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Abstract: We apply Linear Prediction from Singular Value Decomposition (LPSVD) to two-
dimensional complex optical data in the time-domain to generate spectra with advantages over
discrete Fourier transformation (DFT). LPSVD is a non-iterative procedure that fits time-domain
complex data to the sum of damped sinusoids, or Lorentzian peaks in the spectral domain.
Because the fitting is linear, it is not necessary to give initial guess parameters as in nonlinear
fits. Although LPSVD is a one-dimensional algorithm, it can be performed column-wise on
two-dimensional data. The method has been extensively used in 2D NMR spectroscopy, where
spectral peaks are typically nearly ideal Lorentzians, but to our knowledge has not been applied in
the analogous optical technique, where peaks can be far from Lorentzian. We apply LPSVD to the
analysis of zero, one, and two quantum electronic two-dimensional spectra from a semiconductor
microcavity. The spectra consist of non-ideal, often overlapping peaks. We find that LPSVD
achieves a very good fit even on non-ideal data. It reduces noise and eliminates discrete distortions
inherent in the DFT. We also use it to isolate and analyze weak features of interest.
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1. Introduction

Optical multidimensional coherent spectroscopy (MDCS) is a versatile technique for exploring
light-matter interaction [1, 2]. Using multiple phase-stable femtosecond optical pulses to excite a
sample, the nonlinear response is measured as a function of time delays between pulses. Spectra
are spread onto two or more frequency axes, which allows effects that are subtle or invisible in
linear spectroscopy to become readily apparent. Separation of homogeneous and inhomogeneous
broadening is easily achieved, and contributions from various quantum pathways can be isolated.
Many schemes for MDCS exist (for example, [3–7]), but all involve acquiring data in the time
domain and transforming one or more axes using a discrete Fourier transform (DFT). DFT
methods introduce spectral distortions inherent to the discrete nature of the method. For example,
unless the data fall to zero during the scan, the DFT will present convolution with the step
function, necessitating long scan time or artificial windowing [8, 9]. These distortions especially
impact the lineshape of peaks, which is particularly problematic because lineshape contains
information about broadening mechanisms and many-body interactions.

In nuclear magnetic resonance (NMR), an algorithm to improve on the DFT was developed that
involves analyzing time domain data and fitting it to a linear combination of damped sinusoidal
oscillators, or “poles.” This technique, linear prediction from singular value decomposition
(LPSVD), has been used for decades in NMR spectroscopy [8–11]. It has also been applied to
ultrafast optical measurements of coherent phonons [12]. LPSVD is a noniterative, autoregressive
procedure which performs two linear least squares fits on a complex time-domain signal to
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determine the frequency, damping rate, amplitude, and phase of the signal’s constituent damped
sinusoids. Because the fit is linear, it is efficient and requires no initial parameters except the
number of poles. Additionally, LPSVD operates on complex time-domain data and effectively
fits complex spectra, unlike many nonlinear fitting procedures, which work with spectral
magnitude data. The employment of singular value decomposition, a generalization of eigenvalue
decomposition to non-square matrices, enhances the stability and noise-filtering capabilities of
linear prediction [10]. We note that LPSVD is related to compressive sensing [13] and orthogonal
matching techniques [14, 15] but in contrast to those techniques, it is used on dense data sets.
Here, we apply linear prediction to zero-, one-, and two-quantum optical MDCS data from

a semiconductor nanostructure sample. The technique has to the best of our knowledge not
been previously applied to optical MDCS, perhaps because samples typically produce highly
non-Lorentzian lineshapes, in contrast to NMR. We demonstrate that LPSVD successfully fits
despite this high degree of non-ideality and is able to construct spectra without the discrete
distortions of a DFT, while also rejecting noise. No modifications to the algorithm are needed for
non-ideal data; peaks that are non-Lorentzian are fit by multiple poles. Because the spectrum is
decomposed into poles, the spectral contributions of peaks can be separated, improving analysis
of overlapping spectral peaks by allowing each to be analyzed in isolation. This technique is
especially useful for isolation of weak spectral features. We show that LPSVD even isolates a
weak feature not visible to the naked eye.

In the next section, we give a brief background on LPSVD, explain how it is used to construct 2D
spectra, and discuss how it handles non-Lorentzian features. Then we give three examples using
data taken on a semiconductor microcavity. First, we use LPSVD to calculate a zero-quantum
spectrum, showing that LPSVD is able to remove distortions due to the DFT. Second, we use
LPSVD to calculate one-quantum rephasing spectra, showing that it can be used to isolate weak
features of interest. Finally, we use LPSVD to calculate two-quantum spectra.

2. Theory

Many previous papers have discussed linear prediction on complex data [8–11]. Multiple
authors [16,17] applied 1D linear prediction row-by-row to 2D sets of NMR data. Here we apply
this approach to optical 2D spectra. Optical MDCS is virtually the same as multidimensional
NMR mathematically, but the measurement scheme differs because of the relative difficulty of
measuring an optical frequency field. In the experimental scheme we use, the complex field is
retrieved using spectral interferometry, so the emission frequency axis is already in the spectral
domain. We apply LPSVD to each column, once for each discrete emission frequency. Linear
prediction can however be used on any one-dimensional time domain slice.
Linear prediction assumes that the signal is composed of the sum of damped sinusoids with

white noise. We assume that the one-dimensional time domain data -= is sampled with a uniform
step ΔC,

-= =

<∑
9=1

� 94
=ΔC (−1 9+8l 9 )+8q 9 + F=, (1)

where < is the number of sinusoids; � 9 , 1 9 , l 9 , and q 9 are the amplitude, damping coefficient,
frequency, and phase of the jth sinusoid, respectively; and F= is a noise term. In the spectral
domain, these sinusoids manifest as Lorentzian peaks.
The first step in the LPSVD algorithm is to perform singular value decomposition (SVD) on

a data matrix, a Hankel matrix constructed as described in [18]. It can be proved that there is
one nonzero singular value for each sinusoid given an ideal signal [10]. With noisy data, all
singular values will be nonzero, and noise-related singular values may be distinguished by their
smaller magnitudes and set to zero. Barkhuĳsen et al. also proposed subtracting the mean of the
noise-related singular values from the signal-related singular values to improve the signal-to-noise



ratio (SNR) [10]. The Hankel matrix is then reconstructed from the manipulated SVD. Use of
SVD improves the numerical stability of the linear fitting process and increases the SNR [18]. In
fact, the improvement from SVD makes linear prediction approach the upper Cramer-Rao fitting
bound [19].

In the second step, an autoregressive model is employed, meaning every discrete data point is
assumed to be a linear combination of the previous : points, a parameter chosen when fitting.
A linear least squares fit gives the linear coefficients from the Hankel data matrix [18]. For
a noiseless signal, : should be <, the number of sinusoids of which the signal is comprised.
For noisy data, many coefficients should be used, with 3/4 the length of the signal as a general
suggestion [19]. The frequency and damping coefficient may be extracted from these coefficients
by finding the roots of the polynomial 1 − 21I

1 − 22I
2 − ... − 2: I: , where 21, ..., 2: are the

autoregression coefficients. Each of these roots will be of the form 4−1 9+8l 9 , from which the
natural logarithm gives the damping and angular frequency of the 9 th sinusoid.
The third step is a simple linear least squares fitting to find the quantities � 94

8q 9 using the
known values of -= and of −1 9 + 8l 9 in Eq. (1). Not all roots found in the second step are used
in the linear fit. Typically, Kumaresan and Tufts’ condition of decaying sinusoids is enforced,
i.e. all roots have absolute value less than or equal to one [18]. This condition makes sense
physically and eliminates some noise-related sinusoids. However, when the signal decays to a
constant rather than to zero, as in zero-quantum scans, we have found that keeping roots with
slightly larger magnitudes results in a better fit. This will be discussed in more detail when we
apply LPSVD to optical MDCS data.

A Python package implementing the algorithm, along with the data used to generate the figures
presented in Section 3, can be found in Code 1 ( [20]) [21].

2.1. Constructing spectra

Linear prediction is typically used in combination with DFT methods to enhance the resolution
of the discrete spectrum, which is proportional to the total number of sampled points. The
time-domain signal is extended forward with linear prediction and then a DFT is applied [8,10,22]
to produce a spectrum. With more points in the time domain, the DFT has higher resolution.
There are, however, discrete distortions inherent to DFT methods [8]. Using linear prediction to
extend the signal forward enhances the spectral resolution and filters some of the noise, but the
discrete distortions and some noisy data will inherently affect the DFT.
Synthesizing the spectrum directly from the linear prediction results, on the other hand,

eliminates these discrete effects. The one-dimensional spectral equation can be found through an
analytical Fourier transformation of Eq. (1):

(̂(l) = 1
2c

<∑
9=1

� 9

48q 9

8(l − l 9 ) − 1 9

. (2)

A two-dimensional spectrum may be constructed column-wise.
In a review ofNMRapplications, Koehl found that direct linear prediction spectrum construction

was rarely used [8], although Led and Gesmar mentioned the technique [9]. This is likely because
linear prediction has previously been applied mostly to NMR, in which the data are highly ideal,
meaning each pole fits one peak (see Sec. 2.2), and further analysis may be performed directly
from the fitting parameters of each pole found using LPSVD.

2.2. Handling non-ideality

Optical MDCS spectra in condensed matter systems are often highly distorted from the ideal line-
shape calculated from simple level schemes using the Bloch equations because of inhomogeneous
broadening [23,24], many-body effects [25,26], and other factors such as propagation effects [27].



So it might seem odd to effectively fit slices of the spectra to Eq. (2). Although our data are
highly non-ideal, we generally find that linear prediction closely matches the time-domain signal
and the DFT-generated one-dimensional spectral slices and full two-dimensional spectrum (in
data sets where discrete distortions are minimal).

This works because each peak in the spectrum can be fit to more than one pole. In the context
of NMR, Balcou and Balcou showed that a variety of non-Lorentzian peaks may be approximated
with the sum of two Lorentzians, but there are many stable pairs of Lorentzian peaks which match
the non-Lorentzian peak with identical accuracy [28]. In practice, this means that the amplitudes,
damping, and phases of individual poles do not necessarily carry physical significance, especially
two nearby poles. Instead, linewidths and other spectral data may be extracted numerically
from the synthesized spectrum, as would be done for a DFT-generated spectrum. The LPSVD
generated spectrum is less noisy and rejects artifacts due to early truncation of scans.

3. Applications

We demonstrate LPSVD on experimental data from a semiconductor microcavity. The experimen-
tal apparatus uses a multidimensional optical nonlinear spectrometer (MONSTR [5]), a system
that produces four phase-stable pulses through active feedback. Details of our experimental
implementation are given in [29]. The sample is a single 8-nm In0.04Ga0.96As quantum well
embedded in a _ microcavity that is slightly wedged so that the detuning Δ between the cavity
mode and the exciton energy can be adjusted continuously. The cavity mirrors are distributed
Bragg reflectors composed of GaAs/AlAs bilayers (14.5 bilayers on one side and 12 on the other).
Details of the sample and typical detuning dependent multidimensional spectra can be found
in [30].

We acquire complex four-wave mixing spectra through spectral interferometry with a reference
pulse. Spectra are captured as a function of a time delay between two of the three excitation
pulses. It is most natural to use LPSVD along this time axis, once for each discrete emission
frequency. Note that for other techniques, which operate entirely in the time domain [6], it might
be optimal to perform LPSVD along another time axis.

3.1. Illustrative example: a zero quantum spectrum

Zero quantum scans [1], where the time delay ) between the second and third pulses is scanned,
are generally used to explore population dynamics and Raman coherence. Figures 1(ab) show
the full DFT and LPSVD spectra for cross-linear (VHHV) polarization at near zero detuning.
The peaks at lower (higher) emission energy are associated with the lower (upper) polariton
branch. Peaks near zero absorption energy usually correspond to population dynamics, while
peaks at nonzero absorption energy correspond to Raman coherence. To show the LPSVD time
domain fit, we plot in Fig. 1(c) a time-domain vertical slice (shown as a dashed green line in
Fig. 1(b)) through R+, split into real and imaginary parts. Figures 1(def) show the same vertical
slice through the spectrum, with the contribution of each pole depicted using a dotted black line.
This figure illustrates much of the discussion in previous sections on linear prediction’s

advantages over DFT methods. First, as is clear, linear prediction fits well the signal in the
time domain. To achieve this quality of fit for zero quantum scans, we had to keep roots with
magnitude less than 1.1 rather than the usual threshold of 1.0. This is equivalent to keeping some
poles with damping rates 1 that are slightly negative. Note that the terms with 1 < 0 also have
extremely low frequency, so low that they oscillate over less than half a period over the scan time.
We attribute this to population dynamics that cause the non-oscillating component of the signal to
shrink and/or grow before coming to steady state at time delays outside our measurement range.
Because the real part decays to a constant, the DFT reflects convolution with the step function,
as can be seen in the “wiggles” in the DFT spectrum at low absorption energy in Fig. 1(d) [8].
Note that we employed an inverse tangent window to reduce this distortion, but it still exists and



Fig. 1. Experimental spectra (magnitude) generated from a zero quantum scan by
(a) DFT and (b) LPSVD. Four poles were used in the LPSVD. The real part of the
complex 2D spectrum is plotted in (a) and (b). A vertical slice at a particular emission
energy (green dashed line in part (b)) is shown for (c) the time domain signal and (def)
the spectrum. In (d), the amplitude contribution of each pole is shown by the black
dotted line (phase is obscured), while the magnitude of the sum of these contributions
(including phase offsets) is shown in orange. In (ef), the real and imaginary parts are
plotted for the poles and for the spectrum, highlighting the fit of multiple poles to a
single non-ideal peak. All units not given are arbitrary units (e.g. for the colorbar in
(ab)).

resolution is hurt by this windowing. The spectrum generated by linear prediction does not have
this issue. Also note that removing the constant offset in the real part is insufficient because the
rapid exponential decay, corresponding to the wide zero frequency pole in Fig. 1(d), remains.
Lastly, as noted previously [28], multiple LP poles can be used to fit non-Lorentzian peaks

without any modification to the algorithm. This can be seen in the black dotted lines in Fig. 1(def),
as there are two low frequency LP poles used to fit the single physical zero frequency signal, and
two poles near the Raman peak. Because LPSVD fits so well to the time-domain data, it is clear
that the zero frequency peak constructed is reliable even though it disagrees with the DFT. As
mentioned above, the zero frequency peaks arise in part from population dynamics, which are
typically best studied in the time domain.

3.2. Isolating weak features: one quantum spectra

As is clear from the previous section, decomposition of the spectrum into poles allows straight-
forward isolation of spectral contributions of weak peaks. Here we demonstrate that application
of LPSVD. In one quantum scans of the microcavity sample, four peaks appear in the 2D
spectra, corresponding to lower and upper polariton branches (LP and UP along the diagonal
plus corresponding cross peaks LP-UP and UP-LP), along with a much weaker biexciton-related
feature [30]. The polariton peak positions change sensitively with detuning Δ, while the biexciton
remains relatively fixed at an absorption energy around 1491 meV. The detuning Δ is adjusted by
moving the position of the laser focus on the sample (recalling that the microcavity is wedged).
We plot the spectral locations of the polariton peaks as a function of spot position. The position



Fig. 2. Experimental spectra generated from one quantum scans by (a-c) DFT and
(d-f) LPSVD. Six poles were used for LPSVD. (g-i) Spectra generated from only the
biexciton poles, selected by frequency as described in the main text. Subfigures g-i are
displayed at twice the brightness for clarity. The color scale is in arbitrary units.

at which the peak separation is minimized corresponds to Δ = 0, and the peak separation is the
vacuum Rabi splitting �VRS. The detuning can then be found from the peak positions by solving
�UP/LP = 1/2[2�X + Δ ± (Δ2 + �VRS)1/2] [30].
At small positive values of Δ, the biexciton peak is difficult to distinguish from the wide tail of

nearby stronger polariton peaks. This is illustrated in Figs. 2(abc), which show DFT-generated
rephasing spectra for cross-circular polarization (f−f+f+f−) at three values of Δ. Note that
at Δ = 2.67 meV [Fig. 2(c)], the biexciton peak is not visible to the naked eye. Corresponding
spectra generated by LPSVD are shown in Fig. 2(def). The predicted spectra reproduce all the
features of the spectrum.
At low values of Δ, the biexciton feature is more easily distinguished from the polariton

features, and we can guess its position for the scan with Δ = 2.67 meV. Figure 2(ghi) show spectra
where only the posited biexciton-related poles are used, distinguished by their absorption energy.
The technique performs remarkably well near zero detuning [Fig. 2(gh)], where the signal is
relatively strong. The isolated biexciton peaks visually match the shape of the partially visible
biexciton peaks in Fig. 2(de). At Δ = 2.67 meV [Fig. 2(i)], where it is impossible to discern by
eye, LPSVD is able to produce a signal exactly where we expect the biexciton to be. Because of
this, we may trust the amplitude of the biexciton in the synthesized spectrum. However, there are
sharp vertical cutoffs visible which hinder lineshape analysis. This results from the failure of



Fig. 3. Experimental spectra (real part) generated from two quantum scans with various
light polarization configuration by (a-d) DFT and (e-h) LPSVD. Four poles were used
for fitting all polarizations except for VVVV, which required 14 poles. Colorbar values
are in arbitrary units.

LPSVD to find a pole above the threshold of noise when the emission frequency is too far from
the peak, and is a symptom of the column-wise application of the algorithm. Nevertheless, the fit
is sufficient to isolate the biexciton and find its amplitude and phase in a spectrum in which it
would not otherwise be possible.

3.3. Highly non-ideal spectra: two quantum spectra

Finally, we show that linear prediction can fit to highly non-ideal and noisy data. For completeness,
we draw this example from two quantum scans, where the time delay between the second and third
pulses is scanned. In two quantum scans of the microcavity, a strong polarization dependence
is evident. This dependence is illustrated in Fig. 3(a-d). In Fig. 3(e-h), corresponding spectra
generated by LPSVD are shown. As is evident, the spectra are in close agreement. Although
some differences can be seen, especially at the tails of peaks, these are mostly due to noise in the
DFT spectrum that is not present in the linear prediction spectrum. Even for VVVV polarization
(Fig. 3(e)), where the spectrum is highly non-ideal, the LPSVD-generated spectrum closely
resembles the DFT spectrum. The caveat, however, is that Fig. 3(f-h) were fitted using four poles,
whereas Fig. 3(e) required 14 poles to get the best fitting. The use of more poles is necessary
with low SNR and high non-ideality, as the largest singular values are not necessarily well-fitted
to signal-related Lorentzians (See Sec. 3.4).

3.4. Performance considerations

LPSVD efficiently iterates across 1024 columns of length 125 in seconds on a modern laptop
on a single thread. Because it operates column-by-column, the procedure would be trivially
parallelizable. The DFT, in contrast, takes milliseconds. Substantial time savings can be had by
only using linear prediction to fit columns with emission energy near the spectral features of
interest. In our scans, this cuts runtime by up to a factor of four.

One of the advantages of LPSVD is the fact that one does not need to guess initial parameters
of the fits. However, hand tuning of the number of poles is typically required, depending on the
spectrum’s ideality and signal-to-noise ratio. The number of poles does not necessarily directly



correspond to the number of spectral peaks. Therefore, linear prediction must be initially run
with multiple numbers of poles to see which number of poles produces the best fit by analysis of
residuals in the time domain. This typically must only be done once for a type of scan (e.g. zero
quantum scans for f+f+f+f+ polarization). Generally, two poles for each peak is a good initial
guess. We emphasize that spectral information such as linewidths and peak positions should be
extracted numerically from the synthesized spectrum rather than from pole parameters.

4. Conclusion

In summary, we have applied LPSVD to optical MDCS and demonstrated the technique’s ease of
use and applicability to the analysis of non-ideal optical electronic multidimensional spectra.
We showed linear prediction’s advantages over DFT methods in filtering noise and eliminating
discrete distortions. Additionally, linear prediction proves extremely useful in isolating weak
spectral features. All of the data shown here came from a microcavity sample, but we have
also successfully used LPSVD on data from a multiple quantum well sample and observed
similar performance. While LPSVD is more computationally intensive than the DFT, the time it
takes to perform the analysis is much smaller than the acquisition time, and it can be used to
perform real time analysis. With enough signal-to-noise ratio (and sufficiently ideal lineshapes),
LPSVD can allow one to generate accurate spectra from truncated scans. For our non-ideal
spectra we found that we could remove up to 25% of the data points at the end of our scans
without significantly changing the spectra constructed by LPSVD. This implies that application
of LPSVD to spectroscopy of this system could shorten data acquisition time by up to 25%.
We applied one-dimensional LPSVD column-wise to 2D spectra, which although practically

effective ignores the relationship between columns when fitting. Some authors have attempted
fully two-dimensional linear prediction [16, 17], but generally found that it is unstable and
less accurate than one-dimensional methods. Additionally, it is computationally expensive.
Nevertheless the development of simple 2D LPSVD techniques deserves further exploration.
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