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The increasing scale of neural networks and their growing application space have produced demand
for more energy- and memory-efficient artificial-intelligence-specific hardware. Avenues to mitigate the
main issue, the von Neumann bottleneck, include in-memory and near-memory architectures, as well as
algorithmic approaches. Here we leverage the low-power and the inherently binary operation of mag-
netic tunnel junctions (MTJs) to demonstrate neural network hardware inference based on passive arrays
of MTJs. In general, transferring a trained network model to hardware for inference is confronted by
degradation in performance due to device-to-device variations, write errors, parasitic resistance, and non-
idealities in the substrate. To quantify the effect of these hardware realities, we benchmark 300 unique
weight matrix solutions of a two-layer perceptron to classify the Wine dataset for both classification accu-
racy and write fidelity. Despite device imperfections, we achieve software-equivalent accuracy of up to
95.3% with proper tuning of network parameters in 15 × 15 MTJ arrays having a range of device sizes.
The success of this tuning process shows that new metrics are needed to characterize the performance and
quality of networks reproduced in mixed signal hardware.

DOI: 10.1103/PhysRevApplied.18.014039

I. INTRODUCTION

Over the past decade, artificial intelligence algorithms
have achieved human-level performance on increasingly
complex tasks at the cost of increased neural network
size, computing resources, and energy consumption [1–5].
OpenAI’s GPT-3, for example, a state-of-the-art natu-
ral language processor, contains 175 billion parameters
and requires 3.14 × 1023 floating-point operations to train
[6], consuming roughly 190 MWh of electrical energy,
roughly the average yearly electrical energy consumption
of 16 people in the USA [7]. Running these algorithms
for inference applications—applications that require the
model to make predictions but not learn new informa-
tion—requires lesser but still overwhelming amounts of
energy. This makes them difficult to implement in embed-
ded applications where resources are limited, such as
cell phones, self-driving cars, or drones [8–10]. This
energy inefficiency is in part due to implementing these
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algorithms using general-purpose hardware such as central
and graphical processing units (CPUs and GPUs).

Because CPUs and GPUs have traditional von Neumann
computing architectures, they do not store data in the same
spatial location as where computation is carried out. For
this reason, energy is consumed in moving the data, and
the speed of computation is throttled by the time it takes to
shuttle from the storage to the computation location. This
so-called von Neumann bottleneck has been shown to be
severe on large neural network models, with studies show-
ing the majority of the network time and energy can be
expended distributing gradient and model data [11–13].

Algorithmic approaches to easing the data bottleneck
have focused on simplifying neural network models to
achieve equivalent accuracy with less memory overhead.
Strategies include model compression and sparsification
of the synaptic weights [14,15], as well as reducing
the precision of weights, with many recent networks
performing inference with 4 bits of precision [16–18].
Constantly falling bit precision has fueled interest in
taking weight reduction to its logical extreme by using
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binary neural networks—networks whose synaptic weights
can be represented by single bits. Low precision networks
have demonstrated similar performance to that of their
full-precision counterparts on small datasets, but further
improvements are needed to achieve equivalent accuracy
on larger datasets [19,20].

The trend toward storing larger models on chip has also
driven an increasing effort to develop hardware architec-
tures for mitigating the von Neumann bottleneck [21–24].
For example, data access time can be greatly reduced
through near- or in-memory computing. Near-memory
computing aims to move the data closer to the process-
ing location and use hardware with shorter access times
such as static random access memory (SRAM) [25]. Push-
ing the limits of near-memory architectures, chips have
been manufactured with enough onboard SRAM to store
more than 40 Gb of data [26], or stacked with through-
silicon vias to connect memory and processing chips in
three dimensions [27–29]. Taking this approach to the
extreme, in-memory computing carries out calculations
directly where the memory resides. Demonstrations of in-
memory computing have used dynamic random access
memory and SRAM, but less mature emerging nonvolatile
memories have promise of being lower-power solutions
[23,30].

One proposed solution that leverages both low-precision
and in-memory computing is to use an array of back-end-
of-the-line-compatible magnetic tunnel junctions (MTJs)
to implement analog vector matrix multiplication in a
binary neural network. Because low-precision computing
is more efficient in the analog domain [31], and MTJs are
inherently binary and can be designed with low switching
energy, they are ideal candidates for minimizing energy
consumption in such a hybrid configuration [32,33]. Past
investigations have used individual MTJs to experimen-
tally explore the implications of using them in such neural
networks [34,35]. A recent demonstration [36] showed a
high-performance binary neural network using a 64 × 64
crossbar array of MTJs integrated with transistors as an
active selector device. Such investigations are increasingly
showing the utility of using MTJs for computing.

In contrast to active or transistor-integrated arrays, pas-
sive, transistorless arrays are potentially an even more
efficient way to implement these networks, as they would
significantly reduce the additional overhead of transis-
tor capacitances and could be implemented at signifi-
cantly higher density, while freeing up space for additional
transistors that might be needed in peripheral circuitry.
Because of the difficulty in fabricating passive nanoscale
arrays of MTJs [37,38], favorable performance metrics
have only appeared in simulation thus far [39–43]. Here
we demonstrate an implementation of a neural network on
a passive 15 × 15 crossbar array of MTJs and show the fea-
sibility of obtaining high inference accuracy, even in the
presence of hardware imperfections.

Developing a hardware accelerator for inference
involves training the neural network offline and trans-
ferring the weights to the conductance states of devices.
However, because of device nonidealities, it is not possi-
ble to exactly reproduce a simulated matrix in hardware
and, consequently, it is not possible to know a priori what
the resultant accuracy of a downloaded network will be.
Current methods of increasing the inference accuracy of a
downloaded network include optimizing the weights after
transfer with further device programming [44,45], opti-
mizing weight mapping onto devices [46], accounting for
line resistance voltage drops and parasitics in neural net-
work operations [47,48], and including device variations
or noise in the training algorithm to make the final model
in hardware more robust to device nonidealities [49,50].
Here, we demonstrate the plausibility of this last approach.
We produce many variations (300) of weight matrices
using different weight initializations during offline training.
In this way, based on array-specific nonidealities, certain
weight matrix solutions achieve higher inference accu-
racy than others. In principle, one would expect networks
that better reproduce the target network to achieve higher
accuracy.

By programming all 300 weight matrix solutions into
the hardware, we are able to quantify the impact of device
nonidealities on the distribution of achievable accuracies.
We calculate our ability to accurately reproduce each net-
work model through the root-mean-square (rms) deviation
between the model and the implementation. By optimiz-
ing the network conductance-to-weight conversion, we
achieve a median accuracy of 95.3% over all programmed
solutions. One finding with implications for embedded
inference is that the network parameters that maximized
the network’s experimental performance are different in
general from those that theoretically maximized it. Specif-
ically, the magnitude of the weight normalization constant
(see Section II D) that minimized the rms deviation did not
also maximize the accuracy. This result suggests the neces-
sity of alternative approaches for embedded inference with
off-line trained networks on imperfect hardware, and that
accurate network recreation is not the ideal criterion for
maximizing network performance.

II. RESULTS

A. Neural network hardware acceleration with arrays
of MTJs

Experiments were carried out on 15 × 15 passive cross-
bar arrays (no integrated transistors or selection devices)
with MTJ diameters of 30, 40, 50, and 60 nm. A scan-
ning electron microscope micrograph of the array layout
is shown in Fig. 1(a). Details of the MTJ array fabrication
can be found in Appendix A. The crossbar arrays are fab-
ricated without integrated control circuitry, so all measure-
ments are made through port-to-port measurements using
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FIG. 1. Classification of the Wine dataset using a 15 × 15 MTJ array. (a) Scanning electron microscope micrograph of the MTJ
array. (b) Neural network architecture used to classify the Wine dataset samples, containing 13 input neurons, 6 hidden layer neurons
(layer 1), and 3 output neurons (layer 2). The hidden layer and output layer neurons each use two MTJs to implement three-level
weights. (c) Schematic of the neural network mapping to the MTJ hardware. The hardware-equivalent neural network function is the
same color as the corresponding function shown in (b). Layer 1 outputs zn (n = 1, . . . , 6) are transformed by a tanh activation into
layer 2 inputs an. (d) Currents simulated on the output columns of layer 2 in the MTJ array over 148 training and 30 test inputs for a
single weight matrix solution with 99.3% and 93.3% accuracy on the training and test datasets, respectively, after programming weight
values into devices. (e) Optimized classification accuracy on the training dataset of 300 different weight solutions tried in the array.
Measurements for (d), (e) were both performed on an MTJ array with a device diameter of 30 nm.

source measure units and a switch matrix. This approach
allows for detailed characterization and control of indi-
vidual devices, as we describe below, but does not allow
us to control and characterize 15 voltages and currents
simultaneously.

The dataset used for classification was the Wine dataset
[51], which included 178 samples of wine. Each sam-
ple has 13 recorded characteristics (alcohol concentration,
color intensity, etc.) and an associated label for the cultivar
from which the wine was produced.

To avoid trivial convergences of the learned weights
toward the class centroids, a simple two-layer network
was constructed. The architecture of the neural network is
shown in Fig. 1(b) and the mapping to hardware shown in
Fig. 1(c). The neural network includes 13 input neurons,
6 hidden neurons, and 3 output neurons (one for each of
the possible cultivars), producing a 13 × 6 weight matrix
for layer 1 and a 6 × 3 weight matrix for layer 2. Conse-
quently, we fit our entire network into the 15 × 15 array,
necessarily limiting its size, in contrast to Ref. [36], where

the same array was used 28 times to emulate a large net-
work through reprogramming the same array during the
forward pass. Drawing inspiration from the inhibitory and
excitatory synapses found in the human brain, we chose
to implement weights with two MTJ devices. The weight
of the dual MTJ synapse is proportional to the conduc-
tivity difference between the two MTJs, thus allowing us
to implement negative weights. In layer 1, weights were
implemented with adjacent devices arranged left-right, but
in layer 2 they were arranged adjacently up-down. This
was done to maximize array utilization. However, there
is a subtle difference in operation between layers 1 and 2
because of this. More specifically shown in Fig. 1(c), the
arrangement of implemented weights in layer 1 requires
the difference in columns on the output to be taken,
whereas in layer 2 the difference on the output is not
necessary. Instead, both positive and negative input val-
ues are required on the rows in layer 2. Both methods
carry out exactly the same function, just in a different
manner. Network training was performed offline, and the
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learned weights were subsequently downloaded into the
MTJ crossbar by serially programming individual devices.

The inference accuracy was determined by reading all
device conductance states after programming and using
these to scale the currents in software and simulate the
number of correctly predicted wine classifications. After
writing weights to the crossbar and measuring all effective
port-to-port conductances, which include device nonide-
alities, line resistances, sneak paths, etc., we have all the
information necessary to determine the accuracy the solu-
tion would produce in an inference process. The inference
process itself, involving summing currents to carry out
vector-matrix multiplications (VMMs), normalizing, and
passing through activation functions, can be carried out in
software, since we have verified that these steps do not
introduce too much noise or uncertainty to the outcome
to invalidate the results. We have verified that the applied
voltages are in a regime where device conductances have
no measurable voltage dependence and our measurements
of this network satisfy the superposition principle of linear
circuits (see Appendix B). Simulating the full VMM using
the individually measured port-to-port device properties
reduces the need for the additional external electronics, and
focuses most directly on the performance of the passive
MTJ crossbar array itself. Additionally, measuring these
device properties allows for more thorough analysis of
the hyperparameter tuning required to achieve software-
equivalent accuracy. This approach is both quantitatively
and qualitatively different from the one taken in Ref. [36]
for a few reasons. Unlike traditional binary neural net-
works, as implemented in [36], we opted to only binarize
the weights rather than the signals as well. Consequently,
we are modeling the transmission and activation of con-
tinuously valued signals on a binary network. In addition,
we implicitly assume a classic analog-to-digital conver-
sion of the current through a transimpedance amplifier,
though we do not explicitly include this in our model. In
Ref. [36], the researchers explicitly implemented a circuit
for converting currents into a temporal code by charging
a capacitor and counting clock cycles before passing into
a software activation function. Such temporal codings are
potentially more energy efficient than traditional analog-
to-digital conversion. In principle, such an approach could
also be used for our passive array; however, it would
require a more careful analysis of the bit precision, and
would not be expected to change the results of our analysis
provided the device behavior is sufficiently linear.

To simulate the classification of an individual wine
sample, the 13 wine attributes (inputs), normalized to be
between 0 and 1, were first transformed into voltages by
multiplying by a constant voltage Vread (0.2 V); this is the
voltage at which each port-to-port device conductance was
read in hardware after serial programming. The VMM for
layer 1 was then carried out using these voltages on the
rows of the array to calculate the currents on the columns.

The currents were normalized into dimensionless quanti-
ties by dividing by the product of Vread and a conductance
hyperparameter gnorm. The six outputs of layer 1 (z1, . . . ,
z6) were obtained by taking the difference between adja-
cent columns and adding a bias. Layer 1 outputs were
then fed through a hyperbolic tangent activation function
to obtain layer 2 inputs (a1, . . . , a6). Both positive and
negative values of each an were multiplied by Vread to use
as input voltages on adjacent rows. In layer 2 the output
currents were again normalized to dimensionless quantities
and a bias was added before being fed through a softmax
activation to determine the network classification predic-
tion. For each input, a correct result was tallied whenever
the appropriate output current was the largest of the three.

In Fig. 1(d), the simulated current values from each of
the three output columns of the MTJ array are shown over
all 148 training samples and 30 test samples for a sin-
gle weight matrix solution. The accuracy is 99.3% on the
training set and 93.3% on the test set. This high level of
performance is obtained after optimizing the gnorm hyper-
parameter, as discussed in Section II D. The accuracies on
the training dataset for all 300 unique weight matrix solu-
tions trained offline and programmed into the MTJ array
are shown in Fig. 1(e). The maximum accuracy is 100%,
the minimum is 71.6%, and the median is 95.3% over all
solutions. These results demonstrate that a high-accuracy
inference binary neural network can be realized using a
nonideal passive MTJ hardware array. Note the classi-
fication accuracy of the neural network on the training
dataset using the MTJ array is an important metric because
it shows how well the network in hardware can repre-
sent the network as it was trained in software. All weight
matrix solutions trained offline in software achieved a sim-
ulated accuracy above 96% on the training dataset and
95% on the test dataset, but due to write errors and device
nonidealities, perfect software-equivalent accuracy could
not be guaranteed after transferring the weights to hard-
ware. Figure 1(e) shows the extent to which the hardware
imperfections play a role. As expected, certain solutions
performed better than others, but overall the fidelity is
sufficient to allow for software-equivalent accuracy on
average.

B. MTJ device and array characterization

An MTJ is formed by stacking two ferromagnetic lay-
ers, referred to as the fixed and free layers, together with a
thin insulating layer in between. While the magnetization
of the fixed layer is pinned, the free layer magnetization
can be either parallel or antiparallel to the fixed layer. The
direction of the free layer can be switched by applying
a suitable write current through the MTJ, which creates
a spin-transfer torque [52]. When the free layer magneti-
zation is parallel (antiparallel) to that of the fixed layer,
the MTJ conductance is high (low). In the subsequent
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discussion, we refer to the high and low conductance states
as the on state and off state, respectively, characterized by
their conductance values gon and goff. The relative conduc-
tance is characterized by a tunnel magnetoresistance ratio
(TMR) defined as

TMR ≡ gon − goff

goff
. (1)

The MTJ array is accessed with a probe card that interfaces
with an offboard switch matrix and three source-measure
units. The metal routing to the array rows and columns is
shown in the zoomed-out image of the array [Fig. 2(a)]
with the active array region indicated by the white dashed
box. To write the devices, we use a “V over 2” scheme,
which applies Vapply/2 to the target column and −Vapply/2
to the target row while grounding all other connections.
This ensures Vapply is applied to the target device while
only half the bias is applied to all the others [53]. Device
conductance states were always read by applying a voltage

(Vread) of 0.2 V on the target row with all other connections
grounded and measuring the current on the target column.

We use a write-verify scheme, shown in Fig. 2(b),
to accurately write device states. This scheme utilizes a
sequence of four pulses (1 ms pulse width) where the first
and third pulses write the device state with opposite polar-
ities. The first write pulse always attempts to write the
device to the opposite of the target state, and the third
pulse attempts to switch to the target state. For example,
if the target state is the on state, the first pulse attempts to
write to the off state and the third pulse attempts to write to
the on state. The second and fourth pulses read the device
state after each write pulse. A device is ensured to be in
the target state by checking the conductance on:off ratio
obtained from the second and fourth pulses. This four-
pulse sequence is repeated with increasing Vapply until the
on:off ratio condition is met or a maximum voltage limit
is reached. The maximum applicable voltage is limited to
twice the smallest switching voltage in the array to elimi-
nate the risk of switching unwanted devices. If the on:off
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FIG. 2. Neural network hardware. (a) Zoomed-out scanning electron microscope image, showing the 15 × 15 MTJ array (dashed
white box) as part of a larger, unused array. Lighter traces are the metal routing lines. (b) Pulse sequence used for writing and verifying
devices with alternating write and read biases. The switching voltage for each device is measured by repeating this sequence while
increasing Vapply until the device switches. (c) Switching curve of a device (diameter 30 nm) with a 1.5 V threshold from the antiparallel
(off) state to the parallel (on) state. The conductance was measured at a fixed 0.2 V bias. Also shown are the MTJ configurations in
each state. (d) Histogram of switching voltages on the 30-nm-diameter array, showing essentially a normal distribution. (e) Color plot
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ratio is still negligible at the maximum voltage limit, the
write is deemed unsuccessful and considered a write error
for programming the array. The write accuracy was 100%
for the 30 nm array shown here but decreased to 85% as
the device size increased to 60 nm.

The four-pulse write-verify scheme is used instead of a
two-pulse scheme because the on:off ratio criterion is more
reliable than the device conductance, which could vary
between on/off switching cycles. In addition, the four-pulse
scheme is more resilient to cycle-to-cycle write errors. For
instance, if a device is already in the on state and the tar-
get state is also the on state, the calculated on:off ratio
would be close to unity and lead to needlessly increasing
Vapply. We avoid such a circumstance by always writing the
opposite of the target state first so as to validate that the
device switched to the correct state on each programming
step.

Figure 2(c) shows the conductance read at 0.2 V as a
function of increasing Vapply for an individual MTJ in the
array with device diameter 30 nm. Also shown on the
graph are illustrations of the configuration of the free and
fixed layers for the corresponding on and off states. For
this measurement, Vapply was swept from −1.6 V to 1.6 V
and, as indicated by the vertical transitions, the free layer
magnetization direction flipped at roughly ±1.5 V.

At the array level, additional complexities arise because
of subtle differences from device to device. Figure 2(d)
plots the histogram of effective switching voltage while
Figs. 2(e) and 2(f) show the individual device voltage and
on-state conductance values for a 15 × 15 MTJ array with
device diameter 30 nm as a function of device row and col-
umn. The values are “effective” because no device can be
separated from the array and tested in isolation; the values
for each device are only obtainable from measurements on
the device word and bit lines. The data in Figs. 2(d)–2(f)
were obtained with each device originally in the off state
and then subjected to our write-verify scheme to program
every device to the off state again. We measure individual
device characteristics when the rest of the array is in the
off state because, as a passive array, the measured prop-
erties of each device state are influenced by the states of
other devices in the surrounding environment. As more
devices are switched to the on state, it becomes more diffi-
cult to measure individual device characteristics due to the
increased contribution from sneak paths [54,55].

Of note in these figures are the variations present in
both voltage and on/off conductance states. The switch-
ing voltage appears to follow a normal distribution with
a mean value around 2.2 V, but the map of voltages in
Fig. 2(e) indicates that variations do not occur uniformly
across the array. Lower voltages and higher conductance
values occur toward the periphery of the array, especially
at the corners. Similarly, higher switching voltages are
required near the center of the array, where devices tend
to have lower on-state conductance values. This effect is

due to a combination of line resistance and device-device
variations. Device-device variations due to minute dif-
ferences in processing conditions mainly account for the
small differences in voltage and conductance between adja-
cent devices. Line resistance, on the other hand, accounts
for systematic differences across the array. Because of the
nanoscale size of the metal word and bit lines, the line
resistance is non-negligible, and significant voltage drops
occur across the lines [48]. This gives the appearance that
a device requires higher switching voltage, when in reality
it may require a comparable switching voltage, but addi-
tional voltage is needed to compensate for the increased
drop associated with the line. In the routing configuration
of the metal lines in the fabricated arrays, the longest metal
lines are on the center row and column, while the short-
est lines are on the periphery [see Fig. 2(a)]. This is the
main effect giving rise to the distributions shown in Figs.
2(d)–2(f). Similar distributions are observed in the other
fabricated sizes of MTJ arrays (see Fig. S1 in the Supple-
mental Material [67]). In general, the switching voltage
and standard deviation increased with increasing MTJ
diameter, as can be seen in Figs. S2(a) and S2(b) in the
Supplemental Material [67]. This trend can be anticipated
from the increasing importance of the line resistances as
the devices’ resistances decrease with increasing diameter.

C. Weight mapping to hardware and inference
accuracy of 300 solutions

To encode the weight matrix into the MTJ array, each
weight is represented by two adjacent MTJ devices, in
a scheme inspired by excitatory and inhibitory synapses.
The conductances of these two devices are denoted ge and
gi. The weight is defined as the difference between ge and
gi, divided by a normalization conductance gnorm. During
offline training, weights were given values of {−1, 0, 1}
to replicate the possible combinations of ge and gi MTJ
pair states, as shown by the magnetization orientations in
Fig. 3(a).

The weight arrangement for layer 1 utilizes rows 1–13
and columns 1–12 of the MTJ array with weights arranged
as adjacent devices left-right, whereas layer 2 utilizes rows
1–12 and columns 13–15 with weights arranged as adja-
cent devices up-down. In all cases the device on the left
(layer 1) or top (layer 2) of the pair is excitatory and
the device on the right (layer 1) or bottom (layer 2) is
inhibitory. This is clarified in Fig. 3(b), which shows the
weight mapping of the entire array for both neural network
layers, where ge devices are labeled in red and gi devices
labeled in blue. The last two rows and last three columns
of row 13 are not used in either layer of the neural network,
and thus are always written to the off state.

The dimensionless-equivalent quantity to the current on
each column is the sum of weights multiplied by inputs for
each neuron. Mathematically, the VMM operation for the
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FIG. 3. Writing 300 unique weight solutions and testing inference accuracy. (a) Illustration of how weights were encoded in the
hardware using adjacent devices (ge devices are labeled in orange and gi devices labeled in blue). (b) Layout of the nearest neighbor
differential weight mapping. In the first layer differential weights are defined by neighboring columns, but in the second layer they are
defined within neighboring rows. (c) Block diagram of the write algorithm to program the arrays and test inference accuracy.

kth layer manifests as

�yk
outputs =

�I k
columns

Vread · gnorm
= [�xk

inputs · Vread]

· 1
Vread · gnorm

[Ĝk
e − Ĝk

i ], (2)

where �xk and �yk are dimensionless inputs and outputs,
and Ĝk

e and Ĝk
i are the respective excitatory and inhibitory

weight matrices. The quantity 1/gnorm[Ĝk
e − Ĝk

i ] is a matrix
of the dimensionless weights, which we denote by Ûk, with
dimensionless matrix elements Uk

ij that should be directly
comparable to the matrix elements of the ideal weight
matrix Wk

ij .
To measure the inference accuracy of all 300 unique

weight matrix solutions, each arrangement of weights has
to be individually written as conductances into the MTJ
array. This was done using the programming approach
shown in Fig. 3(c). All operations in Fig. 3(c) utilize
the write-verify scheme discussed above and illustrated in
Fig. 2(b). Because devices in the on state decrease write
accuracy by increasing sneak-path parasitics, each weight
matrix was programmed from an initial state of all devices
in the off state. To ensure this was the case, the first step
in writing a particular weight solution was to write all
devices to the off state twice, also called the “clear oper-
ation.” After clearing the array, only the devices that were
required to be in the on state for that specific weight matrix
solution were written during the “write operation.” Once
written, the “read operation” was carried out by serially
reading the conductance of each device at 0.2 V with-
out disturbing the written states. These conductance values
were used to calculate the effective weights stored in the
MTJ array. Finally, the inference accuracy was determined
in the “simulate” operation by calculating the number of

correctly predicted wine categories out of the 148 train-
ing samples assuming the weight values dictated by the
measured conductance states during the “read operation.”
Results of this procedure are shown in Fig. 4 and were also
used to produce Figs. 1(d) and 1(e).

The 15 × 15 maps displayed in Figs. 4(a) and 4(b)
demonstrate the high write accuracy achieved by the pro-
gramming sequence. Figure 4(a) shows the target MTJ
device states for a particular weight matrix solution, with
1 being the on state and 0 the off state. Figure 4(b) shows
the corresponding conductance values obtained during the
“read operation” on the MTJ array with device diameter
30 nm. As shown previously in Fig. 2(f), there is still vari-
ation in the conductance values across the array, but the
devices in the on state can nevertheless be distinguished
from devices in the off state. This distinction is made
clear in Fig. 4(c) which shows histograms for the on and
off states measured during the “write operation.” Both on
and off states have roughly normal distributions with an
on:off ratio around 2. The standard deviation of the off state
was smaller than that of the on state and the distributions
slightly overlap near 14 µS. Similar on/off-conductance
state distributions were observed in other MTJ sizes, but
importantly, the overlap in on/off states worsened as MTJ
diameter increased, as shown in Figs. S2(c) and S2(d)
in the Supplemental Material [67]. This had detrimental
consequences on the ability to accurately clear and write
device states in larger MTJ sizes, as shown in Figs. S3(a)
and S3(b) in the Supplemental Material [67].

D. Accuracy optimization

In this study we used the normalization conductance
gnorm as a hyperparameter to optimize the classification
accuracy. By tuning gnorm, we could change how well the
real weights represented the ideal weights determined in
software, and this affected the accuracy distribution over
all 300 weight matrix solutions. In the ideal case where
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FIG. 4. Writing weight matrices and measuring conductance. (a) A target matrix solution in the passive MTJ array. (b) The “read
operation” results of the programmed crossbar to the target array (diameter 30 nm) using the write-verify scheme. (c) Conductance
values of each device measured in the on and off state during the “write operation.” The histogram shows separation of the states.

all devices have the same gon and goff, if all ge, gi pairs
are normalized by the same gnorm = gon − goff, the weight
values reduce to the pure binary values {−1, 0, 1}. This
is not the case for a hardware realization because no two
devices have the exact same gon and goff. Thus, modifying
gnorm can improve how well some real weights replicate
their ideal counterparts, but can also degrade the fidelity
of others. This tradeoff means there is an optimal gnorm
that minimizes the deviation between the real and ideal
weights. It also implies that there should be a gnorm that
maximizes the accuracy. One might expect that these two
values of gnorm would coincide.

An important note is that, just like device nonidealities,
the optimal value of gnorm for a given hardware implemen-
tation is impossible to know a priori. In our case, gnorm can
be optimized because we use measured conductance states
of all devices and simulate the accuracy of the neural net-
work at different values of gnorm. This is made simpler by
the fact that the MTJ device conductance does not change
as a function of voltage for low applied voltages, mak-
ing the current on the columns easily computable as the
voltage on the input changes over all wine input samples.
Because of this dependence, we are also able to test devices
individually and add the currents, as if we applied all volt-
ages on all the rows at the same time. It should be noted,
however, that this procedure would not work for cross-
bars with highly nonlinear elements, such as two-terminal
selectors. Likewise, at higher biases where the MTJs are
more nonlinear, we would expect to see deviations from
our calculations.

Simulating the accuracy for any type of hardware neural
network becomes more difficult as the number of devices
increases and the device conductance changes as a func-
tion of voltage. Hyperparameter optimization of the weight
mapping to hardware becomes prohibitive due to the large
computational requirements of simulation. In most cases
the normalization hyperparameter is estimated [56]. For

example, a relatively good approximation of gnorm can be
calculated trivially as

gnorm = ḡon − ḡoff, (3)

where ḡon and ḡoff are the average values of gon and goff
for the array. This is a much simpler computation to carry
out, but as we will show in the following discussion, it
turns out to be a poor choice, providing strong incentive
for determining the optimal gnorm.

The accuracy distribution of the 300 unique weight
matrix solutions for 30 nm devices is shown as a function
of gnorm in Fig. 5(a). For these devices, the estimated value
of gnorm using average gon and goff values was 7 µS. This
value of gnorm has an inference accuracy with a median of
only 60.8%. Surprisingly, a gnorm of 3.4 µS did a much
better job of compensating for the array characteristics and
resulted in a much higher optimized median accuracy of
95.3%.

In Fig. 5(b) we show the rms deviation between the ideal
and measured weights as a function of gnorm over the 300
weight matrix solutions. The total rms deviation, �rms, for
a given weight matrix solution of the two neural network
layers is calculated as:

�rms =
∑

k=1,2

√∑

ij

(Wk
ij − Uk

ij )
2, (4)

where Wk
ij are the ideal weights for node ij in network

layer k and Uk
ij are the weights for the programmed MTJ

array determined from the measured conductances scaled
by gnorm. The superscript k indicates the associated neu-
ral network layer and the summation is performed over
the weight matrix indices. The point of minimum rms
deviation is significant because this is where the mea-
sured weights best reproduce the ideal weights. Figure 5(b)
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FIG. 5. Optimization of accuracy and rms deviation over gnorm
and MTJ diameter. Box-whisker plot of (a) accuracy versus gnorm
and (b) Root mean square deviation versus gnorm for all 300
weight solutions in the 30-nm-diameter array. Vertical dashed
lines indicate the optimum values for the two different criteria
(3.4 µS and 5.5 µS) determined from the median values at each
gnorm. (c) Box-whisker plots of the distributions of optimized
accuracies as a function of MTJ diameter. (d) Box-whisker plots
of the distributions of minimum rms deviations as a function of
MTJ diameter. In each figure, whiskers indicate maximum and
minimum values, whereas box edges represent 25th and 75th
percentiles and the middle line is the median (50th percentile).

shows that �rms is minimized at gnorm = 5.5 μS, a value
that differs from the accuracy-optimized value and is much
closer to the estimated value of 7 µS. The two different
optimized values of gnorm are highlighted by the vertical
dashed lines in Figs. 5(a) and 5(b).

Figures 5(c) and 5(d) show distributions of the opti-
mized accuracy and minimum rms deviations over all
300 weight matrix solutions for all four MTJ device sizes
fabricated. The full set of plots for accuracy and rms devi-
ation as a function of gnorm are shown in Fig. S4 in the
Supplemental Material [67]. Figure 5(c) shows that the
maximal median achievable accuracy decreases as MTJ
size increases, while Fig. 5(d) indicates that the mini-
mum rms deviations simultaneously increase with MTJ
size. We attribute these trends to the increasing overlap of
on/off conductance states as the device size increases [see
Figs. S2(c) and S2(d) in the Supplemental Material [67] ],
which affects the clear and write accuracy of the array.
Although the maximum median accuracy did not occur
at the same value of gnorm as the minimum median rms

deviation for any device size, the trend of the minimum
median rms deviation does provide an indication of the
trend of maximum median accuracies, with overall poorer
reproducibility predicting lower accuracy.

To shed light on the reduction of maximum achievable
accuracies in experiments and to explain the mismatch
between the value of gnorm that maximizes the accuracy
and the value of gnorm that minimizes rms deviation, we
carried out circuit (SPICE) simulations of inference on an
MTJ array. The simulations capture the variations in the
two-port conductances by accounting for external resis-
tances, line resistances, and random variations in the MTJ
properties. The model parameters were obtained by fits to
measured data. For each MTJ size, 30 separate realiza-
tions of the device variations were implemented by treating
the off-state conductance and TMR of each MTJ as inde-
pendent normally distributed quantities consistent with the
measured distributions of values. Figures 6(a) and 6(b)
show the full model of the simulated accuracy and rms
deviation as a function of gnorm in the presence of line
resistances for a representative realization of device-device
variations in the 30-nm-diameter array. The simulation
reproduces the experimental finding that network accuracy
is not maximized at the value of gnorm that minimizes the
rms deviation. For comparison, Figs. 6(c) and 6(d) show
that when these simulations were carried out in the ideal
case, with no line resistances or device variations, so that
goff and TMR are the same value for all devices, the net-
work accuracy maximizes at the same value of gnorm that
minimizes the rms deviation. Similar comparisons of sim-
ulated accuracies and rms deviations as a function of gnorm
for different MTJ diameters with and without line resis-
tances and device variations are provided in Figs. S5 and
S6 in the Supplemental Material [67].

These simulations reveal that the line resistances
amplify the effects of the device variations. We found that
in simulations that neglect line resistances, to get results
close to those in experiment, the device variations needed
to be much larger than would be consistent with the distri-
butions measured from single device measurements. With-
out line resistances, the voltage drop across every MTJ on
a row was the same. However, when line resistances are
included, the voltage drops across each device depend on
the state (parallel or antiparallel) of each MTJ along that
row. In the simulations that include the line resistances, the
variations in the devices taken from other measurements
lead to good agreement between the experiments on the
arrays and the simulations of the arrays.

The simulated maximum achievable accuracies as a
function of the MTJ diameter obtained over 30 different
realizations of the MTJ device variations and 300 dif-
ferent weight matrix solutions are shown in Fig. 6(e),
along with the experimental maximum achievable accura-
cies. In the absence of device-to-device variations and line
resistances, the mean value of the maximum accuracies
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FIG. 6. Accuracy and rms deviation as a function of the scaling parameter between measured and model networks, gnorm, and MTJ
diameter. Panels (a)–(d) show the results of simulations with all device variations and line resistances included (full model) and also
with no nonidealities (ideal model). Results are for a single realization of device conductance variations of the 30-nm-diameter MTJ
array. Shown are box-whisker plots of the distribution of results over the 300 unique weight solutions. Panels (a), (b) show accuracy
and rms deviation, respectively, as a function of gnorm for the full model. Panels (c), (d) show the same for the ideal model. For each
box-whisker plot (a)–(d), whiskers indicate maximum and minimum values, whereas box edges represent 25th and 75th percentiles
and the middle line is the median (50th percentiles). Panels (e), (f) show the optimized accuracies and values of ξ norm (see text)
for experimental results and the results of simulations like those in (a)–(d) for different MTJ diameters. The symbols give the mean
values. For the experimental results and the ideal model simulation results, the whiskers give the one-standard-deviation width of the
distribution of results over the 300 different solution matrices. For the full model results, the whiskers give the one-standard-deviation
width of the distribution over 9000 solutions (300 solution matrices for each of 30 realizations of device conductance variations).

of the 300 different weight solutions obtained is about
99%. The device conductances scale quadratically with
the MTJ diameter, causing a corresponding increase in the
relative variations in the two-port conductances in the pres-
ence of fixed line resistances. These increased variations,
along with lower write accuracies, reduce the accuracies in
both the experimental data and simulation results shown
in Fig. 6(e). Similar variations of simulated maximum
achievable accuracies as device parameters are scaled,
starting from the nominal values corresponding to the MTJ
array with 30 nm diameter, are provided in Fig. S8 in the
Supplemental Material [67].

Using the simulations, we also calculate the distribu-
tion of ξ norm, which is the ratio of gnorm at minimum rms
deviation to the gnorm at maximum accuracy as a function
of MTJ diameter, and show it in Fig. 6(f). In the ideal
case, ξ norm is unity for all MTJ sizes because the gnorm that
minimized rms deviation is always equal to the gnorm that
maximized accuracy. In the full model, as the relative vari-
ations of conductance increase with MTJ diameter so does

the disagreement between the gnorm value that maximizes
accuracy and the gnorm value that minimizes rms devia-
tion, as seen by the increasing magnitude of ξ norm with
MTJ diameter in both experimental and simulation data.
By reproducing this disagreement in variational simula-
tions, we posit that maximizing the network fidelity is not
the same as maximizing the network accuracy for neural
networks. This observation has important implications in
embedded inference applications and suggests techniques
to compare a hardware recreation of a network to its soft-
ware source are needed to improve the resilience of these
systems.

III. DISCUSSION

In this work, a 15 × 15 passive MTJ array was fabricated
and programmed to analyze a hardware implementation for
inference of a binary neural network trained to classify the
Wine dataset [51]. To investigate the role played by hard-
ware nonidealities, 300 unique weight matrix solutions
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were programmed into the array using a write-verify
process and the accuracy was determined from the read
conductance values. As expected, certain weight solu-
tions perform better than others, but we find the accuracy
values can be boosted significantly by optimizing the nor-
malization conductance value. Surprisingly, the value of
normalization conductance that minimizes the median of
weight rms deviation is not the same value that maximizes
the median classification accuracy over all 300 weight
solutions. These findings provide insight into the problem
of embedded inference with MTJ-based hardware accel-
erators and are an integral step forward on the pathway
toward large-scale integration of hardware devices with
imperfections and variations. In Ref. [36], the MTJ net-
work accuracies were about 1% to 2% below the baseline
accuracy; however, as we show in this work, studying
an ensemble of network solutions reveals a distribution
of performance levels. Consequently, a broader explo-
ration of the solution space compiled onto the crossbar
and additional optimizations can likely lead to equivalent
performance to the targeted baseline.

With this in mind, the work described here involves a
small prototype array and a simple two-layer neural net-
work applied to a very basic dataset. The results obtained,
however, have important implications if scaling of this
type of neural network is to be pursued. Any full-scale
realization of a neural network using a passive MTJ
array will necessarily include supporting complementary
metal-oxide semiconductor (CMOS) circuitry. Co-design
of the supporting circuits with the array is important since
the properties of the former affect the overall accuracy, the
overall power, and the requirements on the properties of
the devices used in the array itself.

One important co-design constraint is the precision of
the readout circuits. For single-bit precision in integrated
binary neural network proposals [57], sense amplifiers
are commonly used as thresholding elements, as used in
commercial MTJ memory arrays. As neural networks are
scaled to higher precisions, the readout circuits require
a better signal-to-noise (SNR) ratio, skewing the ratio
of the power spent in the system toward the supporting
circuits. Extending the sense amplifier to multibit preci-
sion can involve using analog-to-digital conversion tech-
niques (such as successive approximation or flash). In this
approach, the power dissipation scales as the square of the
SNR [58]. In order to overcome this problem and improve
output precision without significantly increasing the power
of the amplifier, a recent work proposes using time-domain
read-out by measuring the RC charging time of the output
line, where R is determined by the MTJs in the column
based on input devices [36].

Once the co-design of the read-out circuits is optimized
with respect to the array, the following considerations
determine the optimal array size. For a fixed current bud-
get (and, hence, bandwidth) of these sense amplifiers, and

a fixed TMR of the MTJs, a successful VMM operation
needs a high SNR, which depends on the size of the array
and the line resistances. For a fixed MTJ TMR, larger
arrays require a proportional reduction in the line resis-
tances. This ensures that, during array operation, most of
the voltage is dropped across the MTJs. Once the physi-
cal limits of scaling line resistances are reached, the array
size could be further increased by increasing the MTJ resis-
tances (while keeping the TMR fixed) until the bandwidth
constraints on the sense amplifier are reached. The result-
ing array size is optimal. Scaling the VMM to larger sizes
does not improve the performance of the system, since it
runs into the bandwidth limitations of the sense ampli-
fiers, while a smaller and faster VMM does not take full
advantage of the available power budget.

Practically speaking, while the line resistances of the
row and column lines used in this array are about 6 � per
square, standard CMOS back-end-of-the-line processes
using a dual damascene process are capable of produc-
ing interconnects with sheet resistances less than 1 �

per square [59,60]. The resistance-area product (RA) of
the MTJs used in this study is about 20 � µm2. Higher
MTJ resistances can be achieved, for example, by scaling
down the MTJ diameter and by increasing the tunnel bar-
rier thicknesses. While decreasing the diameter is limited
by the thermal stability of the free layer magnetization,
increasing the tunnel barrier thickness requires increased
switching voltages [61]. By varying the MTJ stack compo-
sition and processes involved during fabrication, RA values
from a few to about 500 � µm2 capable of voltage switch-
ing [61,62], and RA values of several k� µm2 to a few
M� µm2 with field-assisted switching have been reported
[63,64].

These considerations suggest that scaling of a passive
MTJ array of the type investigated here is possible up to an
optimal size, even when the necessary peripheral CMOS
circuitry is included. Determination of the optimal size will
involve detailed engineering design that considers all the
necessary circuitry and the specifics of the semiconductor
process to be used. In Ref. [36] a significantly larger array
was implemented, and showed only minimal degradation
in performance as compared to the ideal benefit. An impor-
tant factor in this improvement is both the larger network
size as well as the reduced line resistance. Nevertheless, it
is likely that significant energy savings over conventional
von Neumann-limited, software-based approaches will be
realized by implementing large neural networks using this
type of array.
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APPENDIX A: MTJ ARRAY FABRICATION

The fabrication of a 15 × 15 MTJ device array started
by defining the bottom wordlines, beginning with sputter-
depositing 5 nm of aluminum oxide followed by 200 nm of
TaN (approximately 200 µ� cm) onto a thermally oxidized
silicon substrate. The thin aluminum oxide layer acted as
an etch stop during reactive ion etching (RIE) of the TaN so
the thermal silicon oxide surface of the substrate was not
attacked. Photolithography (i-line) was then used to pat-
tern photoresist into alignment marks, metrology features
used in subsequent process steps, and active array regions
of 400 nm wide lines with a full pitch of 800 nm. This pho-
toresist was used as a mask for RIE of the TaN, which had
to be completely etched down to the aluminum oxide stop
layer otherwise the wordlines could have been potentially
shorted. Following wordline RIE, we sputter-deposited
200 nm of SiO2 onto the wafer. Defining the wordlines
concluded by performing chemical-mechanical polishing
(CMP) to remove material from the wafer until left with
exposed TaN wordlines approximately 120 nm thick,
coplanar with the silicon oxide refill and quite smooth (rms
roughness approximately 0.3 nm). Low rms roughness for
the surface on which the magnetic random-access mem-
ory (MRAM) film is deposited is crucial for achieving the
desired electrical and magnetic properties of the MTJs.

Prior to MRAM film deposition an in situ sputter etch
removed any oxidized TaN at the surface of the wordlines,
allowing for deposition directly onto low resistance TaN.
The bottom-pinned MRAM stack was sputter-deposited in
a physical vapor deposition system, and then annealed in
vacuum at 335 °C for 1 h. A detailed description of the
MRAM film stack including magnetic properties is given
in Ref. [65].

After the deposition of the MRAM film, the hard-
mask for etching the film was deposited and patterned.
TaN (40 nm) was sputter-deposited followed by 50 nm
of diamond-like carbon (DLC) and a final layer of
10 nm Cr. An aligned e-beam exposure then patterned an
array of holes in high-resolution negative resist hydrogen
silsesquioxane (HSQ) where the MRAM pillars were to
be located. The various hardmask layers were then etched
successively using a chlorine-based RIE process to trans-
fer the patterns from HSQ into the Cr layer, then a CO2

RIE process to etch the DLC without attacking the Cr, and
finally a CHF3/CF4/Ar-based RIE process to etch the TaN
without attacking either the Cr or DLC. DLC has excellent
ion milling selectivity and provided most of the masking
during ion milling of the MRAM stack. The primary pur-
pose of the TaN layer was to act as a conductive cap since
this material would be at the surface after subsequent steps
described below.

After the hardmask was patterned, a multiangle ion
milling process was used to etch the MRAM stack down
to the wordline layer. It was important to avoid incom-
plete milling as this would leave all the wordlines shorted
together by the residual MRAM stack. Overmilling also
needed to be avoided lest the mill penetrate too deeply
into the wordlines. The final milling step was an oblique
angle 200 V cleaning step to ensure redeposited metal was
removed from the device sidewalls since it could possibly
short the tunnel junction if present.

Following ion milling, the MRAM pillars were encap-
sulated with 5 nm of ion-beam-deposited aluminum oxide.
SiO2 (200 nm) was then sputter-deposited to fully encap-
sulate the MRAM bits. Using CMP we first planarized the
wafer and then continued polishing until roughly midway
into the TaN hardmask layer. This TaN served as a self-
aligned via connecting the bitline directly to the MRAM
devices.

The final steps in the process defined the vias, bitlines,
and probe pads necessary for electrically connecting the
pillars. Photolithography and RIE were first used to pat-
tern vias in the SiO2/alumina so the top electrodes would
be able to electrically contact the wordlines beneath the
MRAM bits at landing pads defined during wordline pro-
cessing. Following the via etch, we sputter-deposited 5 nm
Cr/≈1.2 nm Au/5 nm Cr onto the wafer, where the thick-
ness of each metal was chosen such that the total resistance
of the bitlines patterned from this film would match the
resistance of the bottom TaN wordlines. Prior to deposit-
ing this metal film, an in situ ion mill removed any oxide at
the surface to ensure good electrical contact between the Cr
and the TaN. Optical lithography was then used to pattern
bitlines 400 nm wide on an 800 nm full pitch. The photore-
sist acted as a mask for the ion milling used to pattern the
Cr/Au/Cr into the bitlines and was stripped using solvents
following the etch step (see Fig. 1(a) for an image of the
active region of one such array after completion of bitline
processing). The process was completed with an optical
lithography step accompanied by a Ta/Au deposition to
pattern probe pads connected to the wordlines and bitlines
used to make electrical measurements on devices.

APPENDIX B: VERIFICATION OF CURRENT
LINEAR SUPERPOSITION

In general, MTJs are nonlinear elements with voltage-
dependent resistances [66]. However, in the MTJ array

014039-12
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considered in this work, the voltage drop seen across each
MTJ is small enough that we can neglect these nonlinear-
ities and consider the MTJs to be linear elements. This
allows us to analyze the full VMM element-by-element
by applying a read voltage one row at a time. The result-
ing currents are then added up with appropriate scaling to
obtain an approximation for the full VMM current output.
In this appendix, we describe experiments to test the lin-
earity of the MTJ array. In these experiments, we compare
the full VMM currents against those computed by sum-
ming the currents produced by applying read voltages one
row at a time.

In the first set of measurements, we constructed 100
input vectors �xinputs of size 15 with elements xi being 0
or 1 chosen randomly with equal probability. A voltage
was then applied simultaneously on all rows where xi = 1
while rows with xi = 0 were grounded. The applied volt-
age was varied from 0.1 V to 0.5 V in steps of 0.1 V.
Current Ij,p on column j was measured at each applied volt-
age for all 100 �xinputs. We refer to these measurements as
“parallel” measurements, indicated by the subscript p. The
full VMM of each of the 100 �xinputs can be obtained from
these Ij,p .

In a second set of measurements, we determine gi,j for
each individual device by applying a read voltage (0.2 V)
on the ith row and measuring the current on the j th column
while all other connections are grounded. We refer to these
measurements as “serial” measurements, indicated by the
subscript s. An approximation of the full VMM was then
obtained for comparison.

Figure 7 plots the relative rms deviation between the
current vector for devices measured in parallel and seri-
ally, where the individual currents were calculated from
the device conductance as measured at 0.2 V. The relative
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FIG. 7. Box-whisker plots showing the distribution over 100
randomizations of connected rows of the relative rms deviation
between the current vector output of the 15 columns based on
the conductance of individual devices read at 0.2 V as a function
of applied voltage. Whiskers indicate maximum and minimum
values, whereas box edges represent 25th and 75th percentiles
and the middle line is the median (50th percentiles).

rms deviation for Fig. 7 is calculated as:

Relative rms deviation

=
√∑

j

(
Ij, p − ∑

i xi gij,s @ 0.2 VVapply
)2

√∑
j

(∑
i xi gij,s @ 0.2 VVapply

)2
, (B1)

where gij,s@0.2V is the conductance of an individual device
measured at 0.2 V. The deviation is less than 3% for
applied voltages up to 0.5 V and more typically about 1%.
In addition, the standard deviation in the measurements
of the current of each individual device is about 10 nA,
giving a measurement uncertainty of approximately 1%,
which accounts for nearly half the measurement error in
Fig. 7. This shows that even if there is some error on the
current of individual columns, the error in the output vec-
tor is below 2%, and, based on Fig. 1(d), this does not
change the accuracy significantly. These results demon-
strate that the port-to-port resistance of individual devices
in the array is sufficiently linear with applied voltage and
the assumption that linear superposition applies to this sys-
tem is valid. It also shows the devices are sufficiently linear
with respect to the conductance values at 0.2 V and the
simulation described in the main text provides valid con-
clusions. Each of these measurements was performed on
all sizes of MTJ arrays used in the paper and the findings
are identical (see the full set of figures in Fig. S7 in the
Supplemental Material [67]).
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