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Abstract
Digital twin (DT) is a promising technology for 

the new immersive digital life with a variety of 
applications in areas such as Industry 4.0, aviation, 
and healthcare. Proliferation of this technology 
requires higher data rates, reliability, resilience, 
and lower latency beyond what is currently 
offered by 5G. Thus, DT can become a major 
driver for 6G research and development. Alterna-
tively, 6G network development can benefit from 
DT technology and its powerful features such as 
modularity and remote intelligence. Using DT, 
a 6G network (or some of its components) will 
have the opportunity to use artificial intelligence 
more proactively in order to enhance its resil-
ience. DT’s application in telecommunications is 
still in its infancy. In this article, we highlight some 
of the most promising research and development 
directions for this technology.

Introduction
As commercial deployments of fifth generation 
(5G) mobile networks continue in several coun-
tries, researchers in industry and academia have 
started to focus on sixth generation (6G) mobile 
networks. A range of new technologies such 
as use of higher frequency bands (THz), orbital 
angular momentum (OAM) multiplexing, and 
intelligent surfaces have been proposed for this 
purpose. In addition, innovative paradigms like 
integration of terrestrial and satellite networks, 
massive use of machine learning (ML) and arti-
ficial intelligence (AI), and quantum and molec-
ular communications for the physical, medium 
access control (MAC), and network layers are 
also under development. All of these upcoming 
technologies and paradigms can be considered 
as enablers of 6G [1–3]. However, researchers 
are still debating on the importance or potential 
role of each one of the aforementioned tech-
nologies in 6G. For example, Viswanathan and 
Morgensen [1] believe that unmanned aerial 
vehicles (UAVs) and cell-free communications 
belong to the 5G era, whereas quantum, visible 
light, and molecular communications are more 
long-term technologies that will not be mature 
enough even for 6G implementation. Since 6G is 
not fully defined yet, these views are not neces-
sarily shared by other researchers.

Table 1 shows example key performance indi-
cators (KPIs) of 6G in comparison to 5G, which 
are gathered from [1–3]. These KPIs are generally 
defined to satisfy the requirements of the driving 
applications of 6G such as connected robotics, 
autonomous systems, augmented reality (AR)/
virtual reality (VR)/mixed reality (MR), blockchain 
and trust technologies, and wireless brain-com-
puter interfaces [2]. Some of these applications 
like connected robotics or AR/VR/MR have been 
considered in 5G, but their massive use could 
demand higher levels of KPIs beyond what is 
achievable by 5G [2]. For example, applications 
like autonomous driving and immersive AR/VR/
MR with high definition 360° video streaming for 
navigation and/or entertainment are expected to 
require ultra high reliability and 1 ms latency [4].

The technologies and driving applications of 6G 
enable an environment where a comprehensive 
digital representation of the physical world can be 
created and maintained through digital twins (DTs) 
of various objects. A DT is a real-time evolving 
digital duplicate of a physical object or a process 
that contains all of its history [5]. Its implementa-
tion involves massive real-time multi-source data 
collection, analysis, inference, and visualization. 
Although DT technology already exists in some 
industrial applications supported by 5G or even 
4G [6], it has not been widely adopted in other 
sectors, and has not reached its full potential. The 
need for high throughput (100 Gb/s), reliable and 
pervasive communication is one of the bottlenecks 
in realizing DT’s potential, requiring beyond-5G 
technologies. Therefore, 6G can be considered as 
an enabler for massive adoption of DTs. 

The popularity of DT depends on the popu-
larity and necessity of its applications. Potential 
high-connectivity-demanding and rapidly emerg-
ing applications of DT ranging from aerospace, 
which has very high mobility, to Industry 4.0, 
which has a very high number of devices in a 
location, and healthcare, with high reliability 
requirement, could be a major driver toward the 
development of 6G [6]. In this article, we also 
argue that the network itself can have its own DT, 
which will be an important application of DT. In 
addition, as discussed in following sections, the 
DT technology itself integrated with AI could act 
as a facilitator toward this development.

In this article, we aim to highlight and fur-
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ther explore this relationship between 6G and 
DT. We further describe DT and its features and 
requirements. Potential application of DT in future 
communication networks and in particular 6G are 
presented. 6G as a facilitator for wide adoption 
of DTs is then discussed. Finally, a road map for 
future research directions and some concluding 
remarks are presented, respectively. 

Digital Twin
The term “digital twin” was first coined by Grieves 
in 2003 [7]. The technology became more popu-
lar after the emergence of Industry 4.0 (in 2016) 
as it enabled integration of digital manufacturing 
and cyber-physical systems. 

A DT can be defined as a “virtual representa-
tion of an asset, providing both a historical led-
ger of the asset’s previous states, and real-time 
data on the asset’s current state.” The asset can 
be an object, a machine, a process, or even a 
system. A DT requires a real-time bidirectional 
connection with its physical twin (PT). It should 
be clarified that a DT is more than an avatar, 
a surveillance system, a simulation, or a simple 
model. An avatar is a limited replica of the physi-
cal asset without any possibility of controlling the 
asset. In addition, the bidirectional connection 
with the PT makes a DT more sophisticated and 
capable than a surveillance system. Unlike sim-
ulation, a DT ideally represents an actual asset 
with as few assumptions or simplifications as pos-
sible (except those that are required to digitally 
encode the physical asset involved).

While a DT can benefit from AR/VR/MR for 
visualization purposes, it is different from augmented 
virtuality. The main focus and goal of augmented 
virtuality is representation and human interaction. 
However, DTs mainly focus on maintaining the full 
history and up-to-date information of the assets/
systems to facilitate intelligent and data-supported 
decision making [8]. In the following, we briefly dis-
cuss key features and specifications of DT as well 
as relevant standardization activities and challenges. 

Key Features of Digital Twin
Pillars: A DT system is composed of three pillars: 

physical, digital/virtual, and connection pillars [6]. 
Figure 1 presents an example of a DT system and 
its pillars. The physical pillar, representing the PT, is 
the actual asset that is the basis of the digital model 
and the source of its data. The virtual/digital pillar, or 
equivalently the DT, is the host of the data models, 
historical data of the PT, decision support, AI, and 
visualizations. The DT is capable of sending control 
commands to the physical pillar. The connection 
pillar between a PT and a DT is the communication 
bridge that allows for the exchange of data and con-
trol commands among them. The connection pillar 
is not necessarily symmetric as the flow of data in 
each direction, PT-to-DT vs. DT-to-PT, requires differ-
ent levels of quality of service (QoS). In this article, 
the phrase DT system refers to a complete system 
consisting of all three pillars, while the term DT only 
indicates the digital pillar of the system. It should be 
emphasized that the DT or digital pillar of any physi-
cal asset is only meaningful when it is functioning as 
part of a complete DT system. 

Modularity: Modularity is the key to interoper-
ability and interchangeability. Modularity enables 
the system to evolve as the technology on each 

component evolves. In a modular system, the 
interfaces are standardized, and therefore the 
components can be replaced due to technology 
upgrade or seamless maintenance.

A DT can be highly modular [9]. It is possible 
to create a DT for every single component of 
an asset and create a mega-DT by interconnect-
ing the smaller DTs representing those compo-
nents. This feature enables rapid reproduction 
of processes and knowledge transfer. Modulari-
ty of a DT allows creating hybrid simulation and 
prototyping systems. In such systems, the DTs of 
existing physical subsystems are combined with a 
simulation of subsystems that still do not have a 
corresponding PT. A hybrid system can accelerate 
the design, development, and prototyping of new 
products and services. It can also enable perfor-
mance testing of the physical subsystems in a vir-
tual replica of the target application environment 
(within the boundaries of the data model used to 
represent the related PTs).

Remote Intelligence: The capability to apply 
remote intelligence to enhance the operation 
of the PT is another important feature of a DT. 
A resource-limited physical device or an old 
machine can become more efficient or intelli-
gent by running data analysis, AI algorithms, or 
even conventional optimization and/or analysis 
algorithms on its DT, which can be located at the 
edge or in the cloud.

Standardisation
The modularity feature of DT enables creation 
of mega-DTs by rapid reproduction of processes 
from DTs of different components. This necessi-
tates interoperability among these components 
and therefore highlights the importance of DT 
standardization. The current activities on DT 
standardization are focusing on data collection, 
storage, and exchange [10]. Microsoft1 is devel-
oping a programming-language-independent data 
management model based on JavaScript Object 
Notation for Linked Data (JSON-LD) called Digital 

Figure 1. Pillars of a digital twin system.

1 Commercial products and 
companies mentioned in this 
article are merely intended 
to foster understanding. 
Their identification does not 
imply recommendation or 
endorsement by the National 
Institute of Standards and 
Technology.

Table 1. Example KPIs of 5G and 6G [1–3].

KPIs 5G 6G

Data rate 10+Gb/s 100 Gb/s

Delay 1 ms 0.5 ms

Position precision meter centimeter

Device intensity 1 Million/Km2 10 Million/Km2

Spectral efficiency — 3x more than 5G

Energy Efficiency — 10x more than 5G
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Twin Definition Language (DTDL). DTDL is used 
for data management of DTs that are deployed 
using Microsoft Azure. Although DTDL addresses 
the interoperability challenges on Azure-based 
DTs, lack of comprehensive standardization could 
affect DT adoption, especially for their deploy-
ment at the edge [9]. 

Another candidate for widespread standard-
ization of DTs could be the functional mockup 
interface (FMI) (https://fmi-standard.org/). It is 
currently a free standard that enables building 
DTs of different PTs using combinations of XML 
and C codes.

Several other relevant existing standards, such 
as Object Linking and Embedding for Process 
Control (OPC) Unified Architecture (OPC-UA), 
which is a standard for machine-to-machine com-
munication, can be leveraged toward DT stan-
dardization. OPC-UA can be used to connect the 
components of the PT, and then the communica-
tion links between the PT and the DT can utilize 
existing application programming interfaces (APIs) 
like the REpresentational State Transfer (REST) 
API. All these standards along with newly defined 
ones can be brought together to define a unified 
set of standards for DTs.

Digital Twin of 
Communication Networks

So far, the DT technology has been adopted in 
manufacturing, healthcare, and aviation [9]. In 
the telecommunications industry, companies like 
Spirent Communications and British Telecommu-
nication (BT) have started developing DTs for 5G 
network components. These activities will pave 
the way for full adoption of DT in 6G.

Similar to its application in other industries, 
using a DT of a telecommunication network or 
any of its components can significantly improve 
network design and maintenance. This directly 
affects the network’s life cycle, as discussed in 
the remainder of this section.

Network and DT’s Life Cycle
The evolving digital replica of a network that 
is provided by its DT can assist in the design, 
deployment, operation, and expansion phases of 
a network. This is shown in Fig. 2 and further illus-
trated in the following.

Design and Deployment: In the era of DTs, 
simulation and model-based network design is 
replaced by an analytics-supported design pro-
cess. Modularity of DTs enables network design-
ers to exploit the existing knowledge on DTs of 
various networks’ components. Engineers will then 
be able to design the communication network by 
creating a hybrid-simulation environment using 
the modularity feature. As observed in Fig. 2, the 
design and deployment phase starts with a phys-
ical component of the network such as a base 
station (BS) (shown in blue highlight) and its DT. 
The rest of the network is designed in the digital 
domain using AI. Once the design process, test, 
and verification are completed through analytics 
in the hybrid system, the deployment phase starts 
(the BS is highlighted in grey). As different sections 
(or subsystems) of the network are deployed, 
their DTs will be created and merged with the 
hybrid simulation environment. By the end of the 
deployment phase, the hybrid system becomes a 
complete DT. The key difference in this method-
ology compared to existing network simulation 
and planning tools used in 5G and earlier gen-
erations, including general ones and proprietary 
tools, is that DT-based systems are connected to 
deployed physical subsystems, and the whole sys-
tem evolves as the deployment proceeds. 

Smart Operation, Maintenance, and Resil-
ience: Phase two deals with the operation of the 
network as shown in Fig. 2’s operation phase. 
Here, an AI-enabled DT optimizes the operational 
parameters of the network based on the real-time 
data and the knowledge generated through prior 
experience. Resilience is the ability of the network 
to maintain an acceptable level of service in the 
event of various faults and challenges appearing 

Figure 2. A network’s life cycle using DT. The grey icons like base stations indicate that they have not 
been deployed yet, and the action results of the other side of the arrow leads to their existence.
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during normal operation [11]. Resilience cannot 
be achieved if the network is not prepared for 
potential disruptions. AI can check all possible 
what-if scenarios and choose the network config-
uration that guarantees operation with the highest 
QoS. This is a step beyond what is known as the 
self-organizing network (SON). To achieve real 
resilience, the AI in the DT acts beyond self-op-
timization and self-healing, and performs predic-
tion and strategic planning. In the SON, questions 
like placement of the required intelligence and 
the coordination with legacy systems still remain 
unclear. DT modularity supports intelligence at 
the edge, federated learning, and transfer learn-
ing to provide maximum resilience [4]. Basical-
ly, modularity will bring the flexibility to add and 
remove crucial components at different locations 
and essentially provide the redundancy as and 
when needed. It is true that redundancy improves 
resilience, but it also increases cost and overhead. 
Our point is that with DT modularity, intelligence 
is supported, and intelligence predicts potential 
disruptions. Predicted disruptions can be taken 
care of before happening, and the system will be 
resilient without the need of having costly redun-
dant copies for each and every component. Also, 
additional sensors and edge computation can be 
used to create DTs for legacy equipment. 

Maintenance, prediction, and strategic plan-
ning can be better clarified with the following 
toy example. The equipment used in a network 
has a certain lifetime beyond which they need 
either maintenance or replacement. The estimat-
ed lifetime is normally provided by the manufac-
turer. However, in practice, the actual lifetime 
could differ from this estimate based on the 
workload and physical condition of the operat-
ing location. The AI on the network’s DT or each 
of its components’ DTs are capable of learning 
each component’s lifetime from the manufactur-
er data, the real-time data received from the PT, 
as well as other external factors. As a result, the 
DT can modify the network’s working conditions 
to maximize the lifetime of different equipment 
and/or efficiently schedule maintenance time. 
In real scenarios, other than this toy example, 
the optimization should consider optimal service 
and other important criteria too. Using AI facil-
itated by DT to support a network’s operation 
enables the network to predict its disruptions 
caused by components’ failure or other sourc-
es, proactively respond to them, and/or prevent 
them before happening. 

Knowledge Transfer and Robust Expansion: 
The last phase of most products in manufactur-
ing is dismissal phase and release of a new prod-
uct according to changes in the market and the 
lessons learned from the existing product. In the 
telecommunications domain, we can translate it 
to network expansion to new domains, geograph-
ical locations, and/or providing new services; 
for example, using the DT of a 5G network to 
transfer knowledge for the design phase of 6G. 
Disconnected twins of components or the com-
plete network can be used for the design of new 
networks and testing new services. Additional-
ly, operators can monetize their experience by 
selling the data and the created knowledge via 
disconnected twins [12]. As shown in Fig. 2, this 
phase closes the network life cycle loop. 

DT of the Next Generation of Networks

As 5G has already reached its deployment phase 
and its standardization has been almost completed, 
DT-based design and operation of networks can 
show its benefit mostly in 6G. Using a DT-based 
approach, 6G can be designed and standardized 
in a more data-oriented fashion. In the operation 
phase, 6G will be able to handle its own DT, while 
the massive overhead created by the DT of the net-
work cannot be handled by 5G while supporting its 
high throughput and/or ultra delay-sensitive usual 
services. 6G’s high KPIs in addition to its synergy 
with AI will enable it to support the additional over-
head to have its own DT. In the next section, we 
present how 6G can support other DTs.

6G as an Enabler 
of Digital Twin

As discussed so far, a DT is implemented using a 
combination of a simulation of the physical sys-
tem and a means to communicate all the data 
generated by the physical system to its DT and 
the AI-processed command and control from DT 
to the physical system. The communication part 
involved in the successful synergy between a DT 
and its corresponding PT has to support ultra-re-
liable, real-time (or semi-real-time depending on 
the application), and high QoS communication. 

At present, DT technology is mainly used in 
industrial plants, and it is supported by 5G or ear-
lier generations of communication protocols. It is 
quite conceivable that wide adoption of this tech-
nology results in higher capacity demands as well 
as new scenarios beyond the capabilities of 5G. 

Among the early adopters, General Electric 
is one of the pioneers in using DT technology 
in manufacturing. According to the company 
$1.6 billion has been saved by early detection of 
industrial component failure through continuous 
remote monitoring of assets [13]. In such sce-
narios, network reliability is extremely important, 
and full wired connection is not an option due 
to its complexity of installation and high cost. 
Therefore, for future massive-scale industrial 
Internet of Things (IoT) applications facilitated by 
DTs, a 6G network is more advantageous than 
its 5G counterpart.

Figure 3 gives a schematic detail of how a PT 
in an industrial IoT use case can have different 
DTs for each of its components distributed over 
the cloud and the edge, supported by a 6G net-
work infrastructure. The PT, a factory with differ-
ent physical systems, is modeled as a combination 
of several DTs. The DTs are distributed in various 
cloud and edge servers. The red dotted lines rep-
resent logical bidirectional connections between 
the PT and the DTs. The network infrastructure 
as depicted in Fig. 3 has a fully automated con-
trol plane. This control plane can orchestrate the 
network using AI algorithms that are continuously 
trained by the network data. AI-supported auton-
omous operation of this complex system (mega-
DT) requires near-perfect connection between 
the DTs on the edge and the cloud servers. 6G 
can support this mega-DT with millisecond laten-
cy, 100 GB/s data rate, and ultra high reliability.

A DT system can benefit from integrated mod-
ern virtualization technology in order to display 

At present, DT technology 
is mainly used in industrial 
plants, and it is supported 

by 5G or earlier genera-
tions of communication 

protocols. It is quite 
conceivable that wide 

adoption of this technology 
results in higher capacity 

demands as well as new 
scenarios beyond the 

capabilities of 5G.
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complex data types to the users. To enable that, 
many networked data-collection devices (e.g., 
high-resolution cameras) are required, and this 
has to be enabled in the edge networks [5]. Pro-
cessing ultra-high-definition videos along with 
complex AI algorithms like deep learning would 
require signifi cant processing power localized in 
a single node or a few nodes. A more feasible 
solution is to enable federated AI, where diff erent 
components of the AI algorithms can be distrib-
uted over the network nodes [4]. For example, a 
deep neural network can have some of its inputs/
outputs in the low-complexity edge nodes, while 
hidden neurons reside in the cloud with more pro-
cessing power. These spatially distributed compo-
nents of the neural network require ultra-reliable 
communication to avoid erroneous training and 
output. Although federated AI has been imple-
mented using 5G in small scale, its larger and 
more complex deployment could require ultra 
high reliability and 1 ms latency of 6G [4]. 

Furthermore, due to the modularity feature of 
DTs, they may not be localized in either a single 
node or a small subset of nodes [9]. As a result, 
the data associated with the DTs and the AI that 
operates on these data may have to be distributed 
over the cloud and/or several edge servers across 
the network. Seamless communication among 
these distributed DTs, computation associated with 
the distributed AI operating on these DTs, and 
maintaining security and integrity of these data is a 
challenge. One solution is using blockchain-based 
transactions between these nodes. However, high 
transaction throughput requirement (i.e., 10,000 
transactions per second and millisecond latency) 
of private and consortium blockchains can only be 
satisfi ed by 6G-level QoS [1].

Future Research Directions
Having introduced the concept of DT in telecom-
munications and its potential roles in setting up and 
transforming 6G networks, as both an enabler and 
a use case, in this section we enumerate several key 
research directions related to this combined fi eld.

DT Ownership Issues
DT ownership is a challenging issue with tech-
nical, financial, and legal aspects. The challenge 
is mainly caused by the potential difference in 
the ownership of the physical entity and the DT 
platform. A simplifi ed example of this scenario is 
common fi tness trackers. A fi tness tracker device 
is owned by an individual, while the generated 
data is owned by and stored on the application 
provider’s cloud. Normally, the individual can only 
access the data via a specifi c application interface 
without the option of exporting the data. Howev-
er, the individual can disconnect the fi tness track-
er or simply stop using it at any time. Since a DT 
contains more detailed information and needs to 
be always connected with the physical object, 
ownership issues must be clarified. This is espe-
cially important considering the General Data Pro-
tection Rules (GDPR) introduced in the European 
Union. In [2], the authors considered home appli-
ances in an IoT scenario. The owner of an appli-
ance, if also interested in full ownership of the 
data, can buy, install, and maintain its DT on his/
her home gateway. While this is a viable option, it 
requires owning a gateway with suffi  cient storage 
capacity and security. Alternatively, the appliance 
owner can rent cloud/fog/edge services to install 
and maintain the DT. Therefore, the ownership 
issue will go hand in hand with cloud/fog/edge 
computing and placement challenges. In [12], the 
IoT devices are connected to the home network, 
and the ownership scenario will be more compli-
cated in industrial settings with the use of 6G. The 
investigation of more complicated ownership-re-
lated scenarios, especially for process or system 
DTs with multiple components owned by diff erent 
entities, remains open for further research. 

Ultra-Low-Latency and Reliable 
Communication between DT and PT

As mentioned previously, a seamless real-time data 
exchange between the DT and the PT is a neces-
sary condition to defi ne a DT system. A signifi cant 
amount of data has to be continuously and reliably 

Figure 3. Communication of PT and DT over a 6G network.
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exchanged between the pair. The software tools, 
data analytics modules, and data that make the DT 
an appropriate clone of the PT should mostly be 
stored in the cloud. However, for some critical use 
cases (e.g., the DT of a remote-surgery system), 
implementation in the edge might be preferred [14]. 

Whatever the scenario, it is anticipated that most 
DT implementations would require ultra-low-laten-
cy and reliable communication between the DT 
and its PT. Recent research studies have established 
the importance of ultra-low-latency and reliable 
communication for some future applications, and 
reported the development of technologies and 
algorithms that could make that achievable [1, 2]. 
However, further breakthroughs across all protocol 
layers of the network are still needed to achieve 
strict latency and reliability requirements.

Federated DT in the Cloud/Edge
Resources such as power, storage, and high-speed 
memory are sometimes constrained in today’s 
networks. Therefore, significant resource manage-
ment is necessary to sustain a technology like the 
DT, which includes communication, data analy-
sis, and AI-based computation. To accommodate 
various use cases of 6G and beyond networks, it 
is anticipated that a large percentage of the com-
putation (including AI algorithms) and storage is 
moved to the edge of the network [4]. The trend 
will be similar if 6G and beyond networks have 
to support massive adoption of DT technology. 
Having said that, it will be almost imperative that 
several backend solutions enabling a DT for a par-
ticular PT need to be hosted in multiple data cen-
ters in the cloud and/or edge. 

There are several reasons for the need to do 
this distribution or even replication of DTs. First 
of all, the storage and computing facilities of the 
servers in the cloud or the edge may pose sys-
tem-level limitations to host a DT in one place. 
This might create unnecessary performance bot-
tlenecks. Second, there might be failures in the 
servers or network links that might hamper the 
seamless connectivity between a PT and its DT. 
Therefore, it is pragmatic to distribute multiple 
copies of DTs all over the cloud and/or the edge 
servers, as illustrated in Fig. 3. 

Several components of the cloud and/or edge 
distributed DTs need to communicate with one 
another to exchange data and/or train AI models 
to establish automated and intelligent operations. 
This can be referred to as federated DT similar to the 
concept of federated learning as proposed in [4]. It is 
a challenging task to run such forms of synchronized 
and collaborative AI algorithms over the nodes of 
the network. This is still an open research area.

DT of an Entire Network
As mentioned before, DT technology has not been 
utilized much for telecommunication networks. 
Today’s telecommunication networks are getting 
softwarized due to new trends like software defined 
networking (SDN) and network function virtualiza-
tion (NFV). The advent of AI in addition to network 
softwarization is further pushing the drive toward 
automated and autonomous telecommunication 
networks. Therefore, apart from the physical infra-
structure (i.e., transceivers, antennas, optical fibers, 
filters, etc.), most of the other network components 
can be implemented as cloud-native software. 

This would constitute a paradigm shift in terms 
of how future networks can be managed and used 
if a composite DT of an entire network can be cre-
ated. If the DTs of the physical components of the 
networks (i.e., transceivers, switches, links) can be 
implemented, they can be nicely intertwined along 
with the other softwarized components of the net-
work to form a composite DT of the network. Just 
like a massive manufacturing unit or a giant space 
shuttle can be troubleshot and managed by tuning 
several parameters on their DTs, an entire network 
can also be managed, upgraded, and troubleshot 
using its DT. Several network services and new tech-
nologies pertaining to networks can also be tested 
and pre-implemented on these massive-scale net-
work DTs before deployment in the real networks. 

Figure 4 captures our vision toward enabling 
the DT of an entire network. It also highlights 
some of the related research issues like network 
monitoring and troubleshooting using AI-based 
analytics and ownership issues using smart con-
tracts hosted in a blockchain. 

Experimental Investigation of DTs
The development of a complete LTE network using 
commercially available software components such 
as Amarisoft™ LTE 100 eNodeB, UE from software 
radio systems (srsUE™), and a generic RF front-end 
was documented in [15]. This network was entirely 
switched ON/OFF using a Python and Linux-based 
code. The code would turn on the LTE network, 
stream a YouTube video, collect data from the video 
for analysis in real time, and plot various perfor-
mance curves. A similar type of setup can prove to 
be a suitable starting point for an experimental inves-
tigation of the DT of a network. More developments 
would still be required to build a graphical user inter-
face (GUI) to visualize the operations of all compo-
nents, and to set up real-time connections between 
the graphical representations of the DTs and PTs.

Conclusions
In this article, we discuss the application of DT in 
networking and present its potential relationship 
with 6G. While 6G can facilitate realization and 
adoption of DT in several industries by providing 
the required levels of reliability and speed, DT 
integrated with AI can also facilitate 6G network 
design, deployment, and operation. This approach 
can have significant impact on achieving high net-
work resilience. Additionally, demanding applica-
tions of DT, ranging from aerospace to Industry 4.0 
and healthcare, could be a major driver toward the 
development of 6G. Potential DT-related research 
directions have also been highlighted in the article. 
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Figure 4. Digital twin for an entire network.
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