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Abstract—In the 3.5 GHz Citizens Broadband Radio Service
(CBRS) band, accurate path loss prediction is very important
to protect the incumbent from harmful interference caused by
the lower tier users. The current CBRS standards developed by
the Wireless Innovation Forum use the irregular terrain model
(ITM), also known as the Longley-Rice model, for path loss
calculation. However, the model does not include clutter data,
and thus, it underestimates the path loss. This paper utilizes a
model-aided deep learning (DL) technique with satellite images
to improve path loss prediction. Numerical study shows that the
proposed approach can achieve a 4.23 dB root mean square error
(RMSE) and outperform the Longley-Rice model and some tuned
or fitted propagation models.

I. INTRODUCTION

Accurate wireless propagation models are essential for wire-
less communication system planning and interference assess-
ment, especially in frequency bands with spectrum sharing.
Although numerous models have been developed for different
environments and at different frequency bands (e.g., 900 MHz,
2.4 GHz, and 5.8 GHz) [1], [2], selecting an appropriate model
to use is not always an easy task. The performance accuracy
of each model often requires high computational complexity
to achieve satisfactory results. The studies in [1], [2] found
that typical best-case performance accuracy of the models is
(12 to 15) dB root mean square error (RMSE). Models that
are tuned or fitted with measurements can reduce the RMSE
to (8 to 9) dB.

Citizens Broadband Radio Service (CBRS) in the 3.5 GHz
band uses the common irregular terrain model (ITM)—also
known as the Longley-Rice model—to compute the path
loss for incumbent protection [3]. The Longley-Rice model
takes into account the variations in terrain height between
the transmitter and receiver, but it does not include clutter
data in the path loss calculation. Thus, it is a conservative
model, which may cause the spectrum to be underutilized by
commercial operators.

Recent research on path loss prediction has focused on
leveraging machine learning and deep learning (DL) to im-
prove the performance accuracy with manageable computa-
tional complexity. An overview of machine learning tech-
niques for propagation modeling is provided in [4]. In [5],
[6], the authors use principal component analysis (PCA) and
artificial neural networks (ANNs) to reduce the number of
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environment features and to learn the path loss, respectively.
The authors in [7] utilize a DL encoder-decoder architecture to
extract semantic information from satellite imagery to divide
an area into urban, suburban, and rural environments, and
then compute the path loss for each environment with the
appropriate Okumura-Hata model. With a different approach,
the authors in [8] use the DL VGG-16 architecture to predict
path loss distribution of an area from satellite images. Al-
though these techniques are interesting, we found the approach
proposed by [9] compelling and closely related to our work.
The proposed model in [9] is a hybrid model which combines
both modeling-based and learning-based techniques for path
loss prediction in the 2.6 GHz band. The modeling-based
model, also called as a physics-based model, relies on a
simple empirical path loss model to compute the received
power estimate between the transmitter and the receiver. On
the other hand, the learning-based model is a neural network
(NN) that learns the surrounding environment’s features from
satellite images and geographical coordinates in order to
provide a correction to the estimated received power. The sum
of the received power estimate and the correction results in a
prediction of received signal strength at the receiver.

In this paper, we aim to use a DL technique to predict the
path loss for the 3.5 GHz CBRS band in the U.S. Our main
contributions are summarized as follows:

• We modify the model-aided DL method in [9], especially
the physics-based model, for path loss prediction in the
3.5 GHz CBRS band.

• We generate a large synthetic dataset representing San
Diego, CA, to train the model. We apply transfer learning
to fine-tune the pretrained model with a smaller real
measurement dataset collected in the same area.

• We demonstrate that the proposed model outperforms the
Longley-Rice model and tuned models.

The remainder of the paper is organized as follows. In
Section II, we describe the NN approach for path loss predic-
tion. Section III details how we generate datasets for training
and testing the model. We present numerical results using
both synthetic datasets and real measurements in Section IV.
Finally, we summarize our results and provide conclusion
remarks in Section V.

II. NEURAL NETWORK APPROACH

In this section, we describe the DL model for path loss
prediction in the 3.5 GHz band. We utilize and modify the
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model-aided DL approach, which was developed in [9] for
2.6 GHz band, so that it can be suitable for the 3.5 GHz
band. The proposed approach utilizes both modeling-based and
DL techniques to predict the signal strength at each receiver
location. The goal is to develop a regression model that can
provide more accurate prediction results at unseen receiver
locations than most traditional propagation models. In a simple
scenario with one transmitter and one receiver, the received
power can be computed as follows [10]

z = Pt +Gt +Gr − L (1)

where z is the received power at the output of the receiver
antenna (dBm) (dBm is expressed in decibels (dB) relative
to one milliwatt (mW)), Pt is the transmit power at the
transmitter (dBm), Gt and Gr are respectively the transmitting
and receiving antenna gains (dBi), and L is the median path
loss from the transmitter to the receiver (dB). Note that in this
paper, we use the terms signal strength prediction and path loss
prediction interchangeably since they can be derived from one
another using Eq. (1).

We summarize the DL model below, but detailed informa-
tion can be found in [9]. Fig. 1 shows an adapted version of
the model-aided DL architecture. Inputs to the model include:

• d: distance between the transmitter and receiver,
• x = [latrx, lonrx, d, dlat, dlon, Btx]: engineered features,

where latrx and lonrx are the respective receiver coor-
dinates in latitude and longitude, dlat and dlon are the
respective distances in latitude and longitude between
the transmitter and receiver, d is the distance, and Btx

indicates the transmitter of interest in a multi-transmitter
scenario,

• A: satellite image, 256 pixel × 256 pixel (≈ 185 m ×
185 m), centered at the receiver location and rotated by
an angle equal to the bearing between transmitter and
receiver.

Given these inputs, the DL model learns the corrected received
signal strength p at the receiver. The model architecture
consists of two main components, i.e., a physics-based model
and a correction NN. This hybrid approach combines expert
knowledge from physics-based model and learning knowledge
from the correction NN. Together, they improve the prediction
performance.

A. Physics-based Model

The physics-based model is used to assist in the learning
process. The model estimates the received power z from
the distance d. It relies on the 3rd Generation Partnership
Project (3GPP) empirical channel model in Urban Macro
(UMa) scenario [11], which is identical to the International
Telecommunication Union Radiocommunication Sector (ITU-
R) M.2412 channel model in UMa B scenario [12], to com-
pute the median path loss L between the transmitter and
receiver. Then, the physics-based model uses the link budget
equation in Eq. (1) to estimate the received power z. Note that,
besides the distance d, the channel model also uses other input
parameters (i.e., frequency, transmitter and receiver heights,

Fig. 1. A model-aided deep learning architecture, which consists of a physics-
based model and a correction neural network, is used for predicting the
received signal strength at the receiver.

and a calibration offset) to compute the path loss. However,
these parameters are fixed values in this study; therefore, they
are not shown as inputs in Fig. 1.

The received power estimate z will be concatenated with
the engineered features x, and will be input to the correction
NN to produce a correction factor y. In addition, the estimate
z will be combined with the correction y to produce the final
received power estimate p = z + y as shown in Fig. 1.

B. Correction Neural Network

The correction NN consists of a convolutional neural net-
work (CNN), and two fully connected neural networks NN1
and NN2. The CNN model is used to obtain features from
the satellite image A. The NN1 model is used to manage the
engineered features x and the received power estimate z. The
outputs from the CNN and NN1 models will be added and
input to the NN2 model. The last layer of NN2 is the output
layer of the overall correction NN model, which learns the
correction y. The Rectified Linear Unit (ReLU) and linear
activation functions are used in the sub-models.

The model parameters are learned iteratively through the
backpropagation algorithm with the mean square error (MSE)
loss function criterion. We used the well-known Adam opti-
mizer as well as mini-batch to speed up the training process. To
avoid overfitting, we employed regularization techniques such
as batch normalization, dropout, and weight decays. More-
over, we used image augmentation with a random rotation
of the original image for improving generalization in this
study, but other data augmentation techniques can be used
as well. Generally, the search for hyper-parameters for a NN
is computationally expensive and time consuming. Therefore,
we reuse most of the tuned hyper-parameters in [9] and only
adjust some parameters to suit our system’s capability.

Table I shows the architectures and layer sizes of the CNN,
NN1, and NN2 sub-models of the correction NN. It also lists
the hyper-parameters used in this study.
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TABLE I
CORRECTION NEURAL NETWORK MODEL PARAMETERS AND

HYPERPARAMETERS USED FOR TRAINING THE MODEL.

Parameter Value

C
N

N

Input channel 1
Number of convolutions [200, 100, 50, 25, 12, 1]
Activation ReLU, Linear
Kernel size [(5,5), (3,3), (3,3), (3,3), (2,2), (2,2)]
Max pooling 2
Padding 2
Stride 1

N
N

1 Layer size [200, 200]
Activation ReLU, Linear

N
N

2 Layer size [200, 16, 1]
Activation ReLU, Linear

H
yp

er
pa

ra
m

et
er Batch size 8

Loss function MSE
Optimizer Adam
Weight decay 2.8e-3
Learning rate 1e-3
Image augmentation angle 20
(max angle)

III. DATASET GENERATION

Besides the selection of learning algorithms, a large amount
of curated and representative datasets is essential for the
development of DL models. In this section, we describe our
approach for generating training, evaluation, and test datasets
for the proposed model-aided DL network. In particular, we
discuss the real measurements, the simulated data, and our
workflow.

A. Real Propagation Measurements

Real measurements are valuable in production of practi-
cal and functional models, but they are usually expensive
and time-consuming to obtain. In this study, we utilize the
real propagation measurements collected by the Institute for
Telecommunication Sciences (ITS) [13]. Although the mea-
surement campaigns were at different locations in the U.S. and
at different frequency bands, in this analysis we focus on the
3505 MHz data collected in San Diego, CA. The transmitter
was located near a parking lot on the Navy Point Loma
submarine base. The transmitting power was approximately
40 dBm with an antenna height of approximately 10 m
above ground level (AGL). The equipment used to collect
the receiving signals was placed in a van and the receiver
antenna height was approximately 3 m AGL. Transmitting
and receiving antenna gains and cable losses contributed about
3 dB to the link budget calculation. Fig. 2 depicts the drive
route near the neighborhood of Point Loma in San Diego.
The van started at a location about 8 km away from the
transmitter and then drove closer to it. The different colors
along the route represent the received signal strengths received
at receiver locations. The original dataset collected by ITS
has 1200 data samples. After examining the measurements,
we kept 994 samples (as shown in Fig. 2) and discarded the
remaining receiver noise samples.

Fig. 2. Measurements drive route at 3505 MHz in San Diego, CA.

B. Synthetic Dataset

Given the insufficient quantity of real measurements for
training the model, we need to generate a larger dataset that is
representative and contains the same types of relevant features
as the real measurements. We used the Mentum Planet tool1

and replicated the San Diego measurement campaign. We
used two propagation models, i.e., Longley-Rice and Universal
models, to compute the path loss at all the grids within 50 km
centered at the transmitter. Since the Longley-Rice model does
not use clutter data in its calculation, we also consider the
Universal model, which is an advanced propagation model
developed in the Mentum Planet tool, for comparison pur-
poses. Fig. 3 shows the path loss prediction of the Universal
model (the left subplot) and the Longley-Rice model (the right
subplot). In most cases, the Universal model predicts higher
path losses than the Longley-Rice model. However, opposite
prediction results are observed at locations in the sea area or
locations more than 10 km from away from the transmitter.

After computing the path loss for the entire area, we
extracted the values along the drive route shown in Fig. 2.
We then computed the associated received signal strengths at
these receiver locations. Fig. 4 shows the received power vs.
distance of the real measurements (in orange), prediction by
the Universal model (in red), and prediction by the Longley-
Rice model (in purple). Utilizing both terrain and clutter data,
the Universal model is capable of providing better prediction
results with 7.16 dB RMSE than the Longley-Rice model with
14.42 dB RMSE. As a result, we used the path loss prediction
by the Universal model for generating a large synthetic dataset.

To get more receiver locations in the San Diego area, we
drew random routes using the Google Maps tool. Fig. 5 shows
the blue routes to be used for training and the orange routes to

1Certain commercial equipment, instruments, or materials are identified
in this paper to foster understanding. Such identification does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.
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Fig. 3. Path loss generated by the Universal and Longley-Rice models.

Fig. 4. Received signal power vs. distance of real measurements as well as
predictions by the Universal and Longley-Rice models.

be used for validating the model. There are 11 241 samples in
total; 9982 samples and 1259 samples to be used for training
and validation, respectively. Given these receiver locations,
the Universal path losses and received signal strengths were
computed in similar fashion to the results in Fig. 4 and we
plot them in Fig. 6.

C. Workflow

Fig. 7 summarizes our workflow for this study. There
are three main tasks including i) data generation, ii) data
processing, and iii) model training, testing and performance
evaluation. In the data generation task, we used the Universal
model to generate path loss, Google Maps to generate test
routes, the Mapbox tool to extract satellite images, and the
real measurements to fine-tune and test the model. For the data
processing task, we used MATLAB and Python to generate
features and targets data and save them in .csv files, and to get
satellite images at the receiver locations. The files constitute
the synthetic dataset and the real measurement dataset. The
synthetic dataset is for training and validation of the model.

Fig. 5. Train and test routes used for generating synthetic datasets.

Fig. 6. Synthetic datasets for training the model-aided neural network.

Once the model is trained, we fine-tune the pretrained model
and test it with the real measurement dataset. The model
training, testing, and performance evaluation task is performed
in PyTorch.

IV. RESULTS

In this section, we present results of the model-aided DL
technique for path loss prediction in the 3.5 GHz band. We
first show the pretrained model performance with synthetic
dataset and then the fine-tuned model performance with real
measurements.

A. Training and Validation with Synthetic Datasets

We trained and validated the DL model described in
Section II with 50 epochs but the process stopped earlier
at 43 epochs due to low learning rate. Fig. 8 shows the
normalized mean squared error (MSE) at each epoch during
the training and validation. As the number of epochs increases,
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Fig. 7. A workflow shows the process used in this study including data generation, data processing, and model training, testing and performance evaluation.

Fig. 8. Normalized mean square error (MSE) during training and testing of
the deep learning model with synthetic datasets.

the normalized MSE for training gradually decreases while the
validation curve oscillates and decreases as well. Also, as men-
tioned in [9], using data augmentation and tuned regularization
parameters reduces severe overfitting during training.

Fig. 9 shows the prediction results of the proposed NN (in
blue) as well as the physics-based model alone (in green)
against the target or validation data (in orange). While the
physics-based model provides predictions in the middle be-
tween the two clusters of received power values in the target
dataset, the NN situates predictions closer to the targets.
To compare the predictive performances of the NN and the
physics-based models, we computed the errors in terms of
RMSE. The smaller the RMSE value is, the closer the predic-
tion is to the target. The NN provides a very good RMSE of
7.08 dB, which is smaller than the (8 to 9) dB range provided

Fig. 9. Prediction results on the synthetic test dataset of the neural network
and physics-based models.

by tuned or fitted models described in [1], [2]. As expected,
the physics-based model gives a larger RMSE of 15.45 dB,
which is near the upper bound of the (12 to 15) dB range of
the typical best-case performance models shown in [1], [2].
Leveraging the learned correction using engineered features
and satellite images, the model-aided NN is able to predict the
target more accurately than the physics-based model alone.

B. Transfer Learning with Real Measurements

With the NN model pretrained on a large synthetic dataset,
we applied transfer learning to fine-tune the model using 994
real measurement samples described in Section III-A. We
reused all the pretrained layers and then fine-tuned them using
100 random samples from the real measurement dataset. We
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Fig. 10. Prediction results on real measurements for the neural network,
Universal, physics-based, and Longley-Rice models.

used the remaining 894 samples from the real measurement
dataset to test the prediction performance of the model.

We compare the prediction performance of the NN with
the other non-learning models used in this study. Fig. 10
shows the received power level vs. distance of the target
test set (in orange), and predictions by the NN (in blue),
the Universal model (in red), the physics-based model (in
green), and the Longley-Rice model (in purple). The NN
outperforms other models with RMSE of 4.46 dB; whereas the
Universal, physics-based, and Longley-Rice achieve 7.16 dB,
13.98 dB, and 14.43 dB RMSE, respectively. Interestingly, the
performance of the proposed NN for the 3.5 GHz band in this
study is similar to the performance of the same model for the
2.6 GHz band in [9].

We varied the number of samples used for retraining and
testing the NN and observed the predictive performance.
Fig. 11 shows the RMSE at different sets of (train, test) for
all models. Without fine-tuning, i.e., (train, test) = (0, 994),
the NN achieves a 8.42 dB RMSE, which is worse than
the Universal model but still smaller than the physics-based
and Longley-Rice models. As the number of training samples
increases up to 300, the RMSE of the NN lowers to 4.23 dB,
but no gain is observed after 300 training samples. Unlike the
NN, which can be re-trained on new information, in this study,
the Universal, the physics-based, and the Longley-Rice models
predict the path loss only once. Therefore, the RMSE values
provided by these traditional models do not vary much, i.e.,
(7.10 to 7.21) dB for the Universal model, (13.98 to 14.19) dB
for the physics-based model, and (14.39 to 14.57) dB for the
Longley-Rice model.

V. CONCLUSION

In this paper, we presented a model-aided DL technique,
which combines both physics-based and learning-based tech-
niques, to predict path loss in the 3.5 GHz band more
accurately than traditional models. Using transfer learning, we

Fig. 11. RMSE prediction results with different sets of (train, test) for all
models.

achieved good prediction performance of 4.23 dB RMSE even
with a limited dataset. For future work, we will incorporate
3D features such as building and vegetation heights into the
model, and also extend it to predict path loss in the 6 GHz
band.
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