with
the other components in our framework. We use Optix,
developed by NVDIA, to perform the ray tracing analysis
on the transmitted signal. Using Optix, we can simulate
electromagnetic waves by emitting rays from the transmitter at
predetermined angular intervals. These rays will be reflected,
diffracted, transmitted, or scattered once they hit an obstacle
in the simulation. The received signal power is calculated
by adding up the received power of different rays that reach
to the receiver. Such intensive calculations require significant
computational resources, which can be further leveraged to
support the statistical propagation models provided by the
OMNET++ modules.

E. Visualization

Visualizing IoT scenarios can increase the diversity of IoT
data that we collect. By leveraging the Unity game engine to



Fig. 2. Urban Area Open
Street Map

Fig. 3. Urban Area 3D mod-
eling

Fig. 4. Highway Area Open
Street Map

Fig. 5. Highway Area 3D
Modeling

visualize the IoT scenarios, we can set up cameras at different
locations and angles, and collect and store images of IoT
scenes at various points in time. This allows us to simulate
real-time images taken by smart cameras deployed in cities.
These collected images can then be used as data for developing
machine learning applications in IoT. For example, we can use
images with 3D models instead of real-life pictures to train
the machine learning model for estimating communication
channels between moving vehicles without raising personal
privacy issues.

IV. PERFORMANCE EVALUATION

We set up two classic IoV scenarios (i.e., urban area and
highway area) to demonstrate the efficacy of our proposed
framework. For each scenario, we design two cases: accidents
and no accidents. We validate the functionality of our proposed
framework with respect to received power, packet delivery rate,
and travel time of vehicles.

A. Evaluation Methodology

For each scenario, we choose a (500 x 500) m2 area in Tow-
son, MD, USA. The simulation was run on a workstation with
a Windows 10 operating system, 32 GB of memory, and an
AMD 2700 CPU. The Optix ray-tracing simulations were run
on a standalone NVIDIA 3070 GPU. We use IEEE 802.11p
as our communication protocol for all the vehicles in the
network. The data rate is set to 6 Mbit/s. If an accident occurs,
the accident car will send a warning message to surrounding
vehicles every 2 s. Then, vehicles that receive a warning
message will send it to other vehicles. According to the
specific position of the vehicle on the scene, the vehicle that
receives a warning message will adopt one of three actions:
slowing down, stopping, or changing lanes. The OMNET++
and SUMO exchange messages every 2 ms through TCP/IP.
The Unity game engine and Optix also exchange messages
every 2 ms through TCP/IP. The simulation for each scenario
runs for 700 s of simulated time. More simulation parameters
are shown in Table I.

B. Scenarios

1) Urban Area: In urban area, Dense buildings make the
communication environment in the urban area complicated,
because the shape of the building has a great impact on
communication. On the other hand, the roads in the urban area
are also staggered and complicated, with many intersections

and traffic lights. This makes the density of vehicles at certain
intersections higher. It not only increases the total number of
packets transmitted within the communication range, but the
vehicle between the data transmitter and the data receiver will
also reflect and refract the signal.

We usually use statistical models to simulate signal propa-
gation in IoV applications. Nonetheless, the simulation results
obtained by using statistical model cannot accurately reflect
some characteristics of a specific urban scenario. We can use
ray tracing technology to simulate signal propagation more
accurately. The urban scenario that we use in this paper is
shown in Fig. 2. It is a small commercial area near the Towson
University campus. Depending on the type of road that the
vehicle is on, the maximum speed of the vehicle is limited to
15 m/s or 25 m/s. The 3D modeling of this urban area is shown
in Fig. 3. As the original map data contains some roads that
vehicles cannot drive on (e.g., sidewalks), to efficiently use
the computational resources of the simulation, we only keep
the arterial road that when generating the 3D model.

2) Highway Area: Most vehicles on highways travel at
similar speeds, so that we could consider that two vehicles
in the same traffic flow are relatively stationary. Nonetheless,
due to the high speed of vehicles on the highway, the relative
speed between the vehicle and the road side unit (RSU) is very
high, resulting in a heavy Doppler effect on communication
signals. The highway scenario that we use in this paper is
shown in Fig. 4, which a small section of interstate 695 (I-
695) in Towson, MD. The 3D modeling of this highway area
is shown in Fig. 5.

C. Evaluation Results
1) Communication Perspective: From the perspective of

communication, we focus on two metrics: the received power
signal and the packet delivery rate. The received signal power
is computed by adding up the received power of different
rays that arrive at the receiver. The packet delivery rate is
computed by the number of successfully transmitted packets
divided by the total number of packets that are transmitted.
Note that we run the program 20 times on each scenario and
obtain experimental results that display the error bar with 95 %
confidence intervals.

Fig. 6 illustrates the trend of the received signal power as the
increase of communication distance between the transmitter
and the receiver. The ideal situation indicates that there is
no obstruction between the transmitter and the receiver. In



Fig. 6. Received Signal Power Fig. 7. Packet Delivery Rate without
Accident

Fig. 8. Packet Delivery Rate with Ac-
cident

Fig. 9. Vehicle Travel Time in Urban Area Fig. 10. Vehicle Travel Time in Highway
Area

the urban area, the transmitter and the receiver have no
line of sight, and all received signals must be reflected by
buildings and other vehicles in between. While in the highway
area, since there are no buildings between the transmitter
and the receiver, only the reflection caused by other vehicles
in between will be considered. Obviously, as the distance
between the transmitter and the receiver increases, the received
signal power in all three scenarios is lower. The received signal
power in the ideal case decreases the slowest with the increase
of distance. When the communication distance reaches the
maximum limit of 500 m, the received signal power strength is
still close to -90 dBm (power level expressed in decibels (dB)
with reference to one milliwatt (mW)). Considering there is
no obstruction between the transmitter and the receiver, the
received signal power fits the free space propagation model.

For the highway scenario, the received signal power is
slightly lower than the received power in the ideal scenario,
but much higher than the received power in the urban scenario.
This is because although there are multiple vehicles between
the transmitter and the receiver, and there is no building
blockage in the middle of the road, the signal can reach to
the receiver after one or two reflections from the ground.

In the highway scenario, the length of the highway is
around 600 m. Thus, we limit the longest distance between the
transmitting vehicle and the receiving vehicle to be within the
communication distance of 400 m. The received signal power
in the urban area is the lowest. When the communication
distance reaches 100 m, the received signal power is only

around -100 dBm. When the communication distance reaches
300 m, the received signal power attenuates greatly. Thus,
we do not consider the situation where the communication
distance in the urban scenario is larger than 300 m. Also, the
reason why the received signal power is weak is because the
signals reflect multiple times to reach to the receiver, because
there are usually buildings between the transmitter and the
receiver. Because of the high density of buildings in the city,
the longer the communication distance, the more buildings
will be between the transmitter and the receiver, which further
reduces the power of the received signal.

Fig. 7 illustrates the relationship between packet delivery
rate and communication distance when no accident occurs.
The packet delivery rate of the ideal scenario is the highest,
followed by the highway scenario, and the urban scenario has
the lowest packet delivery rate. This result is as expected
because the same encoding method and data rate are used
in these three scenarios. The received signal power strongly
affects on the packet delivery rate and results in a steep
decrease in the delivery rate over relatively short distances,
with the greatest impact occurring in the urban scenario.
Fig. 8 shows the relationship between packet delivery rate
and communication distance when an accident occurs. In the
event of an accident, the accident vehicle will send a warning
signal to other nearby vehicles. Once a vehicle receives the
warning signal, it will forward it to other nearby vehicles.
Based on their locations, vehicles could slow down, stop, or
change the lane. Thus, when an accident occurs, the number of



simultaneous broadcasting packets within the communication
range increases, and the density of vehicles increases. As a
result, these data packets have a higher chance of colliding
with other data packets, leading to higher interference. That
explains why the packet delivery rate with accident is lower.
For the urban scenario, the packet loss rate is almost 70 %
at 50 m communication distance, as shown in Fig. 8. For the
highway scenario, the packet delivery rate is dropped around
20 % at 400 m communication distance. For an ideal scenario,
the packet delivery rate is dropped around 20 % at 500 m
communication distance. This is because the urban scenario
has the most intersection area, when an accident occurs, the
vehicles will easily be stuck on the intersection area. This
effect causes an additional increase in the relatively high
density of vehicles in the urban scenario so that it is the highest
among the three scenarios, and so that the effect on packet
delivery rate is the greatest.

2) Physical Perspective: For the physical system perspec-
tive, we focus on the trajectories of the vehicles during the
simulation. In both urban scenario and highway scenario, we
set the total number of vehicles to 200. The generated vehicles
have different source and destination locations, usually at the
edge of the road. Vehicles also have different speeds according
to the road that they travel on. For example, in urban areas,
vehicles travel at speeds below 25 m/s, while in highway
scenarios, vehicles can travel at 45 m/s. Fig. 9 illustrates the
distributions of vehicle travel time in urban scenario with
and without accident. In order to reduce the randomness
of the results, we ran the same scenario 20 times. For the
urban scenario without accident, the travel time of vehicles is
mostly between 160 simulated time units (say seconds) to 180
simulation time units. For the urban scenario with accident, the
travel time of vehicles is mostly between 220 simulated time
units to 260 simulation time units. The travel time increases
as the vehicles will slow down or stop once they received
accident warning signal. Compared to the situation without
accidents, the variance of travel time with accidents is also
smaller.

Fig. 10 shows the distributions of vehicle travel time in the
highway scenario with and without accident. We also ran the
same scenario 20 times. For the highway scenario without
accident, the travel time of vehicles is mostly between 90
simulated time units to 110 simulation time units. For the
urban scenario with accident, the travel time of vehicles is
mostly between 110 simulated time units to 130 simulation
time units. By comparing Fig. 9 with Fig. 10, we can observe
that, the travel time of vehicles under the highway scenario
is less affected by the accident than vehicles under the urban
scenario. There are two reasons for this outcome. First, there
are intersections and traffic lights in the urban scenario, which
will cause more waiting time than the highway scenario when
the accident occurs. Second, the packet delivery rate in the
highway scenario is higher than that in the urban scenario. As
a result, vehicles in the highway scenario are more likely to
receive warning signals, so that they can slow down or change
lanes in advance. On the other hand, because the vehicle in

the urban scenario has not received the warning signal, it may
need to stop completely and start again when an accident is
discovered ahead.

V. FINAL REMARKS

In this paper, we proposed a general framework for IoT
simulation. Our framework consists of Scenario Generation,
Mobility Simulation, Network Simulation, and Visualization
modules. The framework can be customized to adapt to diverse
IoT scenarios, affording individual or collaborative control of
the modules, enabling the modification of vehicle mobility,
network protocols, communication environments, and others.
We validated our proposed framework on two classic IoV
scenarios: an urban area and a highway. The simulation
results demonstrate that our framework can realistically reflect
the interactions between physical objects and communication
networks in such scenarios. Our framework also provides
various types of simulation results, including images, object
trajectories, and communication logs. In our future research,
we plan to use this developed framework as a platform
to design IoV applications to improve IoV communication
performance and traffic patterns. Moreover, we can generate
sufficient realistic data from the framework to support machine
learning-driven applications in IoT scenarios.
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