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ABSTRACT Beamforming training refers to the exhaustive scan over which the transmitter and receiver
jointly steer their beams along a predefined set of double-directional angles to determine the beam pairs that
coincide with the dominant propagation paths of the channel, for spatial multiplexing at millimeter-wave.
When mobile, training necessitates a high refresh rate to maintain connectivity and so, to reduce overhead,
beamtracking algorithms exploit the spatial-temporal consistency of the channel to localize the scan around
the beam pairs determined at a previous time. The algorithms’ true performance, however, is still unknown
since results reported to date are based on oversimplified channel models. In this paper, we propose a novel
beamtracking algorithm formulated as a first-order Markov process that supports multiple beam pairs. The
algorithm is evaluated through actual channel measurements – not a channel model – recorded with our high-
precision 3D double-directional 60 GHz channel sounder. The measurement campaign, to our knowledge, is
unprecedented: with 10, 895 large-scale measurements, spaced 8.8 cm apart on average to emulate continuous
motion, over which the mobile receiver traversed a total of 900.2 m. We demonstrate that four beam pairs
can be sustained always and that eight pairs can be sustained 57% of the time.

INDEX TERMS 5G, beamforming training, hybrid beamforming, IEEE 802.11ay, millimeter-wave,
mmWave, spatial multiplexing, SU-MIMO.

I. INTRODUCTION
The ever-rising demand for reliable and ubiquitous broad-
band access has prompted cellular providers to expand be-
yond the sub-6 GHz frequency bands – where 1G–4G net-
works have operated to date – to millimeter-wave (mmWave)
bands for 5G – effectively 28-100 GHz – where 100x more
bandwidth is available. The expansion, however, comes at
the expense of greater free-space, penetration, and oxygen-
absorption pathlosses. To compensate the link budget, high-
gain – and by corollary narrowbeam – antennas will be em-
ployed. Notably, the development of phased-array antennas
(PAAs) at mmWave [1]–[3], which coherently phase the ar-
ray antennas to synthesize pencilbeams – beams with array
gain in excess of 18 dB and with beamwidth of just a few
degrees – that are electronically steerable to provide omnidi-
rectional coverage, has ushered in the 5G revolution.

The implication of shorter wavelengths is negligible
diffraction due to the narrowing of the Fresnel zone [4],

leaving the line-of-sight (LoS) path, and specular paths re-
flected from ambient scatterers as the dominant propagation
paths in the mmWave channel. Accordingly, the transmitter
(T) and receiver (R) beams – pairwise referred to as a double-
directional (DD) beam – will be steered along the respective
angle-of-departure (AoD) and angle-of-arrival (AoA) – pair-
wise referred to as a DD angle – of the dominant paths. To
determine their DD angles, the channel must be estimated.
For instance, the IEEE 802.11ay standard [5]–[7] for wire-
less local area network (WLAN) operating in the 60 GHz
unlicensed band estimates the channel through a protocol
known as beamforming training (BT): through dedicated pilot
sequences, DD beams exhaustively scan a predefined set of
DD angles, constituting a codebook, to identify the ones e.g.
with the highest signal-to-noise ratio (SNR). The overhead as-
sociated with BT, however, is burdensome, diverting temporal
and/or spectral radio resources that could otherwise be used
for data transmission. While techniques based on compressed
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sensing can ease the overhead [8]–[12], they are applicable
only in static or quasi-static channel conditions. What is more,
in the presence of mobility, beams will quickly misalign with
the dominant paths – a small angle misalignment with such
narrow pencilbeams can inflict a huge drop in SNR – re-
quiring a high refresh rate for BT, exacerbating the already
burdensome overhead, especially in MIMO (Multiple-Input
Multiple-Output) architectures, where multiple DD beams are
supported through spatial multiplexing.

To deal with mobility, algorithms for beamtracking have
emerged over the past five years [20]–[38]. The algorithms ex-
ploit the spatial-temporal consistency of the channel to reduce
the extent of the BT scan. The underlying assumption is that
the DD angle of the dominant paths will change incremen-
tally with the incremental motion of the T, R, and/or ambient
scatterers; so to realign the DD beams with the dominant
paths while in motion, is it sufficient to scan angles within
the codebook that are local to the DD beams determined at
a previous time, effectively tracking the beams. Generally
speaking, beamtracking algorithms exploit information about
the channel from the past to localize the scan at present.
In the sequel, we have categorized the main features of the
algorithms cited above:
� MIMO architecture: Most papers consider either analog

beamforming [20]–[27] – where all antennas of a PAA
are synthesized into a single DD beam to support a sin-
gle digital chain in SISO (Single-Input Single-Output)
– or hybrid beamforming – where subarrays of a PAA
(or multiple PAAs) are synthesized into multiple beams
to support multiple chains in SU (Single-User) or MU
(Multiple-User)-MIMO [28]–[37]. Yet one paper [38]
considers full digital beamforming, where each PAA
antenna supports a single chain in MIMO, even though
it bears a significantly higher implementation cost vs.
hybrid beamforming.

� number of hypotheses: Most papers commit to a sin-
gle hypothesis per time [20]–[26], [28]–[32], [34], [35],
meaning that only information about the DD beam that
is estimated per chain is propagated over time, whereas
some papers propagate information about multiple can-
didate DD beams per chain, either through particle fil-
tering [27], [33], [36] or Bayesian inference [37], [38],
and so are more robust to harsh, uncertain, or rapidly
changing channel conditions.

� tracking mechanism: Many papers assume an underlying
motion model – typically linear – either directly for the
DD angle of the dominant paths or vis-à-vis R’s motion,
and solve a least-squares fit between the angles predicted
from the motion and the angles within the codebook,
either through Kalman filtering [21], [23], [30], [34],
gradient descent [24], [29], [31], or particle filtering
[27], [33], [36]. Others, rather, localize the scan within
the codebook by means of a probability distribution –
uniform [22], [28], Gaussian [24], [32], [37], or expo-
nential [26], [38] – centered at a previously estimated
angle; the codebook angles are then conditioned by the

probability when generating a new estimate, e.g. through
Bayesian inference [37], [38]. Yet other papers either
simply widen/narrow the beamwidth [20], [25] or in-
crease/decrease the BT refresh rate [35] based on R’s
speed.

� channel: Save one, all papers employ a channel model
– not actual measurements. The most popular channel
model is statistical, typically some variant of the spatial
Saleh-Valenzuela model [21], [33] through which the
channel is represented as a collection of paths clustered
in the angle-delay domain per time; spatial consistency
is imposed by correlating the channel over time through
some motion model – linear, Brownian, etc. [23], [28],
[29], [31], [35], [37], [38]. Other channel models are
quasi-deterministic [27], [36], which combine a statis-
tical model with raytracing such that spatial consistency
is inherent, whereas other papers employ raytracing only
[32]. Most papers assume a sparse channel, i.e. with just
a couple of dominant paths [22], [30] or even just the
LoS path [20], [24], [25], [26]. The single paper that em-
ploys actual measurements only considers motion over
a meter or so and hence does not capture large-scale
variation over which the number of scatterers and their
properties change significantly.

Indeed, the importance of accurate channel representation
[39] cannot be underestimated for a meaningful evaluation
of beamtracking algorithms. Although the LoS and specular
paths account for most of the channel power, diffuse paths
– which arise from rough surface scattering and so appear
only when the wavelength is comparable to the dimension
of the roughness, such as at mmWave – can account for
up to 40% [40]–[44]. Diffuse paths tend to cluster around
specular paths, forming dense pockets in angle (and delay).
Consequently, when a beam is steered along a specular path,
the surrounding diffuse paths temper the transition off the
beam when in motion; at the same time, diffuse paths can
act as a source of interference, not only within the beam,
but also between different beams. Hence results generated
from oversimplified models which assume that the channel
can be accurately represented by just a few paths – when
in reality, as we shall see, there can be hundreds – are un-
reliable. Moreover, all the cited papers assume a smooth
trajectory of the specular paths as they traverse an object’s
surface, when in fact objects such as walls are composed
from windows, doors, etc., which can have intricate multi-
layered profiles characterized by discontinuous surfaces made
from composite materials (glass, metal, wood, etc.), giving
rise to paths with non-specular properties that vary randomly
in path gain, angle, and delay. Even the LoS path is not
purely deterministic as it is subject to blockage. These re-
alistic channel conditions can cause beams to easily lose
track.

In this paper, we propose a beamtracking algorithm that
combines the best features of the papers cited and evaluate
its performance through actual measurements. Our three main
contributions are as follows:
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FIGURE 1. Measurement campaign (a) Photograph of our 3D DD 60 GHz channel sounder in a lecture room, where the measurements were recorded.
(b) Floor plan of the lecture room, showing the four positions of the transmitter, marked T1-T4. For each T location, R followed a serpentine trajectory in
each of the six areas, marked A-F, recorded separately. The floor plan’s grid is 1 m × 1m. The scatterers that reflected most of the transmitted power into
R are classified in both subfigures.

1) We recorded 10, 895 large-scale channel measurements
with our high-precision 60 GHz switched-array channel
sounder. The measurements were spaced 8.8 cm apart
on average to emulate continuous motion, as our mobile
receiver traversed a total distance of 900.2 m in a lecture
room. Super-resolution techniques were then applied to
extract distinct channel paths in path gain, delay, and
3D (in azimuth and elevation) DD angle from each
measurement.

2) We formulate a beamtracking algorithm as a first-order
Markov process that supports multiple beams through
hybrid beamforming in SU-MIMO, that entertains mul-
tiple hypotheses, and that dynamically adjusts the scan
locality within the codebook to the rate of motion.

3) We substantiate the robustness of the proposed algo-
rithm by applying it to the channel measurements,
demonstrating that up to four DD beams can be sup-
ported in the environment always, six beams 90% of the
time, and eight beams 57% of the time. We also consider
human presence.

The remainder of the paper is composed as follows: in
Section II, we describe our channel sounder and the extensive
measurements campaign we conducted in the lecture room
environment. Section III follows with our implementation of
hybrid beamforming in SU-MIMO and then in Section IV
with our proposed beamtracking algorithm. Section V reports
the results of the algorithm applied to the channel measure-
ments, and the last section is reserved for conclusions.

II. CHANNEL MEASUREMENTS
This section describes the channel measurements that
were recorded for the purpose of evaluating our Markov
multi-beamtracking algorithm. First, our channel sounder is
presented, followed by details of the measurement campaign,
then by the processing techniques implemented to extract
channel paths and their properties from the measurements.

A. CHANNEL SOUNDER
Fig. 1(a) displays T and R of our 60 GHz 3D DD switched-
array channel sounder. R features a circular array of 16 horn
antennas. The horns have a 3D Gaussian radiation pattern with
22.5° beamwidth and 18.1 dBi gain. To avoid “blind spots, ”
the angular spacing between adjacent horns on the array is
matched to the beamwidth; specifically, the horns are offset
by 22.5° in azimuth, and in elevation each other is offset by
22.5°; the resultant synthesized azimuth field-of-view (FoV)
of the array is 360° and 45° in elevation. T is almost identical,
except that it features a semicircular array of only 8 horns,
limiting the azimuth FoV to 180° while maintaining the same
45° elevation FoV. Further details of the system are provided
in [16].

At T, an arbitrary waveform generator produces a repeating
M-ary pseudorandom noise (PN) code, with 2047 chips and
2 GHz chip rate (0.5 ns delay resolution). The PN code is
generated at IF, upconverted to an Radio Frequency (RF)
center frequency of precisely 60.5 GHz, and then transmitted.
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At R, the signal received is downconverted back to Inter-
mediate Frequency (IF) and then sampled at 40 GHz (over-
sampled by 10x, both to reduce aliasing and to improve the
SNR). Finally, the sampled signal is matched filtered with
the PN code to generate a complex-valued channel impulse
response (CIR) as a function of delay. For a T power of
100 mW, the maximum measurable path loss of the system
is 162.2 dB when factoring in antenna gain, processing gain,
system noise, and the other components of the link budget.

The PN code is electronically switched through each pair
of T and R horns in sequence, resulting in 16 × 8 = 128
CIRs, which is referred to as an acquisition. Synchronous
triggering between the T and R is provided through Rubidium
clocks at each end, which are also used to discipline the local
oscillators.

B. MEASUREMENT CAMPAIGN
The measurement campaign was conducted in a 19.3 m × 10
m lecture room, pictured in Fig. 1(a). T was fixed on a tripod
at 2.5 m height and R was mounted on a mobile robot at
1.6 m height. The robot is equipped with an onboard
computer that enables rapid and autonomous recording of
channel acquisitions. It is also equipped with a laser-guided
navigational system that reports its location and heading as
follows: the robot first surveys the environment to generate
a floor plan – pictured in Fig. 1(b) – through simulataneous
localization and mapping (SLAM) [18] in a global coordinate
system with centimeter accuracy. The location of the robot
is reported in global coordinates while its heading is reported
with respect to boresight of one of the 16 antennas on the R
array and then transferred to global coordinates; that way the
estimated DD angle of the paths is independent of the robot’s
heading. The top section of the room was occupied by two
tables with surrounding chairs and the bottom section by two
rows of chairs. The tables and chairs were wrapped with kraft
paper to assist the robot with navigation.

During measurement, T was placed separately at the four
corners of the room, marked T1-T4 in Fig. 1(b). Since its
azimuth FoV is only 180°, T was oriented towards the center
of the room, marked by an arrow. For each T location, R
moved in a serpentine trajectory in each of the six areas,
marked A-F, up to a pedestrian speed of 2 m/s while recording.
The photograph in Fig. 1(a) was taken for Area F/T3. The
average distance between consecutive recordings was 8.8 cm
to emulate continuous motion. Between the four T locations
and six R areas, a total of 10, 895 channel acquisitions was
recorded. While recording, the channel was void of any mo-
tion (e.g. human) besides that of R, and LoS conditions were
maintained throughout.

C. PATH EXTRACTION
The 128 CIRs per acquisition were coherently com-
bined through the space-alternating generalized expectation-
maximization (SAGE) super-resolution algorithm [17] to ex-
tract channel paths and their properties. Given the wide
beamwidth of the horns (22.5°), the algorithm relies chiefly

on the high delay resolution of our system (0.5 ns delay bin)
to resolve different paths; notwithstanding, if two paths arrive
in the same delay bin and within the same beamwidth, they
can still be resolved to some extent if one of the paths is at
least 6 dB stronger than the other (rule of thumb). Our SAGE
algorithm is based on time difference of arrival (TDoA): If
a path is detected in the same delay bin by a least three
adjacent horns at T and by at least three adjacent horns at R,
the relative difference between their delays against the relative
displacement between their phase centers is used to estimate
its DD angle. The SAGE algorithm is also based on power
difference: the relative difference in the detected power of
the path between the horns against the relative antenna gains
along the path’s DD angle is also incorporated to estimate its
DD angle. Details of the algorithm are described in [19].

The output from SAGE for each acquisition was indexed
against the recording time t , initialized to t = 0 s in each
area. At each t , N (t ) channel paths indexed through n =
1 … N (t ) were extracted, complete with path properties in
the six-dimensional domain: complex amplitude αn(t ), delay
τn(t ), and 3D DD angle θn(t ) = [θT

n (t ) θR
n (t )], where θT

n (t ) =
[θT,A

n (t ) θT,E
n (t )] denotes AoD in azimuth (A) and elevation

(E) and θR
n (t ) = [θR,A

n (t ) θR,E
n (t )] denotes AoA, both in the

global coordinate system of the environment map generated
by the robot (see Fig. 1(b)). The measurement error of the
channel sounder was computed against the ground-truth prop-
erties of the LoS path, whose AoD/AoA and delay were
given from the geometry between T and R, and its path gain
(|αn(t )|2) from the delay through Friis transmission equation.
The average measurement error over all areas and transmitters
was reported as 1.1 dB in path gain, 0.54 ns in delay, and less
than 3.7 ° in any angle dimension.

Any measurement taken with a channel sounder will con-
tain not only the response of the channel, but also the response
of the sounder itself, namely the directional patterns of the
antennas and the responses of the T and R front ends. While
the SAGE algorithm accounts for de-embedding the antenna
patterns, the effects of the T and R front ends were removed
through pre-distortion filters designed from a back-to-back
calibration method [16]. Hence the path properties reflect the
“pristine” response of the channel alone and not that of the
measurement system.

Fig. 2 displays the 349 paths measured at t = 0 s in Area
D/T1, marked accordingly in Fig. 1(b). The paths are dis-
played in azimuth AoD vs. azimuth AoA vs. delay and are
color-coded against path gain in the colorbar. As is evident
from the plot, the paths cluster naturally in the angle-delay
domain. The specular path – the strongest – of each clus-
ter identified (through the algorithm in [41]) is marked by
a square. The ambient scatterers that generated the specu-
lar paths were classified through inverse raytracing [42]; the
scatterers classified are color-coded against the legend and
are also marked in Fig. 1(a) and (b). Note that up to three
reflections were classified (e.g. Left + Right + Left wall).

Although LoS conditions were maintained throughout
while recording, the limited 180° azimuth FoV at T and the
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FIGURE 2. Channel paths measured at t = 0 s in Area D/T1, marked accordingly in Fig. 1(b). The paths are displayed in the azimuth AoD vs. azimuth AoA
vs. delay and are color-coded against path gain in the color bar. It can be noted that the paths cluster naturally in the angle-delay domains. The specular
path of each cluster identified is marked with a square that is color-coded in the legend against the scatterer that generated the cluster.

limited 45° elevation FoV at both T and R acted as to block the
channel paths at times. Furthermore, the serpentine trajectory
of the robot was chosen deliberately to generate a rapidly
changing channel as the robot turned 180° in heading at the
edges. When turning, the measurements error was up to twice
as great than in the linear segments of the trajectory due to
the robot’s navigation system, which averages out heading
errors over time, but as a result reports heading that lags the
true heading – albeit by just a few degrees – yet significant
enough to affect the precision of SAGE. Blockage, rapidly
changing heading, and measurement error, together with an
actual physical environment characterized by scatterers with
intricate geometry and diverse materials, created channel con-
ditions that rigorously tested the beamtracking algorithm.

III. HYBRID BEAMFORMING IN SU-MIMO
In full digital beamforming, each antenna supports a unique
digital chain, meaning that the channel matrix is computed
between all T antennas and all R antennas in the design of
the precoder/combiner. While full digital beamforming can
deliver optimal performance in terms of capacity, it is pro-
hibitive when the number of antennas is massive, as is the case
for mmWave PAAs, due to the messaging overhead to popu-
late a massive channel matrix in addition to separate digital-
to-analog converters/analog-to-digital converters (DAC/ADC)
per chain converters per chain. To circumvent the problem,
IEEE 802.11ay has provisioned for hybrid beamforming –
a combination of analog and digital beamforming – where
each chain is associated with a subarray of PAA antennas
(or a separate PAA). In analog beamforming, phase shifts are
applied to the antennas to synthesize beams at T and R that are
electronically steered along the DD angle of dominant channel
paths – we henceforth refer to a T and R beam pair simply as a

DD beam. Because the DD beams are narrow, the correlation
between beams can be minimized – but not completely elim-
inated – through proper design. Digital beamforming then or-
thogonalizes any residual correlation by precoding the beams
at T and combining the beams at R.

Our Markov multi-beamtracking algorithm considers SU-
MIMO to support M DD beams. Given the reduced channel-
state information compared to digital beamforming, hybrid
beamforming will in general be suboptimal. Many hybrid-
beamforming algorithms have emerged in recent years – [15]
provides a comprehensive survey – and performance will
greatly depend on the channel. In this section, we propose
a hybrid beamforming scheme that integrates our channel
measurements directly, with no need for a channel model.

A. ANALOG BEAMFORMING
BT is realized through analog beamforming. Specifically,
DD beams synthesized at T and R scan a set of prede-
fined DD angles [θT

i θR
j ] composed from the Cartesian prod-

uct of L x L single-directional angles, θT
i , i = 1 . . . L and

θR
j , j = 1 . . . L respectively, with uniform spacing �θ in

between at each end, composing a codebook of size L2.
Since the horns we used for measurement are not electroni-
cally steerable, in this paper we employ a planar PAA model
instead, represented by the P-length steering vector s(θ) =

1√
P e j 2π

λ (cos θA cos θE,sin θA cos θE,sin θE )·X , where X is 3 × P ma-
trix of the 3D locations of the P antennas [45]. The beam-
formed CIR per codebook entry i j is then given from the
properties [αn(t ) τn(t ) θT

n (t ) θR
n (t )] of the n = 1 . . . N (t ) paths
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measured at time t as [5]:

hi j (t, τ ) =
N (t )∑
n=1

αn (t ) · δ (τ − τn (t )) ·

sT(
θT

i

)†
sT(

θT
n (t )

) · sR
(
θR

j

)†
sR (

θR
n (t )

)
, (1)

where † denotes the Hermitian.

B. DIGITAL BEAMFORMING
Once the L2 DD beams within the codebook have been
scanned, the next step is to find the combination of M DD
beams that optimizes SU-MIMO performance. To that end,
we consider the K = L2M possible permutations of the DD
beams, permuted into M-dimensional sets indexed through
k = 1 . . . K and m = 1...M as �k = [θk1 θk2 . . . θkM ], where
θkm = [θT

km θR
km], θT

km ∈ θT
i , θR

km ∈ θR
j .

Each set �k has a digital channel matrix composed from
the beamformed CIRs between the M x M single-directional
beams in the set:

h�k (t, τ ) =

⎡
⎢⎢⎢⎢⎣

hk1,k1 (t, τ ) hk1,k2 (t, τ ) · · · hk1,kM (t, τ )

hk2,k1 (t, τ ) hk2,k2 (t, τ )
...

...
. . .

hkM,k1 (t, τ ) · · · hkM,kM (t, τ )

⎤
⎥⎥⎥⎥⎦ .

(2)
Hence the channel matrix also accounts for the interference
between the M DD beams in the set. In fact, the metric we
use to quantify the optimality of a set is through its ergodic
channel capacity

C�k (t ) = log2

∣∣∣∣∣∣∣∣∣∣∣
I + ρ

Mσ 2

∞∫
τ=0

h�k (t, τ ) · h�k (t, τ )†dτ

︸ ︷︷ ︸
SINR

∣∣∣∣∣∣∣∣∣∣∣
,

(3)

where ρ/M is the total T power set to 1 mW and σ 2 is
the noise power at R, equivalent to 8 × 10−9 mW for the
2 GHz bandwidth considered. Essentially, the optimal set is
the one with the highest signal-to-interference-plus-noise ratio
(SINR), i.e. the one that minimizes interference between the
M DD beams. As such, capacity is a metric that considers the
beams dependently.

IV. MARKOV MULTI-BEAMTRACKING
Our Markov multi-beamtracking algorithm is initialized
through BT, through which all L2 DD beams within the code-
book are scanned exhaustively and the set of M permuted DD
beams that yields the highest capacity is selected for hybrid
beamforming. In principle, BT could be performed at each
time, but, aside from the cumbersome overhead, the scanned
beams are subject to channel uncertainty – rapid channel
variation due to small-scale fading or short-time shadowing
in cluttered environments, channel estimation error, etc. –

compromising the stability of the beams over time. Unstable
beams in turn trigger more frequent BT, forming a vicious
circle. Our objective, rather, is to minimize the amount of
channel scanning to reduce overhead while fusing the scans
over time to foster beam stability. How we achieve this ob-
jective – inspired by an algorithm from robot localization and
tracking [13] – is described in this section.

A. FIRST-ORDER MARKOV PROCESS
We pose our multi-beamtracking algorithm as a discrete first-
order Markov process. In general, a Markov process is de-
fined by a discrete number of states, state observations over
time, and fixed state transition probabilities between two
consecutive times. In our algorithm, the states are the sets
�k, k = 1 . . . K and the observations are the capacity of the
sets C(t ) = [C�1 (t ) C�2 (t ) . . .C�K (t )]. The Markov process
is then governed through the following equation [13]:

p (�k|C (0) . . .C (t )) = η (t ) · p (C (t ) |�k ) ·
K∑

k̃=1

p
(
�k|�k̃

) ·

· p
(
�k̃|C (0) . . .C (t − 1)

)
(4)

The prior probability p(C(t )|�k ) represents the likeli-
hood of set �k given the observation at a single time
alone (at t); the set is represented as a probability to re-
flect the channel uncertainty in the observation. To favor sets
with greater capacity, they are rewarded higher probabilities.
Specifically, the prior probability of �k is scaled according to
its capacity C�k (t ) with respect to the total capacity over all
K sets as:

p (C (t ) |�k ) = C�k (t )∑K
k=1 C�k (t )

. (5)

Naturally, the prior probabilities over all K sets sum to 1.
The posterior probability p(�k|C(0) . . .C(t − 1)) repre-

sents the likelihood of set �k given the observations over all
times, from t = 0 s, when BT occurs, up to the previous ob-
servation at time t − 1. When a new capacity C(t ) is available
at t , the posterior probabilities of all K sets are propagated to
from t − 1 to t through (4). The term

η (t ) = 1∑K
k=1 p (�k|C (0) . . .C (t ))

(6)

normalizes the posterior probabilities after propagation, im-
posing the law of total probability such that the sum over all
sets is 1.

The prior and posterior probabilities work hand-in-hand:
the former admits changing channel conditions while the latter
resists change, fostering beam stability over time. And as op-
posed to most other greedy algorithms [20]–[26], [28]–[32],
[34], [35], the Markov process supports multiple hypotheses:
it propagates all K states over time instead of committing to
only the most likely. This allows hypotheses that persist over
time to emerge, in which the prior reinforces the posterior,
rendering the algorithm robust. Finally, because the capac-
ity metric accounts for the interference between the M DD
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beams, the beams are tracked dependently, as opposed to the
greedy alternative in which the beams are tracked indepen-
dently of each other [30], [31].

Fig. 3 displays the measured paths (in azimuth AoD vs.
azimuth AoA only) in Area D/T1 at seven times, marked
t = 0:25:150 s in Fig. 1(b), over which the robot moves
down the room, turns, and then moves back up, forming a
“U” trajectory. The side-by-side subfigures t = (0, 150) s, t
= (25, 125) s, t = (50, 100) s correspond to the side-by-side
times on the “U”, where the robot is roughly at the same
location; in fact, note that the paths at the side-by-side times
look very similar. In particular, note that the paths change DD
angle incrementally over time and, more specifically, that all
clustered paths move in unison. Because the channel is highly
correlated in angle over time, it is expected that any DD beam
will change DD angle incrementally between two consecutive
times.

This spatial-temporal correlation of the channel is incor-
porated in the Markov process through the transition prob-
abilities p(�k |�k̃ ), to foster beam stability against channel
uncertainty. Namely, set �k̃ can transition to �k only if �k is
local to �k̃ as defined by:

p
(
�k|�k̃

)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if

∣∣∣θT
km − θT

k̃m

∣∣∣ ≤ r · �θ∣∣∣θR
km − θR

k̃m

∣∣∣ ≤ r · �θ
∀m = 1 . . . M

0, otherwise
(7)

where r is an integer radius parameter demarcating the scan
locality as multiples of the codebook spacing �θ. Essentially,
any set �k̃ can transition to set �k only if �k̃ lies within
the 3D DD (four-dimensional) cuboid centered at [θT

km θR
km] =

[θT,A
km θ

T,E
km θ

R,A
km θ

R,E
km ] per beam m. The number of beams

in the cuboid is (3r)4. Fig. 4 illustrates the transition prob-
abilities. As we shall see later, the radius r dynamically ad-
justs to how rapidly the channel changes over time, to reduce
overhead.

The set �MLE with the highest posterior probability is
the Maximum Likelihood Estimation (MLE) used for hybrid
beamforming at t :

�MLE = argmax
k

p (�k|C (0) . . .C (t )) (8)

The MLE set is found through an exhaustive search. How
to reduce the search space for practical implementation is
discussed next.

B. IMPLEMENTATION
The theoretical aspects of our tracking algorithm have been
described thus far; the practical aspects of the implementa-
tion are described in the sequel. In this paper, each beam is
synthesized by an 8 x8 PAA subarray at both T and R with
half-wavelength spacing between antennas (λ = 4.96 mm
at 60.5 GHz), and equivalent array gain of 18 dB. We also
assume �θ = (12°, 12°), which is about the half-power

beamwidth of the subarray, requiring L = 360◦
12◦ · 360◦

12◦ = 900
single-directional scans, or L2 = 81, 000 DD scans to provide
3D omnidirectional coverage.

1) BEAMFORMING TRAINING (BT)
In theory, the L2 DD beams scanned are permuted into K =
L2M sets of beams; in practice, K be a very large number. To
reduce the number of sets permuted, we apply an interference
constraint: no two beams in a set can have the same AoD nor
AoA; their beams would otherwise interfere with each other,
resulting in a set with low SINR (and in turn low capacity)
anyway. While the interference constraint reduces the number
of permutations down to K = ( L!

(L−M )! )2, this number in gen-
eral will still be too large to permute. To reduce the number
further, the L2 beams are first filtered by SNR. The filtering
exploits the sparsity of the mmWave channel. Namely, as
illustrated in Fig. 3, the measured paths form narrow, densely
packed clusters in the DD angle domain, therefore relatively
few beams will actually encounter paths during BT, meaning
that most beams will have negligible SNR. As an example,
Fig. 5 displays the SNR of the strongest 200 beams scanned
during BT at t = 0 s in Area D/T1. In this paper, we kept only
the strongest L2

MAX = 35 DD beams during any BT.
Given L2

MAX, M is determined as the maximum number of
beams for which the interference constraint can be satisfied
– i.e. there must be at least one set for which all DD beams
permuted from L2

MAX have unique AoDs and AoAs – but
not to exceed a predefined parameter MMAX. The number
of permuted sets, K , follows from the permutation. If M <

MMAX, BT is repeated at the next time in the pursuit of M =
MMAX, otherwise the beams are tracked, as described next.

2) BEAMTRACKING
After BT, the posterior probabilities are pinned to the prior
probabilities – i.e. p(�k|C(0)) ≡ p(C(0)|�k ) – given that
only observations at a single time (t = 0 s) are available.
Accordingly, the initial posterior probabilities are computed
through (5) and propagated forward through (4). While the
SNR filter and the interference constraint limit the number of
initialized sets, that number is multiplied during propagation
via the sum in (4), meaning that set k̃ at t − 1 can transition
to any other set k at t so long as the transition probability
between them, p(�k|�k̃ ), is non-zero. Thanks to our binary
transition probabilities, the propagation is limited to the sets
k that lie within the M cuboids of set k̃. Nevertheless, the
number of sets can grow exponentially through propagation,
by up to M · (3r)4 per time. In order to curb growth, the
number of sets propagated forward is limited to KMAX based
on the CONDENSATION technique in [14]. In the technique,
the KMAX sets with the highest posterior probabilities (out
of the maximum KMAX · M · (3r)4 propagated) are kept while
the others are discarded; accordingly, the normalization term
η(t ) in (6) is based on KMAX.

Fig. 6 shows the 20 sets with the highest posterior prob-
abilities over time in Area D/T1 for MMAX = 1; the value
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FIGURE 3. Channel paths measured in Area D/T1 at the seven times marked t = 0:25:150 s in Fig. 1(b), together forming a “U” trajectory by the robot
motion. The paths are displayed in azimuth AoD vs. azimuth AoA and are color-coded against path gain in the colorbar. The four DD beams determined by
the beamtracking algorithm are displayed as diamonds, color-coded against the scatterers classified in the legend, against which the beams are steered.
As the robot moves down the “U”, the beams move in lockstep with the DD angle of the scatterers. At t = 75 s, when the robot turns, the algorithm loses
track of the Glass door scatterer and subsequently of the Right wall at 100 s. On the way back up the “U”, the algorithm converges to a different set of
scatterers, without triggering BT thanks to the multiple hypotheses.
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FIGURE 4. Illustration of transition probabilities (in the azimuth (A) dimension only) for parameters L = 8,�θA = 45◦, r = 1, and M = 2. Set
�k̃ = [θk̃1 θk̃2] = [θT,A

k̃1
θ

R,A
k̃1

θ
T,A
k̃2

θ
R,A
k̃2

] can transition to any �k = [θk1 θk2]= [θT,A
k1 , θ

R,A
k̃1

θ
T,A
k2 , θ

R,A
k2 ] within the pairwise shaded area.

FIGURE 5. SNR of the strongest 200 DD beams scanned during BT at
t = 0 s in Area D/T1.

MMAX = 1 was chosen deliberately to illustrate the dynamics
of the single beam. At t = 0 s, the robot is farthest from T1 and
although the LoS path is the strongest, the single beam latches
on to the Glass Door scatterer instead, which generates rich
diffuse paths that, when combined with the specular path, give
rise to sets (DD beams) with the greatest capacities (SNR)
by far; in fact, the posterior probabilities are concentrated in
just those few sets. As the robot moves down the “U” and,
in particular at t = 75 s, the reflection from the Glass door
goes undetected – it is no longer “visible” due to lack of
incidence at those T-R locations – so the remaining scatterers
are much more comparable in strength; in turn, the poste-
rior probabilities are spread out. The cyclical pattern in the
posterior probabilities corresponds to the three consecutive
“U”s the robot traverses in the area. In this paper, KMAX was
determined as the number of sets with posterior probability
within 99% of the highest.

3) DYNAMIC SCAN LOCALITY
As explained earlier, the binary transition probabilities limit
the number of sets propagated over time. This, in addition to

FIGURE 6. Posterior probabilities of the 20 most likely sets over time in
Area D/T1, for a single beam (MMAX = 1). At times t = 0, 150, 300, 450 s,
the reflection from the Glass door is much stronger than all the other
scatterers, so the probabilities are concentrated in just the few sets (DD
beams) aimed at the Glass door. In contrast, at times t = (75, 225, 375) s,
the Glass door goes undetected, so the probability is more uniformly
spread among the sets aimed at the remaining weaker scatterers. Note the
periodic trajectory traced out by the robot.

KMAX, eases the computational burden of maintaining poten-
tially millions of sets. But where the limitation is most critical
is in reducing overhead, by localizing the scan within the
codebook from L2 DD beams to just KMAX · M · (3r)4 DD
beams, freeing up radio resources for data transmission.

The scan locality is adjusted dynamically through r based
on how quickly the channel is changing: After BT, the cuboid
radius is initialized to r = 1. A sharp drop in the MLE capacity
indicates that at least one of the DD beams has fallen out of
its own cuboid. Accordingly, if the MLE capacity at time t
drops below a certain percentage with respect to t − 1 – in this
paper we use 80% – r is incremented by 1 per time until all the
beams lie within the expanded cuboids, indicated by when the
capacity rises back above the 80% baseline. The increment
is limited to r ≤ 3, beyond which the multi-beamtracking is
most likely irrecoverably lost; in that case, BT is triggered.
If, however, the baseline capacity can be restored, r is decre-
mented by 1 per time so long as the baseline capacity is
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FIGURE 7. Dynamic adjustment of the codebook scan locality over time in
Area F/T4, via the radius parameter r. By expanding the radius from the
equilibrium value of r = 1 when the capacity drops steeply – followed by
contraction back to equilibrium – the beamtracking algorithm is able to
track four beams over the whole area, without triggering BT.

maintained, until the equilibrium radius r = 1 is reached.
Fig. 7 illustrates the dynamic radius over time in Area F/T4 for
MMAX = 4: any steep drop in capacity triggers an expansion
from r = 1 – at times up to r = 3 – and an eventual con-
traction back to equilibrium. The mechanism was successful
in tracking all four beams throughout the whole area, without
triggering BT.

V. RESULTS
In this section, we present the results of applying our Markov
multi-beamtracking algorithm to the measurements recorded.
The algorithm is run separately on each area/transmitter since
the measurements were recorded disjointly. The first three
subsections analyze performance at select times in an area,
over all times in the area, and over all areas/transmitters, re-
spectively. The final subsection, rather, analyzes performance
in the presence of humans over all areas/transmitters, by ap-
plying a blockage model to the measurements.

A. SELECT TIMES IN AREA D/T1
Consider once more the measured paths in Fig. 3 for times
t = 0:25:150 s in Area D/T1, over which the robot moves
in the “U” trajectory shown in Fig. 1(b). Superimposed on
the paths are the four DD beams determined by the tracking
algorithm for MMAX = 4, displayed as diamonds color-coded
against the scatterers classified in the legend, along which
the beams are steered. Although, as noted before, the paths
between the side-by-side times t = (0, 150) s, t = (25,125)
s, and t = (50,100) s – at which the robot is roughly at the
same location – are very similar, the DD beams tracked at the
side-by-side times are not the same: From t = 0–50 s, the four
beams reliably track the LoS path, Ceiling, Glass door, and
Right wall scatterers. At t = 75 s, however, the Glass door is
no longer visible, as explained earlier, and so its beam loses
track. Yet, by virtue of multiple hypotheses, the algorithm
latches on to the Right wall + Glass door instead. As the robot
moves back up the “U” from t = 100–150 s, the Glass door

is reabsorbed, but the Right wall is eventually replaced by the
Left wall; in fact, by t = 150 s the purple diamond is perfectly
aligned with the Left wall cluster. All the while, four beams
are tracked over the whole “U” – even around the turn at t
= 75 s when the channel is changing rapidly and the angle
measurement error is twice as great as the rest – thanks to
multiple hypotheses and dynamic scan locality.

B. ALL TIMES IN AREA D/T1
We now consider the robot motion over the whole trajec-
tory in Area D/T1. All results henceforth are presented for
MMAX = 4, 6, 8 (MMAX = 8 is the maximum value pro-
visioned by IEEE 802.11ay). First, we analyze the number
of sustainable DD beams, M, in Fig. 8(a): For MMAX = 4
four beams can be sustained always, whereas for MMAX = 6
six beams can be sustained 89% of the time, and for MMAX

= 8 eight beams can be sustained only 56% of the time.
Instead, Fig. 8(b) displays the overhead per time (in terms
of thousands of scans): we can see that MMAX = 4 requires
81, 000 scans (BT) only at initialization, whereas MMAX = 6
requires BT cyclically, when the robot turns on the “U” around
t = (75, 225, 375) s – most likely due to the rapidly changing
channel and higher measurement error there – while MMAX =
8 requires BT often. Even in the time segments during which
all three (MMAX = 4, 6, 8) are beamtracking (i.e. not BT), the
number of scans is progressively higher from MMAX = 4 to 8
since each additional beam broadens the scan locality.

Of course, as displayed in Fig. 8(c), the MLE capac-
ity is also progressively greater from MMAX = 4 to 8
thanks to more and more beams. It is interesting to observe
what happens when the number of sustainable beams across
MMAX = 4, 6, 8 is equal; this happens only when M = 4,
when the robot turns on the “U”. There the algorithm finds it
difficult to sustain more than four beams due to the rapidly
changing channel and larger measurement error. In fact, in
the attempt to support more beams (for MMAX = 6, 8), the
algorithm triggers BT repeatedly but actually obtains worse
capacity than when the algorithm is tracking (for MMAX = 4).
This means that the suboptimal solution provided through BT
with SNR filtering (for MMAX = 6, 8) – optimality can only be
guaranteed without SNR filtering, but then the computational
expense is prohibitive – is actual worse than the suboptimal
solution provided through beamtracking with local scanning
(for MMAX = 4).

C. ALL AREAS/TRANSMITTERS
The dynamics observed in Area D/T1 in fact were found
to apply everywhere, as is apparent from the histograms in
Fig. 9, computed over all areas and transmitters. Fig. 9(a)
displays the distribution in the number of sustainable beams:
for MMAX = 4 four beams are always sustainable, while for
MMAX = 6 six beams are sustainable 90% of the time, and for
MMAX = 8 eight beams are sustainable only 57% of the time.
Fig. 9(b) and (c) respectively display the average overhead and
average MLE capacity per M: for MMAX = 6, 8, the overhead
increases with M due to the broader scan locality inherent to
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FIGURE 8. (a) Number of beams, (b) Overhead, and (c) MLE capacity as
the robot moves over time in Area D/T1 for MMAX = 4, 6, 8.

more beams as well as due to the fact that the additional beams
are weaker and so lose track more easily, triggering BT more
often; however, the capacity does increase with more beams,
albeit at diminishing returns since the additional beams are
weaker. To compare across MMAX = 4, 6, 8, the mean of the
average overhead and average capacity over all M (weighted
by the occurrence of each) are displayed in Fig. 9(b) and (c)
as dashed lines. Again, the capacity increases with MMAX, but
at the price of increasing overhead.

FIGURE 9. (a) Occurrence in number of beams (b) Overhead, and (c) MLE
capacity, averaged over all times in all areas and transmitters, for MMAX =
4, 6, 8.

D. HUMAN PRESENCE
To analyze performance in the presence of humans, we ap-
plied the Modified Double Knife Edge Diffraction (MDKED)
model described in [46], which is a blockage model reduced
from measurements we conducted on human subjects using
the same 60 GHz channel sounder. In the model, the human
is represented as an infinitesimally high cylinder with 40 cm
diameter; in our application, the cylinder is placed randomly
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FIGURE 10. Analysis in the presence of humans. (a) Measured path gain of
the LoS path as the robot traverses Area D/T1, with and without human
blockage. (b) Overhead, and (c) MLE capacity, averaged over all times in all
areas and transmitters, for H = 5, 10, 15 humans placed randomly in the
lecture room and for MMAX = 4 fixed.

in the lecture room, and based on the placement will block
some of the measured paths. If a measured path is blocked,
the path is diffracted around the cylinder, which is equivalent
to adding an attenuation predicted by the blockage model to
the measured path gain. As an example, Fig. 10(a) shows the
measured path gain of the LoS path as the robot traverses Area
D/T1, with and without human blockage. In the latter case,
the measured path gain follows the periodic trajectory of the

robot, while in the former the measured path gain is attenuated
as the LoS path is gradually blocked by the cylinder – reaching
a trough when the path intersects its center (see inset) – and
eventually retreats back to equilibrium.

We consider three cases in our analysis, for H = 5, 10,
15 humans placed randomly and for MMAX = 4 fixed. The
overhead and capacity averaged over all the areas/transmitters
are shown in Fig. 10(b) and (c), respectively. Note that
M = 4 beams can still be sustained always – even for H = 15 –
and that when compared to the no human case in Fig 9(b) and
(c), overhead increases while capacity decreases, as expected.
Unexpected is that as H increases, the overhead actually de-
creases. This is because, when the room is densely packed
(H = 15), many of the beams are blocked simultaneously and
so propagation by way of numerous diffracted paths is preva-
lent, resulting in a posterior probability that is spread over
multiple sets; the benefit to overhead is that the multiple sets
propagate readily over time, seldomly triggering expansion of
the cuboid radius or BT. Rather, when the human presence is
light (H = 5), few beams are blocked simultaneously and so
the posterior probability converges to just a few sets; when
blockage does occur, the radius must expand significantly
to maintain track at the onset of severe blockage, or BT is
triggered. Of course, propagation via diffraction is weaker, in
turn decreasing the SINR and overall capacity for H = 15 vs.
H = 5.

VI. CONCLUSION
Beamtracking algorithms have emerged over the last five
years to reduce the overhead inherent to the radio-resource-
intensive beamscanning protocol that is employed for estimat-
ing the highly directional mmWave channel. Of the 19 papers
on the topic that we found in literature, all but one employs an
oversimplified channel model to gauge the performance of the
algorithms, and the one paper that employs actual measure-
ments considers small-scale motion only, over about a meter.
The Markov multi-beamtracking algorithm that we propose in
this paper, instead, was evaluated on a total of 10, 895 large-
scale channel measurements recorded with our high-precision
3D double-directional 60 GHz channel sounder, over which
the receiver traversed a total of 900.2 m. The measurements
were subject to a blockage, a rapidly changing channel, and
measurement error together with an actual physical environ-
ment characterized by scatterers with intricate geometry and
diverse materials, creating channel conditions that rigorously
tested the proposed algorithm. Notwithstanding, the algorithm
could sustain four beams always at an average capacity of 10.7
bit/s/Hz with an average overhead of 613 scans, six beams
90% of the time at 13.38 bit/s/Hz with 1317 scans on average,
and eight beams 57% of the time at 20.2 bit/s/Hz with 2872
scans on average. In the presence of up to 15 humans in the
environment, four beams could still be maintained, but capac-
ity dropped 8.6 bit/s/Hz while overhead rose to 777 scans on
average.
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