
Admission Control and Scheduling of Isochronous
Traffic with Guard Time in IEEE 802.11ad MAC

Anirudha Sahoo, Weichao Gao, Tanguy Ropitault and Nada Golmie
National Institute of Standards and Technology

Gaithersburg, Maryland, U.S.A.
Email: {anirudha.sahoo, weichao.gao, tanguy.ropitault, nada.golmie}@nist.gov

Abstract—An upsurge of low latency and bandwidth hungry ap-
plications such as virtual reality, augmented reality and availability
of unlicensed spectrum in the millimeter wave band at 60 GHz have
led to standardization of the new generation WiFi systems such
as IEEE 802.11ad and 802.11ay. Due to the stringent Quality of
Service requirement of those applications, IEEE 802.11ad/ay have
introduced contention free channel access called Service Period.
One type of user traffic supported by IEEE 802.11ad is isochronous
traffic, which is essentially periodic traffic that requires certain
channel time to be allocated before its period ends. In an earlier
work, we presented three Admission Control Algorithms (ACAs)
which admit isochronous requests to achieve the above goals. One
of these ACAs, the proportional fair allocation admission control
(PFAAC), offers the best tradeoff across different performance
metrics. But it did not consider guard time (GT) overhead, which
is essential in a practical system. In this paper, we present two
methods to compute upper bounds on GT overhead. We evaluate
performance of the modified PFAAC with the two methods and
PFAAC with no GT overhead. The modified PFAAC with the
method that uses a tighter upper bound on GT overhead, provides
the best performance.

I. INTRODUCTION

There has been an upsurge of networking applications that
require high throughput and low delay service. Applications
such as Virtual Reality (VR), Augmented Reality (AR), wireless
backhaul, high bandwidth connectivity with 8K TVs are some of
the examples that demand Quality of Service (QoS) in terms of
delay and throughput. A large amount of bandwidth availability
(˜12 GHz in the USA) in the unlicensed millimeter wave
(mmWave) band at 60 GHz has led to the formulation of the new
generation WiFi standards like IEEE 802.11ad and 802.11ay,
also known as Wireless Gigabit (WiGig). These standards make
use of large channel bandwidth (2.1 GHz) (in both of them),
Multiple Input Multiple Output (MIMO) and channel bonding
techniques (in IEEE 802.11ay) to provide very high data rate [1],
[2]. Due to its probabilistic channel access mechanism, stringent
QoS requirement of the above said applications cannot be met
by contention based channel access traditionally used in older
WiFi standards. Hence, in 802.11ad/ay, the WiGig standard
supports contention free channel access referred to as service
period (SP) which is suitable for QoS based applications. An
SP is a dedicated channel duration exclusively reserved for
communication between a pair of nodes. However, the standard
does not specify how to schedule those SPs for user traffic. This
is the broad topic of study (for the IEEE 802.11ad system) in
this paper.

In IEEE 802.11ad, there is a particular type of user traffic
called isochronous traffic. Isochronous traffic is essentially
periodic traffic that needs certain amount of channel time
before its period ends. So, isochronous traffic needs guaranteed
channel time allocation with stringent deadlines. Some of the
new applications in the AR/VR domain have high throughput
and low latency requirement and need almost a constant bit
rate (CBR) service. As mentioned in [3], application Riftcat on
servers and VRidge on smartphones use a setting in the hardware-
accelerated H.264 encoding that generates traffic which is almost
CBR. The authors in [3], [4] provide the traffic trace of freely
available AR/VR application Virus Popper (see Figure 1 in [3],
[4]), which shows that the downlink traffic of that application
is almost CBR. In addition, many Internet of Things (IoT)
applications have periodic traffic [5]. Some of those applications
may be time critical, i.e., there may be a deadline associated
with the traffic. Aforementioned applications can make use of
isochronous traffic support by IEEE 802.11ad to provide the
strict QoS in terms of latency and throughput. As pointed out
in [6], TP-Link Talon AD7200 [7] was the first IEEE 802.11ad
based router1 followed by Netgear Nighthawk X10 Smart Wifi
Routers [8]. As per the finding by [6], current firmware in
those commercial products only supports Contention Based
Access Periods (CBAP) based channel access using Enhanced
Distributed Channel Access (EDCA). It was also pointed out
in [6] that the CBAP channel access leads to inefficiencies due to
deafness problems in channel sensing and that TCP throughput
drops when the channel is crowded with more stations. Thus,
it is perceivable that CBAP based channel access may not
be adequate for high throughput low latency applications like
AR/VR. In the early days of IEEE 802.11ad, applications with
such real time stringent QoS requirements were yet to come
into existence. Hence, we argue that such application would
drive the industry to implement contention free channel access
using SP. Due to this requirement, IEEE 802.11ad system needs
an admission control algorithm that can determine whether
or not a new request can be admitted such that the new as
well as the existing requests can be guaranteed their requested
channel times. A scheduling algorithm allocates channel time for

1The identification of any commercial product or trade name does not imply
endorsement or recommendation by the National Institute of Standards and
Technology, nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.



each admitted request such that each request gets its requested
channel time before its deadline, which is the end of its period.
The major challenge for the admission control and scheduler
is to be able to guarantee SP duration to admitted user traffic
(or requests) before their respective deadlines, while admitting
high number of requests and achieving high channel utilization.
The algorithms also should be fair while allocating channel
time to different users. In [9], we proposed three Admission
Control Algorithms (ACAs) which have the above properties.
Since isochronous traffic has deadlines to meet, the scheduling
algorithm presented in that work is based on Earliest Deadline
First (EDF) scheduling algorithm used in scheduling tasks in real
time systems [10]. Among the three ACAs, the Proportional
Fair Allocation Admission Control (PFAAC) offers the best
tradeoff across different performance metrics. But in that work,
the ACAs and the scheduling algorithm did not account for
guard time (GT) overhead which is required in a real IEEE
802.11ad system. In fact, to the best of our knowledge, there
has been no study of admission control and scheduling of IEEE
802.11ad in the literature that includes GT overhead. We believe
our work presented in this paper is the first to consider GT
overhead in IEEE 802.11ad admission control and scheduling. A
GT is inserted between two adjacent allocations and is calculated
based on worst case clock drift and maximum allowed number
of lost beacons. A GT prevents adjacent transmissions to overlap
(or interfere) in time if a station does not receive few beacons
and its clock drifts during that period. In this paper, we show
methods to compute two upper bounds on GT overhead. Then,
we present a modified PFAAC admission control algorithm
that accounts for GT overhead based on the computation of
upper bounds on GT overhead. The modified PFAAC admission
control algorithm still retains the same computational complexity
as the original PFAAC algorithm. Hence, it is suitable for a real
IEEE 802.11ad system. The main contributions of this work
are: i) we present methods to compute two upper bounds on
GT overhead, ii) we propose modification to PFAAC admission
control algorithm to account for GT overhead, while retaining
the same computational complexity, and iii) we present detailed
simulation results of the modified PFAAC admission control
algorithm to show the effect of GT overhead in terms of different
performance metrics.

II. DESIGN OF IEEE 802.11AD ADMISSION CONTROL
AND SCHEDULING

A. IEEE 802.11ad Medium Access

The medium access time in IEEE 802.11ad consists of an
infinite sequence of time durations called Beacon Intervals (BI).
A BI is expressed in Time Units (TU), where 1 TU=1024 µs.
Each BI consists of a Beacon Header Interval (BHI) followed
by a Data Transmission Interval (DTI). The DTI is used for data
exchanges and beamforming training among IEEE 802.11ad
Stations (STAs) and Personal Basic Service Set (PBSS) Control
Point/Access Point (PCP/AP). During a DTI, channel access
is specified in two ways. A CBAP duration implies that STAs
should access the channel using contention based scheme called

EDCA [11]. A SP type of channel access is intended for
communication between two STAs or between a STA and a
PCP/AP without any contention. CBAP and SP schedules in a
DTI are announced by the PCP/AP in a Directional Multi Gigabit
(DMG) Beacon frame in the Beacon Transmission Interval (BTI)
or Announce frame in the Announcement Transmission Interval
(ATI) of BHI (before DTI period starts) [11].

B. IEEE802.11ad Traffic

IEEE 802.11ad has two types of user traffic: isochronous and
asynchronous. Isochronous traffic is suitable for applications that
require periodic data transmission with certain QoS requirements.
Asynchronous traffic, on the other hand, is a one time request,
although the requested duration may be granted in multiple
allocations. Asynchronous traffic may be best effort or may have
certain QoS requirements. A station sends Add Traffic Stream
(ADDTS) requests to its PCP/AP to request resources for its
isochronous or asynchronous traffic. The Traffic Specification
(TSpec) element in the ADDTS request carries the traffic
parameters for which resources need to be allocated. Because
of the periodic nature of isochronous traffic, scheduling of this
type of traffic is more challenging. The most important traffic
parameters of isochronous traffic are [11]:

• Allocation Period (P ): Period over which allocation repeats.
Allocation period can only be an integer multiple or integer
fraction of the BI.

• Minimum Allocation (Cmin): Minimum acceptable allo-
cation in microseconds in each allocation period. If the
request is accepted, the PCP/AP must guarantee at least
this duration to the STA in every allocation period.

• Maximum Allocation (Cmax): Requested allocation in mi-
croseconds in each allocation period. This is the maximum
duration that can be allocated to the user in each allocation
period.

• Minimum Duration: Minimum duration in microseconds
in each allocation period. An allocation may be split into
multiple chunks. Each chunk must be larger than or equal
to this duration. The user can set this value to zero to
indicate that this parameter should not be considered. In
this study, we assume this parameter to be zero to keep
the problem simple.

Let Cop
i , called the operational duration, be the duration

allocated to isochronous request Ti whose traffic parameters
are (Cmin

i , Cmax
i , Pi). The allocated duration Cop

i may change
over the lifetime of the request, but it must always satisfy
Cmin

i ≤ Cop
i ≤ Cmax

i . Since this is a periodic request, Cop
i

must be allocated in every Pi interval. At the beginning of every
period, the request is ready to be served, i.e., SP duration can
be allocated anytime after the beginning of the period and the
corresponding deadline is its period. We refer to the beginning
of every period as the release time of the request. Denoting
Rin as the nth release time of isochronous request Ti, we have
Ri0 = 0, Ri1 = Pi, Ri2 = 2Pi and so on. In IEEE 802.11ad,
when a request arrives, if admitted, it is scheduled in the next
BI. Hence, release time Ri0 = 0 of a request refers to the start

2



of the next BI. These periodic releases of a request contribute
to the load on the system and are captured as its demand. So,
demand of a request Ti is represented as a series of triples (Cop

in
,

Pi, Rin ), n = 0, 1, .., where Cop
in

is the duration to be allocated
between Rin and Rin+1

. Each triple in a demand is referred to
as a job of the request.

C. Central Processing Unit Scheduling of Periodic Tasks

Scheduling of isochronous traffic is very similar to Cental
Processing Unit (CPU) scheduling of periodic tasks. CPU
scheduling of periodic task has been extensively studied in the
literature [10], [12]–[14]. In this context, a periodic task Ti is
modeled with two parameters (Ci, Pi), where Ci is the duration
of the task and Pi is the period as well as deadline of the task.
So, the task must be allocated CPU time Ci in every Pi time
duration. In [10], the authors present two preemptive scheduling
algorithms for periodic tasks: Rate Monotonic Scheduling (RMS)
and EDF scheduling. Priority of a task in an RMS scheduler is
static and a task with lower period is assigned higher priority.
The EDF scheduler sets higher priority to a task with earlier
deadline. The priority, in this case, is dynamic. Although RMS is
a simpler scheduler than EDF, the maximum utilization that can
be achieved while guaranteeing that every task meets its deadline
is approximately ln 2 ≈ 69% for a large set of tasks [10]. EDF
scheduler can achieve maximum utilization of 100% while
guaranteeing the deadline of each task. Hence, we choose EDF
scheduler to schedule isochronous traffic.

An EDF scheduler can be preemptive or non-preemptive. The
feasibility or admissibility of a set of n preemptive tasks for an
EDF scheduler is given by [10]:

n∑
i=1

Ci

Pi
≤ 1. (1)

The feasibility of a set of n non-preemptive tasks, in addition
to the condition in Eq. (1), needs another condition to be
satisfied as given in Theorem 4.1 in [12]. This second condition
for non-preemptive task involves finding least upper bound
on the processor demand between periods of the tasks and
is more complex than the condition given in Eq. (1). Hence,
the admission control for non-preemptive EDF scheduler is
more complex than its preemptive counterpart. In the case of
IEEE 802.11ad Medium Access Control (MAC), when a new
request arrives, it is scheduled in the next BI. Hence, in a given
BI, requests are scheduled as per their priority based on their
deadline (which is their period). This schedule is not perturbed
(i.e., does not change) by the arrival of a new request, unlike
what happens in CPU scheduling of periodic tasks. This property
of IEEE 802.11ad MAC leads to a static schedule in each BI
(even though EDF is a dynamic scheduling algorithm), i.e., the
schedule does not change in a given BI due to arrival of a new
request. So, we choose preemptive EDF as our scheduler in
IEEE 802.11ad MAC to take advantage of simpler admission
control and scheduling.

D. Admission Control

We borrow the basic principles of admission control from the
feasibility test of CPU scheduling of periodic tasks. However,
the TSpec of isochronous traffic has a range of duration from
Cmin to Cmax, unlike the CPU scheduling of a task which
has a single duration. So, in our case, an admission control
algorithm not only determines whether a new request can be
admitted or not, but also computes Cop, Cmin ≤ Cop ≤ Cmax,
the exact operating allocation duration of the newly admitted
request. Let us assume that there are (n−1) requests already in
the system. These requests were admitted at their corresponding
Cops. Let the operational duration of the newly arriving nth

request, Tn, having a period Pn, is computed to be Cop
n . The

newly arriving isochronous request is admitted if and only if

U +
Cop

n

Pn
≤ 1, (2)

where U =
∑(n−1)

i=1
Cop

i

Pi
is the utilization of the system due to

already admitted requests. Depending on the ACA used, while
admitting a new request, Cop of the existing requests may or
may not change during the life of the requests. If Cops of
existing requests may change, then utilization of the system due
to existing requests, U , needs to be recalculated. In this case,
the complexity of the admission control algorithm depends on
the complexity of computing U and Cops. Also note that ACAs
in which Cops of existing requests may change, Cops change
only when a new request is admitted and when an existing
request leaves the system. To keep the notations simple, we do
not make Cop a function of time. Hence, when we refer to Cop,
it refers to its value at that instant. However, if Cop of existing
requests cannot change throughout the life of the requests, then
U does not need to be computed every time a new request is
admitted. U can be updated and maintained in the system as
and when new requests are admitted or existing requests leave
the system. The complexity of the admission control algorithm,
in this case, depends only on complexity of computation of
Cop.

E. Our EDF Based Scheduler

As mentioned earlier, when admitting a request, the admission
control algorithm computes the Cop of the request. The
responsibility of the scheduler is to allocate Cop duration to
the request before its deadline which is equal to its period.
The allocation may be a contiguous duration or a set of non-
contiguous fragments2. The flowchart of our preemptive EDF
scheduler is shown in Figure 1. The figure illustrates how the
schedule is computed for a given BI. The algorithm starts with
ordering the jobs of all the requests in a non-decreasing order
of their deadlines, i.e., from earliest to latest deadline and
initializing few variables (Box A). It picks up the ordered jobs

2Throughout this paper, we refer to an allocation as a fragment. A fragment
may refer to an allocation equal to the fragmented part of a job or to an
allocation of an unfragmented job.

3



Figure 1: Flowchart of the Proposed EDF Scheduler

one at a time, extracts release time (R), deadline (D) (which is
same as the period of the job), and the allocation duration (Cop)
(Box B). It then checks if the BI has unallocated contiguous
duration (Cop +GT dur) available starting from release time
of the job (Decision Box C), where GT dur is the duration
of a GT. If so, then that part of the BI is allocated to the job
(Box D) and then the Algorithm loops back to schedule the
next job, if there is one (Decision Box E). Otherwise, whatever
duration (which is less than Cop) is available, is assigned to
the request, Cop is decremented, taking the GT into account for
the fragment just allocated, to determine the remaining duration
to be allocated and the allocation point is advanced to the next
unallocated (or empty) location in the BI (Box F). Note that if
Box F is reached during scheduling of a job, then that job is
fragmented, which is akin to preemption in CPU task scheduling
parlance. If the next unallocated location is greater than the
deadline (Decision Box G), then the request has missed its
deadline (Box H). This is an error condition and should not
happen in a correct implementation. Otherwise, the algorithm
repeats the process of finding unallocated contiguous duration
for the reduced Cop (Decision Box C). Each request will search
for free locations in a BI once (for all its jobs). Hence, the time
complexity of our EDF based scheduler is O(BI · n), where n
is the number of requests in the system.

Figure 2 illustrates our EDF based scheduling algorithm using
an example. There are three requests, T1, T2 and T3, whose Cop

values are represented by the length of the filled rectangles (on
the top left corner of the figure). The release times of the requests
are indicated by color-coded vertical arrows. Their periods, P1,
P2 and P3 are also shown. In this example, the periods are
integer fraction of a BI. These parameters define jobs of the
three requests in one BI duration. Request T1 has eight jobs, T2

has three jobs and T3 has two jobs in one BI. The job number
for each request is shown inside the rectangle representing the

Figure 2: An Example Illustrating Our EDF Based Scheduler

job. These jobs are first ordered in a non-decreasing order of
their respective deadlines (Box A in the flowchart given in
Figure 1). These allocation order numbers are shown as integer
numbers on top of each job. When the Cop of a job cannot be
allocated contiguously, then the allocation is fragmented and the
fragment number is shown in parenthesis as a superscript to the
order number. For example, the first three jobs of T1 come first
in the order, then the first job of T2 (order number 4), since its
deadline is before the fourth job of T1 (order number 5). Since
contiguous durations equal to Cop

1 from their respective release
times are available in the BI (success in Decision Box C), the
first three jobs of T1 are allocated contiguous durations each
equal to Cop

1 (Box D). Then the first job of T2 is picked up
for allocation (Box B). Since first job of T1 has already been
allocated Cop

1 from the beginning of the BI, that part is not
available for allocation (failure in Decision box C). Hence, T2

is allocated SP duration immediately following that allocation.
However, the duration available is smaller than Cop

2 . Hence,
T2’s allocation is fragmented. The first fragment (shown with a
superscript (1)) occupies the empty space in between the first
and second allocation of T1. The second fragment of first job
of T2 is then allocated after the allocation of second job of
T1. These fragmented allocations happens by going through the
loop along the Decision Box C, Box F, Decision Box G and
back to the Decision Box C. Thus, following the flowchart of
Figure 1, we end up with the schedule as shown in Figure 2.
We want to reiterate that any new request arriving in the middle
of a BI is considered for scheduling in the next BI. Hence,
the schedule computed by our algorithm is not perturbed by a
newly arriving request and therefore, remains static (or does
not change) throughout the duration of the BI. Also, note that,
spatial multiplexing of the requests is outside the scope of this
study. Hence, we do not consider multiple isochronous requests
scheduled simultaneously. Rather, we consider scheduling in
one beamformed direction.

III. HANDLING GUARD TIME OVERHEAD

In [9], we presented and evaluated three different ACAs which
are fair with respect to allocation of Cop and standard compliant.
Out of the three, we showed that PFAAC offers the best tradeoff
across different performance metrics [9]. Hence, in this work,
we choose to base our admission control on PFAAC. In PFAAC,

4



requests are allocated an operational duration (Cop) such that
surplus allocation over Cmin expressed as a fraction of the
requested allocation range (Cmax − Cmin) is same for all the
requests, i.e., x1 = x2 = . . . = xn, where xi,∀i ∈ {1, · · · , n}
is given by

xi =
Cop

i − Cmin
i

Cmax
i − Cmin

i

. (3)

Note that allocation durations of admitted requests can change
during their lifetimes when this algorithm is used. This algorithm
tries to allocate as much duration as possible while maximizing
the number of admitted requests. However, PFAAC admission
control presented in [9] does not consider GT overhead while
admitting requests. A GT is inserted between two consecutive
allocations (or fragments), regardless of the type of allocation
(SP or CBAP) and is calculated based on the worst case clock
drift and maximum allowed number of lost beacons. GT prevents
transmissions corresponding to adjacent allocations overlapping
(or interfere) in time if a station does not receive few beacons
and its clock drifts during that period.

One might think that GT can be accommodated into an
admission control algorithm by simply artificially increasing
Cop of every request by GT duration (assuming that every job of
a request needs a GT) and then use Eq. (1) for admission control.
But that will not be correct, since the scheduler may break a
job of a request into multiple fragments while following the
EDF scheduling scheme (recall the example of T2 in Figure 2
which was fragmented). Each fragment of the job, in that case,
requires a GT and hence, allocating just one GT to the job
would be incorrect. Thus, the correct way to include GT is to
actually compute the exact schedule of the system assuming
the new request is admitted and then assigning GT to every
fragment3. But this would require computing the schedule
for one hyperperiod of the requests. Hyperperiod of a set of
requests is the least common multiple of individual periods of
the requests. The schedule computed in one hyperperiod repeats
in subsequent hyperperiods as long as the set of requests in
the system remains the same. In that case, the GT overhead in
one hyper period will continue to the next. However, if there
are many requests with periods which are relatively prime to
each other, then the hyperperiod can become too large and
a generic admission control algorithm following this method
can be computationally expensive. In addition, GT overhead
computed for one hyperperiod will need to be recomputed every
time a new request is admitted or an existing request leaves the
system, since these events will change the schedule. Therefore,
we resort to computing the worst case GT overhead of a set of
requests and use that in Eq. (1) for admission control, which
keeps the computational complexity low. The idea is to compute
the worst case GT overhead duration and the corresponding

3We assume the worst case scenario that if idle period may follow a fragment,
the scheduler may schedule CBAPs in those idle periods, which would require
each fragment to have a GT.

worst case GT overhead utilization. Then Eq. (2) is modified to
accommodate GT overhead as:

U +GT overhead util +
Cop

n

Pn
≤ 1, (4)

where GT overhead util is the worst case GT overhead
utilization. Requests are admitted using Eq. (4) and EDF
schedule is computed using the flowchart shown in Figure 1.
The schedule so obtained is then modified such that a GT is
inserted between every back-to-back (or adjacent) fragments in
the schedule.

In the following subsections we first present the theorems
to compute the GT overhead followed by a modified PFAAC
ACA which takes GT overhead into account. Note that in the
following theorems although we depict scenarios with back-to-
back fragments, each such pair of fragments will eventually
have a GT between them.

A. Computation of Guard Time Overhead

Consider a IEEE 802.11ad scheduler which has a set of
admitted isochronous requests denoted as S. Let k be the size
of S. For a request Ti ∈ S, we denote Pi as the period of the
request. Therefore, the number of release times of request Ti

in one BI is given by

Ni =

{
BI/Pi if Pi = BI/m,
1 if Pi = m ·BI,

where m ∈ Z+, the set of positive integers.
If the requests are sorted by their respective number of release

times in one BI in a non-increasing order, we have:

N1 ≥ N2 ≥ · · · ≥ Nk−1 ≥ Nk. (5)

Let ai be the number of fragments allocated to request Ti by
the EDF scheduler in a BI. We are interested in determining the
number of GT required in a BI in the worst case. The number
of fragments in a BI is also the number of GTs. This is because,
in the worst case, each fragment of a request may be scheduled
back-to-back4 with another request, or the scheduler may, after
scheduling all the fragments, fill all the remaining idle times in
a BI with CBAP requests. Thus, each fragment needs a GT. Let
Gi be the total number of fragments allocated to requests from
T1 to Ti, i.e., Gi = a1+ · · ·+ai, which is also the total number
of GTs needed. We will refer to the idle duration between two
consecutive fragments as an empty slot. Note that, while an
empty slot can be allocated to the job(s) of the request(s), a GT,
even though is an idle duration, cannot be allocated to any job.
Hence, GT is an essential overhead.

Theorem 1. Let si be the number of empty slots in a BI after
the requests T1 to Ti are scheduled. Then an upper bound on
si is given by

si ≤ si−1 +Ni − 1. (6)

4Even though we say back-to-back, there will be a GT between the two
back-to-back fragments.

5



Figure 3: (a) Empty Slots after T2 is Scheduled (b) Empty
Slots after T3 is Scheduled

Proof. The maximum number of empty slots after requests T1

to Ti−1 are allocated is si−1. Now request Ti is allocated. The
number of empty slots after Ti is allocated will be maximum
when there are exactly Ni fragments of Ti (that is, none of the
jobs in Ti is fragmented) in the schedule and each fragment
is allocated in the middle of an empty slot such that it does
not lie right before or right after any existing fragment in the
schedule. In this scenario, each fragment of Ti splits an existing
empty slot into two. Thus, one extra empty slot is created in
the BI where a fragment of Ti is scheduled. So, Ni jobs of Ti

will create Ni extra empty slots. But the very first fragment
will be scheduled right next to the very first fragment of Ti−1.
Remember that the release times of first job of all the requests
happen at the beginning of BI. Hence, the first job of all the
requests are scheduled back-to-back at the beginning of a BI.
Hence, the total number of empty slots after Ti is scheduled
cannot exceed si−1 +Ni − 1.

An example scenario to explain the result from Theorem 1
is shown in Figure 3. Each request is shown with a color
and a job of a given request is numbered. After request T2

is scheduled, there are eight empty slots (Figure 3(a)). When
request T3 is scheduled, maximum number of empty slots will
be created when the jobs of T3 are not fragmented and each
job is scheduled in the middle of an empty slot, as shown in
the figure (Figure 3(b)). However, the very first job will be
right next to first job of T2. Wherever a job of T3 is scheduled,
except for the first job, it creates an extra empty slot as shown.
Since T3 has three jobs, it creates two extra empty slots. Thus,
after scheduling T3 there are ten empty slots.

Theorem 2. The sum of number of fragments allocated to Ti

and the number of empty slots after Ti is scheduled cannot
exceed si−1 + 2Ni − 1, i.e.,

ai + si ≤ si−1 + 2Ni − 1. (7)

Proof. We will use Figure 4 in our proof which shows all
possible cases of scheduling a job of a request. The colored

Figure 4: Possible Cases of Scheduling a Job of a Request

rectangles show the allocations for a job of a request being
scheduled and the unfilled rectangles represent allocations
already done to the jobs of other requests. Theorem 1 gives
the maximum value of si. This maximum value was obtained
assuming that every job of Ti is unfragmented and is scheduled
in the middle of an empty slot. In this case, ai = Ni and hence,
using Eq. (6), ai + si ≤ si−1 + 2Ni − 1. An example of this
case is shown in Figure 4(a), where one job of a request which
is unfragmented is scheduled in the middle of an empty slot.
When this job is scheduled, it splits the empty slot into two,
thereby increasing the number of empty slots by one. It also
increases number of fragments by one. Thus, the sum of empty
slots and fragments goes up by two, i.e., contribution of this
job towards (ai + si) is 2. Figure 4(b), (c) and (d) show the
other three scenarios of scheduling an unfragmented job. In
Figure 4(b) and (c), the number of fragments increases by one,
but the number of empty slots remains the same. Hence, the
contribution of this job towards (ai + si) is 1. In Figure 4(d),
the number of fragments increases by one, but the number of
empty slots decreases by one. So, the net contribution of this job
towards (ai+si) is 0. When a job is split into two fragments by
the EDF scheduler there can be four different cases as shown
in Figure 4(e), (f), (g) and (h). In the case of Figure 4(e), the
first fragment is scheduled right before and the second fragment
is scheduled right after an existing allocation and the second
fragment does not fully occupy the empty slot. The first and the
second fragment do not change the number of empty slots, but
add two to the number of fragments. Thus, the contribution of
this job towards (ai+ si) is 2. The case shown in Figure 4(f) is
similar to Figure 4(e), except that the second fragment exactly
fits the empty slot. In this case, the two fragments decrease the

6



number of empty slots by one, whereas increase the number of
fragments by two. Thus, the net contribution of this job towards
(ai+si) is 1. For the case in Figure 4(g), the first fragment fully
occupies the empty slot whereas the second fragment partially
occupies the empty slot. Taking note of the symmetry between
Figure 4(f) and 4(g), it is clear that the net contribution of the
job to (ai+si) is 1, same as the case in Figure 4(f). Figure 4(h)
is the last case where both the fragments exactly fit the respective
empty slots. In this case, the number of empty slots decreases
by two, but the number of fragments increases by two. Hence,
the the net contribution of the job to (ai + si) is 0. Thus, the
maximum contribution of a job of a request to (ai + si) is 2
in any possible case. When a job is fragmented into more than
two fragments, except for the first and last fragments, all other
fragments fully occupy empty slots. These fragments contribute
0 to (ai + si), since each add a fragment and delete an empty
slot. The contribution of the first fragment to (ai+si) would be
1 or 0 depending on if it occupies an empty slot partially or fully
respectively (this case is similar to the first fragment shown in
Figure 4(f) and (g) respectively). Likewise, the last fragment
would also contribute 1 or 0 to (ai+si). Thus, all the fragments
would contribute at most 2 to (ai + si). Since request Ti has
Ni jobs, its maximum contribution to (ai + si) is 2Ni. But the
very first job of Ti will always be scheduled back-to-back at
the beginning of a BI right after the first fragment of request
Ti−1. If the first job is not fragmented, then it may occupy
an empty slot partially or fully, in which case its maximum
contribution to (ai + si) is 1. If it is fragmented into two, then
it is similar to the case shown in Figure 4(g) or (h), in which
case the contribution to (ai + si) is 1 or 0 respectively. Hence,
the maximum contribution of the very first job of request Ti

to (ai + si) is 1 and the maximum contribution of all other
(Ni − 1) jobs to (ai + si) is 2. Thus, request Ti has maximum
contribution of 2(Ni − 1)+ 1 = 2Ni − 1 towards ai + si. Thus,
ai + si ≤ si−1 + 2Ni − 1.

Theorem 3. An upper bound on the number of GTs required
in a BI for the set of k requests in S is given by

Gk ≤

{
N1 k = 1,

2
∑k−1

i=1 Ni − (k − 2) k > 1.
(8)

Proof. In the very simple case, when there is just one request
in the system, the number of empty slot as well as the number
of fragments (which is also the number of GTs required) equals
N1, i.e.,

s1 = N1,
a1 = N1.

Hence, G1 = N1. Now for k > 1, we proceed as follows. Using
the above identities and Eq. (7) and noting that the number of
fragments of the very last request Tk would be less than or

equal to sk−1, we have

a1 = N1,
a2 + s2 ≤ s1 + 2N2 − 1,
a3 + s3 ≤ s2 + 2N3 − 1,

· · ·
ak−1 + sk−1 ≤ sk−2 + 2Nk−1 − 1,

ak ≤ sk−1.

Adding the above equalities and inequalities we have

(a1 + · · ·+ ak) + (s2 + · · ·+ sk−1) ≤
N1 + (s1 + s2 + · · ·+ sk−1) + 2(N2 + · · ·+Nk−1)− (k − 2).

(9)
With simple mathematical manipulation and using s1 = N1, we
get

Gk ≤ 2

k−1∑
i=1

Ni − (k − 2). (10)

Theorem 4. A tighter upper bound, compared to the one given
in Theorem 3, on the number of GTs required in a BI for the set
of k requests in S can be found if some of the Ni’s are repeated.
Let D be the set of all unique values of Ni’s, 1 ≤ i ≤ (k − 1).
Then a tighter upper bound is given by

Gk ≤

{
N1 k = 1,∑k−1

i=1 Ni + 1 +
∑

di∈D(di − 1) k > 1.
(11)

Proof. The same argument as in Theorem 3 proves the trivial
case of k = 1. For k > 1, we proceed as follows. For an
incoming request Ti, first consider the case when its Ni is equal
to Nj of request Tj which has already been admitted into the
system. In this case, all the jobs of Ti will be scheduled right
next to the respective jobs of Tj (as per the EDF scheduling
scheme) and hence, none of the fragments of Ti will start in the
middle of an empty slot. If none of the jobs of Ti is fragmented,
i.e., there are exactly Ni fragments, then the number of empty
slots after Ti is scheduled will not exceed si−1 and (ai + si)
will not exceed (si−1 + Ni). If a job of Ti is split into two
fragments, then the first fragment must completely occupy an
empty slot, since it has to start right next to a fragment of
Tj (similar to the first fragment shown in Figure 4(g) and
(h)). The first fragment decreases the number of empty slots
by one, but adds a new fragment, with no net contribution to
(ai+si). Therefore, (ai+si) is decided by the second fragment.
The second fragment will always start right after (i.e., back-
to-back) an existing fragment. If the second fragment partially
occupies an empty slot (similar to the second fragment shown
in Figure 4(g)), then it does not change the number of empty
slots, but adds one fragment. So, its contribution to (ai + si)
increases by one, i.e., si = si−1 and the fragment contributes
one towards ai. If, on the other hand, the second fragment fully
occupies an empty slot (similar to the second fragment shown
in Figure 4(h)), then it adds a fragments and deletes an empty
slot, i.e., si = si−1 − 1 and the job contributes one towards

7



ai. This means it has no net effect on (ai + si). So, when a
job is split into two fragments, its contribution to (ai + si) can
increase at most by one. This argument can also be extended
to a job of Ti which is split into more than two fragments. So,
in any scenario, a job of Ti can contribute at most one towards
(ai + si). Since Ti has Ni jobs, it can contribute at most Ni

to (ai + si). Thus, in this case (ai + si) ≤ si−1 + Ni. Now
consider the case Ni ̸= Nj , ∀Tj , i.e., period Pi of request Ti is
not equal to the period of any of the requests currently admitted.
In this case, the results of Theorem 2 to compute (ai + si)
applies. Therefore,

ai + si ≤ si−1 +Ni + bi(Ni − 1), (12)

where

bi =

{
0 if Ni = Nj , i ̸= j for some Tj ∈ S,
1 otherwise.

(13)

Note that b1 = 1.
Thus,

a1 = N1,
a2 + s2 ≤ s1 +N2 + b2(N2 − 1),
a3 + s3 ≤ s2 +N3 + b3(N3 − 1),

· · ·
ak−1 + sk−1 ≤ sk−2 +Nk−1 + bk−1(Nk−1 − 1),

ak ≤ sk−1.

Adding the above equalities and inequalities we have

(a1 + · · ·+ ak) + (s2 + · · ·+ sk−1) ≤
N1 + (s1 + s2 + · · ·+ sk−1) + (N2 + · · ·+Nk−1)+

b2(N2 − 1) + · · ·+ bk−1(Nk−1 − 1).

(14)

Noting s1 = N1 and performing simple mathematical manipu-
lations we have

Gk ≤
k−1∑
i=1

Ni + 1 +
∑
di∈D

(di − 1).

B. Admission Control with Guard Time

PFAAC call admission control presented in [9] is suitably
modified to account for the GT overhead using the upper bounds
on GT overhead presented in Section III-A. The modified
algorithm is presented in Algorithm 1, which we will refer
to as PFAAC GTO, henceforth. The method of computing GT
overhead using Theorem 3 and Theorem 4 are referred to GT
Algorithm 1 (GTA1) and GT Algorithm 2 (GTA2) respectively.

Note that when PFAAC is used, Cops of existing requests
may change. Hence, the PFAAC GTO algorithm, in addition
to deciding whether the new request be admitted or rejected,
computes new Cops of existing requests as well as the new
request, if the new request is admitted. The algorithm rejects
the new request if the utilization of the system, assuming all
the existing requests and the new request are allocated their
respective minimum allocation (Cmin) plus the GT overhead,

Algorithm 1 Admission Control PFAAC GTO

1: input: Cmin, Cmax and P of all existing (n− 1) requests
and the new request.

2: output: Accept or Reject; Cop of each request if the new
request is accepted.

3: Umin
n =

∑n
i=1

Cmin
i

Pi

4: Gn = upper bound on the number of GT using Eq. (8) (if
using GTA1) or using Eq. (11) (if using GTA2)

5: GT overhead util = (Gn ·GT dur)/BI
6: if (Umin

n +GT overhead util) > 1 then return Reject
7: Usurplus = 1− (Umin

n +GT overhead util)
8: ∆utot = 0
9: for i=1 to n do

10: ∆utot = ∆utot +
Cmax

i −Cmin
i

Pi

11: for i=1 to n do
12: Cop

i = Cmin
i +min (1,

Usurplus

∆utot
) · (Cmax

i − Cmin
i )

13: return Accept

exceeds 1 (Line 6). Otherwise, it computes the surplus utilization
based on this minimum allocation and GT overhead (Line 7).
This surplus utilization (Usurplus) is then distributed to each
individual request in proportion to its difference of utilization
between maximum and minimum to the total (over all requests)
difference of utilization. Hence, the operating utilization of
request Ti is given by

uop
i = umin

i +
∆ui

∆utot
· Usurplus, (15)

where uop
i =

Cop
i

Pi
, ∆ui =

Cmax
i

Pi
− Cmin

i

Pi
and ∆utot =∑n

i=1 ∆ui. Multiplying both sides of Eq. (15) by Pi and
inserting the term min (1,

Usurplus

∆utot
) to take care of the fact

that Usurplus

∆utot
could be greater than 1, we get

Cop
i = Cmin

i +min (1,
Usurplus

∆utot
) · (Cmax

i − Cmin
i ), (16)

which is the expression in Line 12. Note that when Usurplus

∆utot
is

greater than 1, it implies that there is enough surplus for every
request, so that every request can be allocated its Cmax. In this
case, it can be verified from Eq. (16) that Cop

i = Cmax
i . This

also explains why the term min (1,
Usurplus

∆utot
) should be used

in Eq. (16) to prevent Cop
i going above Cmax

i . Noting the for
loops in Line 9 and Line 11 of Algorithm 1, each of which
iterates n times, it is obvious that the time complexity of this
ACA is O(n).

To account for the GT overhead, we make minor modification
to the EDF scheduler presented in Figure 1. After the flowchart
ends, we identify allocations which are right next to each other.
We insert a GT between such allocation pairs.

8



IV. PERFORMANCE RESULTS

A. Performance Metrics

In this section, we define the performance metrics used to
evaluate our admission control algorithms.

• Acceptance Ratio (AR) : This is the fraction of total
requests that are admitted by the ACA. Higher AR implies
that an IEEE 802.11ad MAC can support a greater number
of flows or applications.

• Allocation Efficiency (AE): This metric represents effi-
ciency of an ACA in terms of allocation of SP duration.
For a request Ti, it is defined as Cop

i −Cmin
i

Cmax
i −Cmin

i
. Note that

AE is a value between 0 and 1. AE is 0 when the ACA
allocates Cmin

i to Ti and is 1 when it allocates Cmax
i . An

ACA with higher AE is preferable to an application since
that translates to higher throughput for the application.

• BI Utilization (BU): This metric is the fraction of a BI
duration that has been allocated to requests for SP channel
access by the corresponding STAs.

• Degree of Fragmentation (DoF): When Cop
i of a request

Ti cannot be allocated in one chunk, then the allocation
is said to be fragmented. DoFi of a request Ti in a given
duration is given by Nchunk−Njob

Njob
, where Nchunk is the

number of chunks or fragments allocated to the request
(during scheduling) and Njob is the number of jobs of the
request in that duration. Thus, if there is no fragmentation
of a request Ti, then Nchunk = Njob, and DoFi = 0. In
IEEE 802.11ad, a GT is inserted between two consecutive
allocations which is an overhead for the system. Hence,
DoF is an indicator of GT overhead of the system. Note that
regular EDF scheduler cannot guarantee an upper bound
on the number of fragments of a job or equivalently it
cannot guarantee a minimum fragment size. In some cases,
e.g., if the minimum duration traffic parameter is to be
considered, such a guarantee may be required. In such
cases, a variation of EDF called limited preemption EDF
scheduler can be used [15].

• Normalized Delay: The delay of a job of a request is the
difference of time instance of end of allocation of the job
and the release time of the job. Note that if the job is
fragmented, the end of allocation of the job is the end
of allocation of its last fragment. This metric essentially
measures the time it would take to finish transmitting a
job after it is available (released) at the MAC and is an
indicator of packet level delay. Normalized delay is the
delay normalized with respect to the period of the request,
i.e., it is the ratio of delay of a job to the period of the
request.

• Normalized Jitter: Jitter is the absolute difference of delay
of two consecutive jobs of a request. In another words, it is
the variation in two successive delays of two consecutive
jobs of a request. This is normalized with respect to the
period of the request to represent normalized jitter. Hence,
normalized jitter is the ratio of jitter to the period of the
request.

B. Simulation Experiment Design

Performance of our admission control and scheduling algo-
rithms is evaluated by using an in-house simulator developed
by us. In this paper, we are interested in performance of our SP
based admission control and scheduling algorithm at different
system loads. SP operates in interference free condition in
an IEEE 802.11ad network. Hence, in this paper, we did not
consider channel conditions, beamforming and interference due
to side lobes. Therefore, developing our own simulator is a much
faster approach than using some existing network simulators.
Using simulation makes it much easier to simulate different
scenarios and operate the network at high loads, which is much
harder in a testbed. In addition, a testbed built using commercial
off the shelf devices would not have SP implementation nor
would they provide knobs to implement a new algorithm.

Our simulation experiments are designed as follows. ADDTS
requests arrive with a Poisson distribution having mean arrival
rate λ, which is varied from 5 to 50 requests per BI in steps of
5. BI duration is set at 102 400 µs. The GT duration used in our
experiments is 10µs. This value is also used in the 802.11ad
implementation in the ns3 network simulator [16]. The maximum
allocation duration of a request (Cmax) is uniformly distributed
between 10 µs and 100 µs and is considered a per BI value.
Thus, if the request period is an integer fraction of BI, then the
randomly generated Cmax value is scaled down by that fraction.
If the request period, on the other hand, is an integer multiple of
BI, then Cmax value is scaled up by that integer multiple. The
allocation interval ratio, Cmin/Cmax, is uniformly distributed
between 0.5 and 1.0. The lifetime of each request follows a
normal distribution with the mean duration of 100 BIs and
standard deviation of 10 BIs. Thus, about 95 % of lifetimes are
between 80 BIs to 120 BIs. Lifetime of a request is rounded
down to its nearest period. The integer n that defines the integer
fraction or integer multiple of period of a request is uniformly
distributed between 1 to 5. The experiments are carried out in
three scenarios: i) when all the requests have periods which are
an integer multiple of BI (Scenario 1), ii) when all the requests
have periods which are an integer fraction of BI (Scenario 2) and
iii) when 30 % requests have periods which are integer multiple
of BI and 70 % requests have periods which are integer fraction
of BI (Scenario 3). Scenario 1 simulates applications requiring
low bandwidth (e.g., IoT applications), whereas Scenario 2
represents applications requiring high bandwidth and low delay
(e.g., streaming video). Scenario 3 is appropriate for a mix of
these two types of applications. The experiments are run for a
duration equal to 1000 BIs. For a given random parameter, the
same sequence of random numbers are used to represent the
values of the parameter across the three scenarios, i.e., same
seed is used across the three scenarios to generate the random
parameter. This ensures that all the scenarios are fed with the
same values of input parameters and makes the comparison
across scenarios fair. In each scenario, three cases with respect
to GT are considered: ”No Guard Time” (NGT) (no GT overhead
was considered in the ACA), GTA1 and GTA2. NGT case is
considered as a baseline case that does not require the complex

9



analysis of worst case GT overhead during admission control
and could offer better performance. However, NGT is only
suitable for a theoretical IEEE 802.11ad system where all the
stations in the Wireless LAN are perfectly synchronized and
hence, its scheduler does not add any GT. Accordingly, in our
experiments no GT is added by the scheduler when using NGT
algorithm. Note that if NGT admission control is implemented
in a real IEEE 802.11ad system, its scheduler will insert GT
wherever required and that can lead to undesired consequence
of some requests missing their deadlines.

C. Experiment Results

Before we present our results, we explain the box and whisker
plots used to depict the statistics of some of the performance
metrics. The central mark of each box is the median, the
edges of the box are the 25th and 75th percentiles. The upper
whisker represents the largest data point that is within 1.5 times
the interquartile range (distance between the upper and lower
quartiles) above the upper box edge. Similarly, the lower whisker
represents the smallest data point that is within 1.5 times the
interquartile range below the lower box edge. Outliers beyond
the whiskers are not shown.

1) Performance in Terms of Acceptance Ratio: Figure 5
shows how AR changes as the mean request arrival rate λ
increases for the three scenarios. At low λ, the AR is 100 %
for all scenarios and all GT algorithms, since the system has
low utilization. As λ increases, the load on the system increases
and more requests are rejected. Hence, AR starts to decrease.
AR for NGT is higher than GTA1 and GTA2 at high λ in all
the scenarios. At high λ, system load is high and GT overhead,
in case of GTA1 and GTA2, occupy enough duration in a BI
to prevent some requests to be admitted. But NGT does not
have any GT overhead, hence, it admits more requests leading
to higher AR. AR of GTA1 and GTA2 are identical in Scenario
1. In Scenario 1, the periods of all the requests are integer
multiple of BI. Thus, in a BI a request will have at most one
fragment scheduled. Thus, GTA1 and GTA2 produce the same
GT overhead. This can also be verified by putting Ni = 1,∀i
into Eq. (8) and Eq. (11). But in Scenario 2, GTA2 performs
better than GTA1 when request arrival rate is high. In this
scenario, periods are integer fraction of a BI and there are
requests whose periods are the same, hence GTA2 is able to
get tighter upper bound on GT overhead. Same is the case for
Scenario 3, in which the requests with periods equal to fraction
of BI have identical periods and those help reduce GT overhead
when GTA2 is used.

2) Performance in Terms of Various Utilizations: Perfor-
mance graphs of various utilizations (expressed as a fraction of
a BI duration) versus mean request arrival rate are presented in
Figure 6. Once the system reaches steady state (after a few BIs),
these different utilizations are averaged over all BIs until the
end of the experiment duration to obtain the respective average
utilizations. The graphs plot actual payload utilization and actual
GT utilization (which is the overhead due to provisioning of

GT) and overestimated GT which is the difference between
computed GT (using either GTA1 or GTA2) and the actual
GT. Note that our scheduler would only insert a GT between a
pair of fragments which are placed back-to-back (or adjacent).
Hence, the estimated GT (either using GTA1 or GTA2), which
is computed based on the worst case scenario, will be higher
than or equal to the actual GT inserted by our scheduler. Also
note that the overestimated GT is wasted as idle duration in
a BI due to overestimation in GTA1 or GTA2. In Scenario 1,
as λ increases, payload utilization as well as GT overhead and
overestimation of GT increases until a certain λ, but after λ = 20,
as the system utilization goes to 100% all those metrics become
almost constant. At high utilization, a new request is admitted
only when an existing request leaves. Thus, the schedule of
admitted requests does not change much and hence various
utilizations do not change much. Overestimated GT for GTA1
and GTA2 are equal, since, as mentioned before, for Scenario
1, Ni = 1 and that leads to actual GT and overestimated
GT for GTA1 and GTA2 to be equal. In Scenario 2, as λ
increases, generally the average payload utilization, actual GT
and overestimated GT increase initially. But after λ = 20, they
all remain constant. As more requests arrive, more requests are
admitted, which leads to higher payload along with higher GT as
well as overestimated GT. However, after the system reaches its
limit, new requests could only be admitted when there is room
created by an existing request leaving. The overall schedule does
not change much, which leads to almost constant utilization of
these three parameters. The relative performances of various
parameters in Scenario 3 are almost similar to Scenario 2, since
the mix of request is dominated by requests having periods
equal to fraction of a BI.

Notice that the overestimated GT for GTA2 algorithm in
Scenario 2 is almost zero. This means that the upper bound on
estimation of GT using GTA2 for this scenario is very tight.
GTA2 distinguishes between the cases when Ni of the new
request is equal or not equal to Nj of any existing requests
(see Eq. (12)). This makes the upper bound on GT tight for
GTA2. GTA1 does not makes this distinction and hence, it
incurs significant overestimation of GT. However, when Ni is
not equal to Nj of any existing requests and Ni is not relatively
prime with all the Nj’s of the existing requests, then some of
the jobs of those requests (that are not relatively prime with
each other) will be scheduled back-to-back and hence, GTA2
may overestimate the GT overhead. So, in general, if the unique
Ni’s of the requests are relatively prime to each other then
GTA2 would result in a tight upper bound in Scenario 2. The
tightness worsens as the number of unique Ni’s that are not
relatively prime with each other increases. In Scenario 2, Ni

is the exact value of number of release times of the request
Ti in a BI. However, in Scenario 1, Ni is equal to 1 for every
request, which is an overestimation when the period of a request
is more than a BI. This, in turn, leads to overestimation of GT.
As explained before, this overestimation of GT in Scenario 1
is same for GTA1 and GTA2. Hence, GTA1 and GTA2 do not
produce tight upper bound in Scenario 1.

10



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5: Acceptance Ratio vs. Mean Request Arrival Rate (BI=102.4 ms)

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 6: Various Utilizations vs. Mean Request Arrival Rate (BI=102.4 ms)

For the NGT algorithm, which is meant for a theoretical
system (in which the scheduler does not insert any GT), we
show the GT overhead only to illustrate the problems with
this admission control algorithm if implemented in a real IEEE
802.11ad system. The GT overhead, for this illustration purpose,
is computed assuming that the real IEEE 802.11ad MAC
scheduler inserts a GT between every pair of jobs scheduled
back-to-back. In all the scenarios, for the NGT algorithm
the total utilization goes above 1.0 at high λ. This implies
that the schedule of the requests is not feasible. Hence, some
requests would miss their deadlines (more discussion on this
in Section IV-C8). The GT overhead in Scenario 1 is smaller
than in Scenario 2. When periods of requests are fraction of a
BI, at high λ they will have more fragments compared to when
periods are multiple of a BI, which leads to more GT overhead.

3) Performance in Terms of Allocation Efficiency: Figures
7 shows the performance of different GT algorithms in terms
of average AE of the requests as λ increases. To compute the

average AE of a given request, AE is computed in every period
and averaged over its lifetime. Then average AEs of all the
requests are plotted as a box and whisker plot. Average AE of
NGT is always better or same as GTA1 and GTA2 in all the
scenarios as request arrival rate increases. In Scenario 1, at low
λ (λ ≤ 15 requests per BI), all the three algorithms provide
AE of 100%. But beyond that, it goes down and eventually
becomes zero. As discussed in the performance in terms of
AR, GTA1 and GTA2 are always equal in this scenario since
a request will have at most one fragment scheduled in a BI.
Hence, Cop values are identical across GTA1 and GTA2 which
leads to same AE for the two algorithms. AE for NGT is higher
than GTA1 or GTA2 for medium values of λ (λ = 20 and 25
requests per BI). Since NGT does not consider GT at all, it has
more idle periods in BI which is used to allocate higher Cop to
the requests. But at high lambda (λ ≥ 30 requests per BI), AE
becomes zero for all the algorithms, since PFAAC GTO tries to
admit more requests at the cost of lowering AE. In Scenario 2,
the relative performance of the three algorithms is the same as

11



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 7: Average Allocation Efficiency vs. Mean Request Arrival Rate (BI=102.4 ms)

Scenario 1. However, for all the algorithms, AE goes to zero at
a lower λ compared to Scenario 1. This is because in Scenario 2
allocations are more tightly fitted in a BI since all the requests
repeat multiple times. Thus, the ACA reduces AE much faster
than in Scenario 1 to admit more requests. As expected, between
GTA1 and GTA2, AE for GTA1 goes below 1.0 at a lower λ
compared to GTA2, since GTA2 uses a tighter upper bound of
GT overhead. In Scenario 3, AE for GTA2 falls to zero at a
higher λ than GTA1 and AE for NGT falls to zero at a higher
λ than GTA2. This is in line with GT estimation of the three
algorithms.

4) Performance in Terms of Degree of Fragmentation:
Performance in terms of average DoF of the system (ADoFS)
for the three scenarios is captured in Figures 8. To compute
ADoFS, DoF of every request is computed in every period
and then average DoF is computed over its lifetime. Another
averaging is done over average DoF of all the requests to obtain
ADoFS. In Scenario 1, at low λ, ADoFS is zero for all the
three algorithms. In this scenario, the deadlines of the requests
are much longer (than Scenario 2) and there is enough room to
schedule the jobs of requests without fragmentation. But at high
λ, fragmentation of jobs is inevitable because of high system
load. GTA1 and GTA2 overestimate the GT overhead which
leads to much idle periods left in an BI (see Figure 6), but
NGT fully utilizes the BI (100% payload). Hence, NGT has
higher ADoFs than GTA1 and GTA2. In Scenario 2, ADoFS
for the three algorithms are very close to each other (note the
logarithmic scale) for the entire range of request arrival rates. At
high load, whether accounting for GT or not, the fragmentation is
almost similar across the GT algorithms. In Scenario 3, ADoFS
of the three algorithms are almost equal throughout except for
λ values between 15 to 25 requests per BI, where NGT deviates
slightly from the other two. Since Scenario 3 predominantly
has requests having periods equal to integer fraction of a BI
(like the requests in Scenario 2), the performance is similar to
Scenario 2 except for λ values between 15 to 25 requests per BI.
At those λ values utilization of the system moves towards 100%
and fragmentation for all the three algorithms starts to increase.

The difference of performance between the three algorithms is
due to slight difference in system utilization around those λ
values. Beyond λ value of 25 requests per BI, the utilization of
the system remains almost constant for all the three algorithms
and hence, their AoDFS remains close to each other.

5) Performance in Terms of Normalized Delay: Figure 9
shows average normalized delay (AvND) of requests in the
three scenarios as λ increases. To compute the AvND of a
given request, normalized delay is computed in every period
and averaged over its lifetime. Then AvND of all the requests
are plotted as a box and whisker plot. In Scenario 1, at low λ
(λ ≤ 15), NGT algorithm has lower AvND than the other two,
since NGT does not have any GT and at low load there is no
fragmentation (see Figure 8), jobs of requests finish earlier in
NGT, which leads to lower delay. At higher λ (λ ≥ 20), NGT
has higher payload allocation than the other two. It achieves
high payload by allocating extra fragments to the requests which
may already have been allocated at least Cmin, when it finds
idle durations to fill. This leads to more fragmentation (see
Figure 8) and higher delay for the request. Median AvND of
GTA1 and GTA2 are almost identical throughout, because the
two algorithms have the same actual GT and payload utilization
as well as the same ADoFS, which transaltes to same delay. In
Scenario 2, at low λ (λ ≤ 15), median AvND of NGT is the
lowest followed by GTA1 and then GTA2. At low λ, the actual
GT allocated to GTA1 and GTA2 is high. These GT add to the
delay, which leads to higher delay with GTA1 and GTA2 than
NGT. Between GTA1 and GTA2, GTA2 has less overestimated
GT (see Figure 6) and hence, actual GT allocated in GTA2
is higher than GTA1 (note that GTA2 has higher payload).
This leads to AvND of GTA2 to be more than GTA1. But at
high λ (λ ≥ 20), GTA2 has high actual GT overhead (very
little overestimation of GT), whereas NGT, although has higher
payload, has no GT overhead. The high GT overhead in GTA2
leads to more fragmentation. Hence, AvND for GTA2 is higher
than NGT. For GTA1, payload is very low with relatively lower
GT overhead (and quite a bit of overestimation) (see Figure 6).
Hence, AvND in this case is the lowest. Relative performance

12



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 8: Average Degree of Fragmentation of the System (ADoFS) vs. Mean Request Arrival Rate (BI=102.4 ms)

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 9: Average Normalized Delay (AvND) vs. Mean Request Arrival Rate (BI=102.4 ms)

of the three GT algorithms in Scenario 3 is similar to those in
Scenario 2, since Scenario 3 has much higher percentage of
requests with periods equal to fraction of a BI.

6) Performance in Terms of Normalized Jitter: Figure 10
captures performance in terms of average normalized jitter
(AvNJ). To compute the AvNJ of a given request, normalized
jitter is computed in every period and averaged over its lifetime.
Then AvNJ of all the requests are plotted as a box and whisker
plot. In Scenario 1, AvNJ for all the GT algorithms are almost
zero for low λ and high λ. At low λ, there is enough idle time
that the relative scheduling time of jobs of a request is almost
the same across its period, which means negligible jitter. At
high λ, new requests are admitted when some existing request
leave. So, the new requests do not perturb the schedule much.
The relative scheduling time of jobs of the requests does not
vary much across periods (since the period or deadline is much
more relaxed in this scenario compared to Scenario 2). Thus,
the AvNJ is almost zero. But at λ = 20 and λ = 25, the system
utilization inches towards 100%, hence schedule of existing
requests changes to accommodate new request and that leads
to some jitter in all the three algorithms. In Scenario 2, at low
λ, median AvNJ of NGT algorithm is lower than the other two.
For GTA1 and GTA2, any change in the relative schedule of

jobs of a request incurs higher jitter due to the GT. At high
λ, NGT and GTA2 run at full capacity, i.e., there is no idle
duration left in a BI. Also, requests have much tighter deadline
and new requests could change the schedule of existing requests
which leads to higher jitter. In the case of GTA1, at high λ, it
has overestimated GT (which is basically idle duration in a BI)
(see Figure 6), hence, it has more room to not perturb schedules
of many existing requests. Therefore, its jitter is lowest at high
λ.

7) Uncertainty in the Experiments: The experiments were
run for a long duration equal to 1000 BIs, due to which the
run times were very high. So, it was not possible to get the
uncertainty measurements of AR for every λ value. We measured
standard deviation of AR for λ = 5, 25 and 50 requests per BI
for all the three scenarios and all the three GT algorithms to
get some sample values. The minimum and maximum standard
deviation, across all scenarios and all GT algorithms, were 0 %
and 0.72 % of the mean respectively. Based on these sample
values of standard deviation and the fact that our experiments
were run for a long duration of 1000 BIs, we expect the standard
deviation of AR and various average utilizations for all λ values
to be very very small.

13



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 10: Average Normalized Jitter (AvNJ) vs. Mean Request Arrival Rate (BI=102.4 ms)

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 11: Percentage of Requests Missing Deadline vs. Mean Request Arrival Rate

8) Discussion on the NGT algorithm: We want to have
some cautionary discussion against using NGT algorithm in
a real IEEE 802.11ad system. From the various performance
graphs presented above, it might appear that NGT algorithm is
a good choice to keep admission control simple and get better
performance. But an IEEE 802.11ad scheduler puts GT between
two back-to-back allocations. Hence, using NGT algorithm
in call admission control can lead to missed deadlines for
requests, especially at high load situation. This fact is presented
in Figure 11, which plots the percentage of admitted request
that miss its deadline at least once in its lifetime as λ increases.
For all the three scenarios, at high load situation (λ ≥ 15),
some requests miss their deadlines at least once. Even a single
missed deadline is a violation of IEEE 802.11ad specification.
Therefore, although NGT can sometimes achieve much higher
utilization based on payload than GTA1 or GTA2 (for example,
see Figure 6(b) at high request arrival rate), it should not be
adopted in the call admission control in a real IEEE 802.11ad
system.

9) Performance with Shorter BI: We want to observe how the
performance of our admission control and scheduling algorithm
changes when the BI is shorter. So, in this section, we present
few sets of results when BI is set to 51.2 ms, keeping all other

simulation parameters unchanged.

Figure 12 presents the AR vs. mean request arrival rate.
Comparing them with the corresponding graphs in Figure 5, we
observe that the relative performance of the three GT algorithms
remains almost the same. However, since the BI duration is
shorter, AR falls below 100 % at a smaller value of λ when
BI=51.2 ms.

In terms of various utilizations, comparing the Figures 13
and 6, we see that the relative performance of the three GT
algorithms does not change much. However, at low λ, total
utilization with BI=51.2 ms is higher and also total utilization
reaches 100 % at a lower λ which is expected due to the shorter
BI. However, the GT overheads are almost identical once the
total utilization reaches 100 % at high λ. For the NGT algorithm
also we notice that the utilization goes above 1.0 at a smaller
λ value than that for BI=102.4 ms due to the shorter BI.

Comparing Figures 14 and 7, it is clear that the relative
performance of the three GT algorithms, in terms of AE, does not
change much. However, the median AE of respective algorithms
falls below 100 % as well as goes to zero at a lower λ due to
the shorter BI.

14



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 12: Acceptance Ratio vs. Mean Request Arrival Rate (BI=51.2 ms)

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 13: Various Utilizations vs. Mean Request Arrival Rate (BI=51.2 ms)

Comparing the normalized delay obtained with BI=51.2 ms
(Figure 9) with the earlier results (Figure 15), we notice that for
high λ (when total utilization is 100 %), the respective median
normalized delays are almost the same in all the scenarios. Note
that, in this case, the absolute delay would be lower (in fact,
almost half) than that for the BI=102.4 ms case. However, at
low λ, when utilization is low, for a given λ, the normalized
delay is higher. This is because, in this case, for a given λ, when
BI=51.2 ms, the utilization is higher than when BI=102.4 ms.
This leads to more fragmentation and therefore, higher delay.

Relative performance of the three GT algorithms in terms
of normalized jitter with BI=51.2 ms is very similar to that
of BI=102.4 ms, i.e., the respective performance graphs of the
three scenarios look very similar. Hence, explanation given for
Figure 10 mostly applies to BI=51.2 ms case also. Due to space
limitation we are not able to provide the graphs here.

V. RELATED WORK

There have been few analytical studies done on IEEE 802.11ad
channel access. A 3D Markov chain based analytical model

for performance analysis of SP and CBAP mode of channel
access is presented in [17]. In [18], authors present a Markov
chain based analytical model for CBAP allocation. The model
accounts for presence of SPs and deafness and hidden node
problems associated with directional antennas during CBAP. An
analytical model for SP access is proposed in [19], in which the
authors study the worst case delay of SP packets using the model.
They also discuss a way to optimally allocate a channel between
SP and CBAP access. [20] proposes a scheduling method based
on analytical model for a multimedia flow using SP channel
access in the presence of channel errors.

There has been very little work reported in the literature
in experimental study of admission control and scheduling of
SP and CBAP allocations. In [21], the authors present two
algorithms for joint admission control and scheduling of periodic
traffic streams using SP allocation. However, the authors only
consider very simple application scenarios and do not consider
GT overhead in the admission control and scheduling. In one
scenario, all the applications are assumed to have the same traffic

15



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 14: Average Allocation Efficiency vs. Mean Request Arrival Rate (BI=51.2 ms)

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 15: Average Normalized Delay (AvND) vs. Mean Request Arrival Rate (BI=51.2 ms)

parameters. In the other case, there are only two sets of traffic
parameters and an application chooses one from the two sets.
Also, this study only considers periods which are integer fraction
of the BI. Their algorithms can become too expensive if it is
to be implemented in a real IEEE 802.11ad system to be able
to schedule applications with many different traffic parameters.
In [9], we presented three admission control algorithms and a
EDF based scheduling algorithm for isochronous traffic, which
can handle requests that are integer fraction and integer multiple
of a BI. The algorithms are carefully designed so that their run
time complexity is not high for any general set of requests having
many different set of traffic parameters. However, that study
did not consider guard time overhead. In fact, to the best of our
knowledge, the work presented in this paper is the first one to
consider GT overhead in IEEE 802.11ad admission control and
scheduling. Finally, in [22], the authors present a reinforcement
learning (RL) based scheduling of SP allocation which finds
the optimal duration of each SP. The RL based scheme uses
Q-learning and interacts with the network deployment scenario
to get the optimal SP duration. Queue size, in terms of number
of packets, at the MAC layer represents states and reward is
represented as a function of number of received packets and
the action taken.

VI. CONCLUSION AND FUTURE WORK

One of the main contributions of this study is to compute
upper bounds on GT overhead in IEEE 802.11ad scheduling.
We used these upper bounds to modify the PFAAC presented
in [9] to account for GT overhead in scheduling. We presented
two upper bounds on GT overhead. The modified PFAAC,
called PFAAC GTO, shows how to incorporate the two methods,
referred to as GTA1 and GTA2, into call admission control.
We provide a comprehensive simulation results comparing the
performance of these two algorithms along with no GT (NGT)
case with respect to different performance metrics. Although
NGT case generally performs better than GTA1 and GTA2, we
pointed out that it may not be suitable for a practical IEEE
802.11ad system. In fact, if NGT is used for admission control,
then we show that when the scheduler actually inserts GT,
some requests may miss their deadlines, especially at high
load situations. Thus, admission control should use GTA1 or
GTA2. Since, GTA2 uses tighter upperbound on GT overhead,
it performs better than GTA1 in most of the scenarios and in
most of the performance metrics. Hence, PFAAC GTO with
GTA2 is a good choice for admission control for a practical
IEEE 802.11ad system.

In terms of future work, we are looking at admission control
and scheduling of IEEE 802.11ad MAC when both isochronous

16



and asynchronous traffic may be present in the system. We would
like to study non-preemptive versions of the EDF scheduler
which will have reduced performance in terms of acceptance
ratio but should have less overhead in terms of GT.

REFERENCES

[1] Y. Ghasempour, C. R. da Silva, C. Cordeiro, and E. W. Knightly, “IEEE
802.11ay: Next-generation 60 GHz Communication for 100 Gb/s Wi-Fi,”
IEEE Communications Magazine, vol. 55, no. 12, pp. 186–192, 2017.

[2] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C.
Widmer, “IEEE 802.11ad: Directional 60 GHz Communication for Multi-
Gigabit-per-second Wi-Fi,” IEEE Communications Magazine, vol. 52,
no. 12, pp. 132–141, 2014.

[3] M. Lecci, F. Chiariotti, M. Drago, A. Zanella, and M. Zorzi, “Temporal
characterization of xr traffic with application to predictive network slicing,”
arXiv preprint arXiv:2201.07043, 2022.

[4] M. Lecci, M. Drago, A. Zanella, and M. Zorzi, “An open framework
for analyzing and modeling xr network traffic,” IEEE Access, vol. 9, pp.
129 782–129 795, 2021.

[5] T. Hoßfeld, F. Metzger, and P. E. Heegaard, “Traffic modeling for
aggregated periodic iot data,” in 2018 21st Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN). IEEE, 2018,
pp. 1–8.

[6] H. Assasa, S. K. Saha, A. Loch, D. Koutsonikolas, and J. Widmer,
“Medium access and transport protocol aspects in practical 802.11 ad
networks,” in 2018 IEEE 19th International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM). IEEE, 2018,
pp. 1–11.

[7] “Talon AD7200 Multi-Band Wi-Fi Router.” [Online]. Available:
https://www.tp-link.com/us/home-networking/wifi-router/ad7200/

[8] “Netgear Nighthawk ©X10.” [Online]. Available: https://www.netgear.
com/home/wifi/routers/ad7200-fastest-router/

[9] A. Sahoo, W. Gao, T. Ropitault, and N. Golmie, “Admission Control
and Scheduling of IsochronousTraffic in IEEE 802.11ad MAC,” in ACM
International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), November 2021.

[10] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the Association for
Computing Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[11] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications,” 802.11 Working Group of the LAN/MAN
Standards Committee of the IEEE Computer Society, Dec. 2016.

[12] K. Jeffay, D. F. Stanat and C. U. Martel, “On Non-Preemptive Scheduling
of Periodic and Sporadic Tasks,” in IEEE Real-Time Systems Symposium
(RTSS), December 1991, pp. 129–139.

[13] S. R. Thuel and J. P. Lehoczky, “Algorithms for Scheduling Hard Aperiodic
Tasks in Fixed-Priority Systems Using Slack Stealing,” in RTSS, 1994, pp.
22–33.

[14] H. Chetto and M. Chetto, “Some Results of the Earliest Deadline
Scheduling Algorithm,” IEEE Transactions on software engineering,
vol. 15, no. 10, pp. 1261–1269, 1989.

[15] S. Baruah, “The limited-preemption uniprocessor scheduling of spo-
radic task systems,” in 17th euromicro conference on real-time systems
(ECRTS’05). IEEE, 2005, pp. 137–144.

[16] H. Assasa, J. Widmer, T. Ropitault, and N. Golmie, “Enhancing the
ns-3 ieee 802.11ad model fidelity: Beam codebooks, multi-antenna
beamforming training, and quasi-deterministic mmwave channel,” in
Proceedings of the 2019 Workshop on Ns-3, ser. WNS3 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p. 33–40.
[Online]. Available: https://doi.org/10.1145/3321349.3321354

[17] Q. Chen, J. Tang, D. T. C. Wong, X. Peng, and Y. Zhang, “Directional
Cooperative MAC Protocol Design and Performance Analysis for IEEE
802.11ad WLANs,” IEEE Transactions on Vehicular Technology, vol. 62,
no. 6, pp. 2667–2677, 2013.

[18] C. Pielli, T. Ropitault, N. Golmie, and M. Zorzi, “An Analytical
Model for CBAP Allocations in IEEE 802.11ad,” IEEE Transactions
on Communications, 2020.

[19] C. Hemanth and T. Venkatesh, “Performance Analysis of Service Periods
(SP) of the IEEE 802.11ad Hybrid MAC Protocol,” IEEE Transactions
on Mobile Computing, vol. 15, no. 5, pp. 1224–1236, 2015.

[20] E. Khorov, A. Ivanov, A. Lyakhov, and V. Zankin, “Mathematical Model
for Scheduling in IEEE 802.11ad Networks,” in 2016 9th IFIP Wireless
and Mobile Networking Conference (WMNC). IEEE, 2016, pp. 153–160.

[21] M. Lecci, M. Drago, A. Zanella, and M. Zorzi, “Exploiting scheduled
access features of mmwave wlans for periodic traffic sources,” in 2021
19th Mediterranean Communication and Computer Networking Conference
(MedComNet). IEEE, 2021, pp. 1–8.

[22] T. Azzino, T. Ropitault, and M. Zorzi, “Scheduling the Data Transmission
Interval in IEEE 802.11ad: A Reinforcement Learning Approach,” in 2020
International Conference on Computing, Networking and Communications
(ICNC). IEEE, 2020, pp. 602–607.

A nirudha Sahoo (Senior Member, IEEE) received the
Ph.D. degree in computer science from Texas A&M
University, College Station, TX, USA. He worked
as a Software Engineer with Intergraph Corporation,
Huntsville, AL, USA, and then as a Senior Software
Engineer with Cisco Systems, San Jose, CA, USA. He
was an Associate Professor with IIT Bombay, India.
He is currently a Computer Scientist with the National
Institute of Standards and Technology. His research
interests include spectrum sharing, dynamic spectrum
access, and other areas of wireless networks.

W eichao Gao received the Doctor of Science Degree
in Information Technology from Towson University,
Towson, MD, USA in 2021 and MBA from University
of Michigan in 2011. He worked as a guest researcher
with the Wireless Network Division, National Institute
of Standard and Technology, Gaithersburg, MD, USA
during his doctorate program, and is currently working
as a contractor in the same division. His research
interest includes Internet of Things, wireless networks,
and data sciences.

T anguy Ropitault received the Ph.D. degree in com-
puter science from the Institut Mines-Télécom, Rennes,
France, in 2015. He is currently working as a Con-
tractor with the Wireless Network Division, National
Institute of Standards and Technology, Gaithersburg,
USA. His current research interest includes mmWave
and WiFi sensing system-level performance evaluation.

17



N ADA GOLMIE (nada@nist.gov) received her Ph.D.
in computer science from the University of Maryland
at College Park. Since 1993, she has been a research
engineer at the National Institute of Standards and
Technology (NIST). From 2014 until 2022, she served
as the chief for Wireless Networks Division at NIST.
She is an IEEE Fellow, and a NIST Fellow in the
Communications Technology Laboratory. Her research
in media access control and protocols for wireless
networks led to over 200 technical papers presented at
professional conferences, journals, and contributed to

international standard organizations and industry led consortia. She is the author
of “Coexistence in Wireless Networks: Challenges and System-level Solutions
in the Unlicensed Bands,” published by Cambridge University Press (2006).
She leads several projects related to the modeling and evaluation of future
generation wireless systems and protocols and serves as the NextG Channel
Model Alliance chair.

18


