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We propose an approach to generate a wide range of randomly branched polymeric structures to gain general
insights into how polymer topology encodes configurational structure in solution. Nanogel particles can
take forms ranging from relatively symmetric sponge-like compact structures to relatively anisotropic open
fractal structures observed in some nanogel clusters and in some self-associating polymers in solutions, such
as aggrecan solutions under physiologically relevant conditions. We hypothesize that this broad ‘spectrum’
of branched polymer structures derives from the degree of regularity of bonding in the network defining
these structures. Accordingly, we systematically introduce bonding defects in an initially perfect network
having a lattice structure in three and two topological dimensions corresponding to ‘sponge’ and ‘sheet’
structures, respectively. The introduction of bonding defects causes these ‘closed’ and relatively compact
nanogel particles to transform near a well-defined bond percolation threshold into ‘open’ fractal objects with
the inherent anisotropy of randomly branched polymers. Moreover, with increasing network decimation,
the network structure of these polymers acquires other configurational properties similar to randomly
branched polymers. In particular, the mass scaling of the radius of gyration and its eigenvalues, as well as
hydrodynamic radius, intrinsic viscosity, and form factor for scattering, all undergo abrupt changes that
accompany these topological transitions. Our findings support the idea that randomly branched polymers
can be considered to be equivalent to perforated sheets from a ‘universality class’ standpoint. We utilize
our model to gain insight into scattering measurements made on aggrecan solutions.

I. INTRODUCTION

Polymer networks, more commonly known as ‘gels,’
play an important role in the function of many biological
processes1 and are increasingly become essential compo-
nents of modern (bio)-manufacturing.2–4 These complex
networks are composed of linear polymer chain sub-
units connected to form higher-order structures, such
as branched and loop structures, which eventually lead
to the formation of a polymer network when the cross-
link density is sufficiently large.5,6 Our previous under-
standing of polymer networks is based on perfect three-
dimensional networks in which the chains are connected
into a structure with lattice-like connectivity7–11 or ho-
mogeneous tree-like structures without loops.5,6,12–17

The existence of loops in the polymer network is known
to influence the material properties, e.g., primary loops
are elastically inactive, while higher-order loops may
contribute to elasticity differently depending upon their
specific topology. However, our inability to quantify as-
pects of network structure in macrocopic networks has
hindered the testing the validity of the affine and phan-
tom network models in real polymer networks, a long-
standing problem in polymer science.6,18 This general
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problem of network characterization clearly extends to
the nanoscale networks investigated in the present work.

The initial motivation of the current study is to gain
insight into the nature of assemblies formed by aggre-
can, a bottlebrush-like polymer that associates with
hyaluronic acid and a small glycoprotein, link protein,
to form multi-molecular polymeric networks.19,20 These
networks reside, immobilized due to their large size,
within an extracellular organized fibrillar collagen net-
work, serving as a tensile element. The biological im-
portance of these networks in cartilage is that they exert
a high osmotic swelling pressure resisting external com-
pressing loads.1 Aggrecan is also present in significant
concentrations in the extracellular matrices of other tis-
sues, including the tendon, brain, and muscle. Degra-
dation in the synthesis and structure of the aggrecan
polymer network in cartilage results in changes in its
functional properties and failure of joint cartilage in
osteoarthritis.21–24 Thus, understanding the topology
of this polymer network influences biological function
is the key in developing a rational treatment to prevent
the destruction of joint cartilage in arthritis and the de-
velopment of synthetic cartilage transplants.

Previous computational models depict aggrecan as a
regular bottlebrush polymer.25–28 However, these mod-
els do not capture the associative behavior of aggrecan,
and this supramolecular organization of the aggrecan
into a hierarchical network is not addressed in most
previous studies. Indeed, experimental comparison be-
tween bottlebrush poly(sodium acrylate) and natural

mailto:alexandros.chremos@nih.gov
mailto:horkayf@mail.nih.gov
mailto:jack.douglas@nist.gov


2

aggrecan solutions revealed that the former synthetic
polymers exhibit a distinctive scattering peak in their
structure factor. However, no such peak is observed
in aggrecan solutions.29,30 Understanding how to con-
trol the topology of the assemblies of aggrecan should
have large ramifications in treating socially significant
diseases such as arthritis and diverse respiratory and
intestinal diseases where bottlebrush molecules are im-
plicated in the disease state, as well as, in developing
new materials having functional properties similar to
their biological counterparts. More generally, it has
been demonstrated that the synthesis protocol plays a
key role in the resulting properties of such gels,31 sug-
gesting that any insights gained into the physical na-
ture of the aggrecan self-assembled structure in solution
should lead to a better understanding of the proper-
ties of these materials to their biological function. We
also anticipate that a general study of the influence of
molecular topology on the conformational and transport
properties (radius of gyration and intrinsic viscosity of
gel particles) should have benefits to characterizing both
synthetic and naturally occurring gel particles that arise
in diverse contexts.

Toward this goal, we propose a general approach to
efficiently generate and characterize a wide range of ran-
domly branched structures and identify which of these
structures resemble the multimolecular assembled struc-
tures that aggrecan forms. Our proposed approach is
based on the construction of ‘perfect’ nanogel particles
having a lattice structure, as discussed in a previous
study.32 Then, we introduce ‘defects’ in the nanogel par-
ticle structure. We explore two kinds of defects. The
first type of defect is introduced by randomly cutting
the bonds between the repeating units of the nanogel
structure while maintaining the integrity of the nanogel
particle intact. The second type of defect is introduced
by randomly removing repeating units from the nanogel
particle. We demonstrate that these two approaches
are equivalent and reduce the number of loops in the
network, leading to open and fractal-like network struc-
tures. The latter type of networks resembles to the self-
assembled network structures found in aggrecan solu-
tions under physiologically relevant conditions.

The study of particles with a network internal struc-
ture formed by ‘randomly’ cross-linking individual poly-
mer chains or a small number of polymer chains in dilute
polymer solutions. Such network particles have been
termed ‘single chain nanoparticles’ (SCNPs). The melt
properties of these nanogel particles can be greatly al-
tered from linear polymer melts of the same polymer
species because of the ‘softness’ of these particles and,
no doubt, their altered average shape.33–37 Based on
the results of our paper, we may expect that introduc-
ing a relatively small number of intermolecular cross-
links (physical or chemical) should first convert linear
polymer chains into open gel particles having the frac-
tal dimension of swollen randomly branched polymers
having moderate grafting density (df = 2). Upon in-
creasing the high grafting density even further, the SC-

NPs should change then their scaling ‘universality’ class
to the ‘sponge,’38 corresponding to effectively a three-
dimensional (topological rather than spatial dimension)
network structure. At any rate, the observed change in
the mass scaling of the radius of gyration of SCNPs has
been found to be qualitatively consistent with the ex-
pectations just stated that cross-linking in effect alters
the effective topological dimension of the polymer net-
work and this impacts the universality class of polymer
scaling characteristics.33

Notably, the change of mass scaling is predicted to
occur in a good solvent so that this type of change
of mass scaling does not necessarily imply a change in
solvent quality, as Diesendruck and coworkers have in-
terpreted their observations on the dimensions of SC-
NPs as the cross-link density is varied.35 Moreover, new
Rg mass scaling exponents are predicted38 to occur at
the θ-point of SCNPS, based on the model indicated
above, where the second virial coefficient vanishes if this
correspondence SCNPs and our gel model holds. We
also suggest that SCNPs cross-linked under relatively
poor solvent conditions should acquire a 3-dimensional
network-like structure (‘sponge’) at lower cross-link den-
sity than polymer chains cross-linked in a good sol-
vent. Reductions in the mass scaling exponents have
also been observed with increasing branching in syn-
thetic polymers,39 but there was no theoretical frame-
work in this previous study for interpreting these expo-
nent changes with changes in the branching density.

Our findings are also relevant to thermally reversible
and irreversible gels formed under diverse conditions in
diverse forms of soft matter. Furthermore, our results
on networks having a two-dimensional reference network
structure are highly relevant to two-dimensional poly-
mers, such as graphene,40 the spectrin network of red
blood cells,41 and polymer membranes.42 While such
two-dimensional polymers or ’sheet polymers’ are of-
ten depicted as a two-dimensional network similar ge-
ometrically to a tennis net, we note that randomly
branched polymers can be thought of as imperfect sheet-
like polymers, i.e., having a topological dimensional-
ity of two,38,43,44 despite not having an obvious phys-
ical resemblance. Our proposed approach can explore
the transition from a sheet-like structure to a randomly
branched polymeric one. Specifically, we find that sheet-
like structures and randomly branched polymers having
a moderate grafting density exhibit the same mass scal-
ing exponent of their radius of gyration, suggesting that
these polymers belong to the same universality class.
However, we find that near the percolation transition,
there is a crossover from a more compact sheet-like con-
formation dominated by loops to one more open and
fractal-like nanogel particle. Our model thus can ‘inter-
polate’ between these limiting types of nanogel parti-
cles. We also provide some preliminary calculations for
three-dimensional networks, which we term ‘sponges’
and the crossover of these networks into more open-
branched polymers exhibiting different scaling charac-
teristics from the case of the 2D sheet network case.
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These networks have much stronger excluded volume
interactions, and much larger networks are required for
the full characterization of the fractal scaling charac-
teristics of this type of gel particle. However, we are
able to gain at least some qualitative characterization
of this type of branched polymer having a high grafting
density.

The paper is organized as follows. Section II con-
tains details of the simulation methods, the two different
approaches to introduce defects in our coarse-grained
nanogel particle model. The results are presented in sec-
tion III, where we investigate the influence of topology
on the conformational properties of the nanogel parti-
cles in subsections III A and III B, the scattering pro-
files that these structures exhibit are discussed in sub-
section III D, and a brief comparison with aggrecan is
presented in subsection III E. Finally, we draw our con-
clusions in Sec. IV.

II. METHODS AND MODELS

We employ a bead-spring model suspended in an im-
plicit solvent. All particles are assigned the same mass
m, size σ, and strength of interaction ε; we set ε and σ
as the units of energy and length. The segmental inter-
actions are described by the cut-and-shifted Lennard-
Jones (LJ) potential with a cutoff distance rc = 21/6 σ,
corresponding to an athermal solvent. The segments
along a chain are connected with their neighbors via
a stiff harmonic spring, VH(r) = k(r − l0)2, where
l0 = 0.99σ is the equilibrium length of the spring, and
k = 2500 ε/σ2 is the spring constant.

We first construct a perfect compact gel, which is
composed of stars polymers placed in a square or in
a cubic lattice and with two or more of their free ends
bonded with the free ends of the neighboring stars, the
number of branched points (or star polymers) in each
direction is labelled as Nx, Ny, and Nz, see Fig. 1. The
repeating structural unit of the polymer network studied
here is a branched structure that is identical to a reg-
ular star polymer. Other polymeric structures and/or
other lattices could be utilized but these are out of the
scope of the current study. A regular star polymer has
a core particle, which is connected with the free end
of f chains (or arms) composed of M segments. Thus,
the total number of interaction centers per star poly-
mer is Mw,star = fM + 1. The molecular mass of a
nanogel particle is Mw = (NxNyNz)Mw,star. We use
the quantity Nb to characterize the mesh size, since we
focus on nanogel particles having Nb = Nx = Ny = Nz;
we note that for two-dimensional polymeric structures
Nz = 1 6= Nb. We note that ‘mesh size’ is typically
referred in the literature to the average size of the com-
partment created by the polymer chains that form the
mesh. For the purposes of our current study, we instead
refer to ‘mesh size’ as the size of the whole mesh. Every
star polymer unit at the interior of the nanogel is fully
bonded with its neighbors and thus the only dangling

FIG. 1. Schematic of the molecular architecture of the
nanogel particle, along with the resulting configurations by
introducing defects by two mechanisms: i) cutting bonds
between the repeating units of the nanogel particle; ii) re-
moving repeating units from the nanogel particle.

polymer chains are located at the exterior of the nanogel
structure. This type of nanogel particles is dominated
by both branches and loops. We also note that nanogel
particles having f = 4 result in the formation of fewer
but larger loops compared to f = 6 nanogel particles.32

Once a compact nanogel particle is constructed, we
utilize one of the two proposed mechanisms for intro-
ducing defects into the nanogel particles. In both cases,
we start from the construction of ‘perfect’ nanogel par-
ticles as described above. In the first mechanism, we
randomly cut a fraction of bonds that connect neighbor-
ing star polymers provided that the nanogel integrity is
maintained. This mechanism keeps the molecular mass
of the nanogel particle fixed. In the second mecha-
nism, we randomly remove a fraction of repeating units
from the structure provided that the nanogel integrity
is maintained in each attempt of removing a unit or by
keeping the largest remaining network. Clearly, this ap-
proach reduces the molecular mass of the original struc-
ture. Both mechanisms eliminate the existence of loops
in the original structure, see Fig. 1. We note that the
first mechanism is inspired by the work of Grest et. al,45

where the repeating unit was a single bead instead of
a star polymer. Our approach provides ways to tune
the resulting molecular nanogel structure. We also note
that these two mechanisms could be used in conjunction
with each other to generate a wider variety of randomly
branched structures. This will be part of a future study.
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The systems were equilibrated at constant tempera-
ture kBT/ε = 1.0 conditions, maintained by a Nosé-
Hoover thermostat. Typical simulations equilibrate for
5000 τ and data is accumulated over a 150 000 τ inter-
val, where τ = σ(m/ε)1/2 is the MD time unit; the time
step used was ∆ t / τ = 0.005.

A. Path-integration package, ZENO

Hydrodynamic radius and intrinsic viscosity calcu-
lations are based on the use of path-integration al-
gorithm ZENO, which calculates hydrodynamic, elec-
trical, and shape properties of polymer and parti-
cle suspensions,46–48 and has been used in many real
systems.49,50 The computational method used by ZENO
for calculating Rh, as well other hydrodynamic proper-
ties, involves placing a polymeric structure inside an en-
closing sphere and then launching random walks from
the surface of the sphere. The fraction of walks that
hit the molecule as opposed to walks ending in infinity
can be directly related to Rh. We repeat this process
for 104 distinct molecular conformations and then con-
struct distributions of Rh for each molecular topology
and Mw. We also determine the mean and the standard
deviation for these distributions. Through an extension
of the process just described,47 which considers both
where the launched trajectories initiate on the probing
sphere and where they end when they hit the polymer,
other basic polymer characterization properties can be
estimated from ZENO such as the intrinsic conductiv-
ity of conducting particles and the intrinsic viscosity due
to the mathematical similarities between electrical and
hydrodynamical properties.47,51

For the ZENO-related calculations, we consider 1 000
or more distinct molecular conformations. For each
molecular configurations, 4 000 and 2 000 random walks
were performed for the exterior (e.g., intrinsic viscosity)
and interior-type (e.g., Rg eigenvalues) calculations. We
also note that one realization of the bonding network is
considered; below the percolation threshold no signifi-
cant deviation is found, but above it deviations between
different bonding networks having the same number of
defects are found. These deviations will be part of a
future study.

III. RESULTS AND DISCUSSION

We first obtain the mass scaling behavior of the av-
erage radius of gyration (Rg) of two- and three- dimen-
sional nanogel particles in an athermal solvent with a
variation of mesh size and different degrees of defects.
We also calculate the intrinsic viscosity ([η]). Follow-
ing this analysis, we calculate the form factor for these
structures and identify the conditions at which particle-
like features emerge in the scattering profiles. Finally,
we utilize our model of open nanogels to gain insight
into recent scattering and rheological observations made

on aggrecan solutions, a system of great particular in-
terest to our research group because of the relevance
to this self-assembly process to arthritis when this as-
sembly process does occur as required to maintain the
normal physiological function of joints, a condition that
leads to tissue damage.

A. Molecular size

We briefly revisit the scaling of the average molecu-
lar size in solution (e.g., radius of gyration, Rg) with
increasing molecular mass Mw of basic classes of poly-
mers: Linear and randomly branched polymers. Linear
and randomly branched polymers at equilibrium form
the most basic classes of polymers, which exhibit uni-
versal scaling of their average size in solution with in-
creasing molecular mass Mw. In particular, Rg scales as
Mν

w in athermal solvents with ν ≈ 10/17 ≈ 0.588 and
ν = 1/2 for self-avoiding walks and lattice animals in
three-dimensions, respectively.52–55 Moreover, near the
θ-point in solution at which attractive interactions be-
tween the polymer segments compensate the repulsive
binary excluded volume interactions, we have ν = 1/2
for linear chains56 and ν ≈ 2/5 for randomly branched
polymers.38,57,58 Polymers having different topologies
than linear chains and randomly branched polymers
raise the question of how their scaling characteristics
relate to polymers having a different topological struc-
ture. Often, real polymers having different topolo-
gies lie in between these limiting ‘universality classes’
of polymers59 and the properties of polymers are at-
tracted to one fixed point scaling behavior or the other
as molecular mass or other molecular parameters are
varied through their allowed physical range.

We initiate our discussion by calculating the Rg mass
scaling of ‘perfect’ two- (2D) and three-dimensional
(3D) nanogel particles, see Fig. 2. A perfect 3D nanogel
particle exhibits a scaling exponent of 1/3 indicating
that these highly cross-linked networks exhibit the char-
acteristics of a compact particle, as discussed in detail
in our previous study.32 On the other hand, 2D nanogel
particles exhibit a ‘flat’ conformation arising from the
resistance to in-plane shear deformations leading to an
anomalous stiffening of the surface in the presence of
thermal fluctuations.45,60–64 Fluctuation-induced rigid-
ification, which also occurs in linear polymer chains,65

nanogel particles having a 2D network topology exhibit
a scaling exponent of 1/2, which is in agreement with
previous simulation studies of ‘tethered’ polymer mem-
branes.

Next, we examine the effect of introducing ‘defects’
by cutting the bonds between the repeating units. We
focus on 2D nanogel particles, though the findings are
similar to 3D nanogel particles. As we increase the frac-
tion of bonds being cut over the total number of bonds
between the repeating units (fcb), we find no significant
changes in Rg for fcb . 0.4, see Fig. 3. We see that the
defects alter the overall structure of the original nanogel
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FIG. 2. Radius of gyration, Rg, of two- (circles) and
three-dimensional (squares) nanogel particles, having degree
of branching f = 4 and chain length M = 1, as a func-
tion of molecular mass, Mw. Screenshots of typical equili-
brated molecular configurations are also presented. The un-
certainty estimates correspond to two standard deviations
and the dashed lines are power-laws as guides for the eye.

particle by reducing the number of loops and increasing
the number of dangling branched chains. The average
size of the network polymers are not changed that much
by these topological changes, primarily due to the ex-
istence of large loops that tend to preserve it. How-
ever, the overall shape is much more sensitive to this
bond decimation process, as we shall discuss below. As
we continue to cut bonds, we reach a critical threshold
(fcb ≈ 0.4) where the structure swells significantly as
the last loops maintaining the integrity of the original
structure are cut, see Fig. 3. The location of this critical
threshold is approximately the same as in 3D nanogel
particles having f = 4. Even further decimation, the
networks undergo another transformation to structures
that are similar to linear polymer chains as the effective
dimensionality becomes reduced further.

We find similar trends by removing repeating units
from the nanogel particle. We note that by removing
units from the polymer structure and so Mw changes.
Removing less than 39% of the repeating units, theRg of

the decimated sheet exhibits a mass scaling Rg ∼M1/2
w ,

see Fig. 4. This scaling accords with the previous sim-
ulations by Grest45 and the predictions of the Wiener
sheet model.38 Importantly, there is a critical thresh-
old around 39% at which the nanogel structure trans-
forms from the relatively compact and symmetric form
of the perfect gel nanogel particle to a relatively open
and asymmetric nanogel particle, whereupon the aver-
age size of the nanogel particle, e.g., the radius of gy-
ration, undergoes a rapid increase. In other words, de-
fects around this point in the polymeric structure cre-
ate dangling chains extending from a tree-like backbone
and these dangling chains extend further away from the
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FIG. 3. Radius of gyration, Rg, of (a) 2D nanogel and
(b) 3D nanogel particles, as a function of the fraction of
bonds cut, fcb. The uncertainty estimates correspond to
two standard deviations. Typical molecular configurations
are also presented. The dotted lines are guides for the eye.

main body of the nanogel particle and lead to a sig-
nificant increase of Rg. This topological transition oc-
curs for both networks with the topology of a sheet-like
network (two-dimensional polymers) and polymers with
initial 3-D network topology, i.e., ‘sponges’.38

We can note here that ν of 3D network or ‘sponge’ is
predicted38 based on an approximate Flory-type model
to be 7/15 in the swollen limit, 11/30 under θ-conditions
where the binary polymer-polymer interaction vanishes
and 1/6 in the limit at which all excluded volume in-
teractions are neglected. This corresponds to spatial
dimensions larger than 12.38 The universality of these
scaling exponents is bit of a question because of the
high segmental density in these polymers, which makes
many-body interactions of orders relevant, as in the case
of linear polymers in two spatial dimensions66 and col-
lapsed linear polymer chains.67 In particular, the dimen-
sionless many-body excluded volume parameters scale
with the crossover exponent φm = m − (m − 1)d/2dm
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FIG. 4. Radius of gyration, Rg, of (a) 2D nanogel particles
(Nb = 30, f = 4, and M = 1) and (b) 3D nanogel particles
(Nb = 10, f = 4, and M = 1) by increasing the fraction
of removed units, fru. Typical molecular conformations at
initial conditions (top row) and at equilibrium (bottom row)
are also presented. The uncertainty estimates correspond to
two standard deviations.

where m is the order of the excluded volume interaction,
d is the dimension of the embedding space and dm is the
manifold dimension, e.g. dm = 3 for the ‘sponge’.38 Sim-
ulations of very large networks of this kind will be re-
quired to resolve the true large mass asymptotic scaling
limit of Rg and other solution properties with polymer
mass. Our results for this class of network polymers are

thus tentative.
In the conformational properties of our networks, the

critical threshold identified in both approaches can be
understood from the percolation theory,71–73 which de-
scribes the behavior of a network when nodes or links are
added. The primary focus of percolation theories and
models is on a geometric phase transition, where small
disconnected clusters merge into a significantly more ex-
tensive connected network, the so-called spanning clus-
ter. The percolation transition is relevant to many dif-
ferent types of applications, such as the spreading of
fires, diseases, and traffic, to name a few.74 Near this
percolation transition, the network exhibits fractal-like
behavior, and the exponents characterizing this fractal
behavior are universal. On the other hand, the location
of this transition depends on the local network struc-
ture/connectivity. Indeed, if p is the probability a node
in the network is filled then for a square lattice the per-
colation transition occurs at pc ≈ 0.59,75 meaning that
the unoccupied fraction (decimated nodes or ‘holes’) is
1− pc ≈ 0.41. The latter condition is equivalent to the
critical threshold found in our models, suggesting that
the conformation crossover observed in our model is ap-
parently related with the percolation transition of the
network. Specifically, the elimination of few remaining
loops in the network near the percolation transition re-
sults in significant changes in the conformational prop-
erties of the polymeric structure. Future work will fo-
cus on the precise conditions at which these topological
transitions occur.

B. Molecular shape

We focus on the average molecular shape of these
model branched polymers. Linear chain polymers ex-
hibit highly anisotropic conformations,76,77 while molec-
ular architectures that contain loops and high degree
of branching, such as star,70,78–82 rings70,78,79,83–85 and
bottlebrush59 polymers, tend to exhibit more isotropic
conformations.

One way to quantify the molecular shape is by the
eigenvalues of the radius of gyration tensor Sp. These
eigenvalues are denoted below by λ1, λ2, and λ3 and are
related to R2

g as follows:

Tr Sp = 〈R2
g〉 = 〈λ1〉+ 〈λ2〉+ 〈λ3〉, (1)

where λ1 ≤ λ2 ≤ λ3 and the brackets 〈〉 represent time
averages. The eigenvalue data are organized by compar-
ing the two larger eigenvalues with respect to the small-
est one. A sphere has 〈λ3〉/〈λ1〉 = 〈λ2〉/〈λ1〉 = 1 and
infinite long thin rod has 〈λ3〉/〈λ1〉 → ∞ and 〈λ2〉/〈λ1〉
is finite.

By increasing the number of defects, either by cutting
bonds or removing repeating units, we find a more com-
plex behavior in the molecular shape of nanogel particles
than in Rg. In particular, we find that a small number
of defects (less then 5%) make the 2D nanogel parti-
cles more flat, i.e., 〈λ3〉/〈λ1〉 and 〈λ2〉/〈λ1〉 increase,
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nanogel particles having Nb = 30, f = 4, M = 1 and
(squares) 3D nanogel particle having Nb = 10, f = 4,
M = 1.

see Figs. 5 and 6. These defects reduce the stiffness
of the sheet polymer, effectively making the sheet to
resist shape-changes induced by thermal fluctuations.
Nanogel particles with more than 5% of defects result
in the creation of tangling chains that make the over-
all molecular shape more isotropic, i.e., 〈λ3〉/〈λ1〉 and
〈λ2〉/〈λ1〉 decrease. We note that Rg remains nearly
constant in magnitude so that these changes in molec-
ular shape do not influence the molecular size of the
nanogel particle. Moreover, these changes in molecular
shape seem to follow the empirical relation, 〈λ3〉/〈λ1〉 ≈
1.11〈λ2〉/〈λ1〉+ 0.99. The molecular shape of the sheet

becomes more isotropic by increasing defects until the
critical threshold is reached, fcb ≈ 0.4. Interestingly
this configurational transition occurs when the molec-
ular shape becomes similar to a randomly branched
polymer,68 the molecular shape of a regular star poly-
mer resembles a soft ellipsoid having dimensions that
follow a geometric mean, 〈λ2〉 ∼

√
〈λ3〉〈λ1〉.59 Above

the critical threshold, the molecular shape starts to be-
come highly anisotropic, with 〈λ3〉/〈λ1〉 increasing while
〈λ2〉/〈λ1〉 remains flat, and the molecular shape be-
comes similar to the shape of random walks, see Figs. 5
and 6. Up to this point, both kinds of defects resulted in
similar behavior, however, the molecular shape can be-
come more anisotropic by further increasing the number
of defects by removing units from the nanogel structure.
The anisotropy continues to grow and reaches a maxi-
mum 〈λ3〉/〈λ1〉 ≈ 17 at around 60% to 80% of the units
removed. After this point, the remaining structure be-
comes relatively small and more isotropic, see Fig. 5.

The molecular shape of 3D nanogel particles is differ-
ent from that of 2D analogs. The original defect-free
structure is rather compact, meaning that 〈λ3〉/〈λ1〉
and 〈λ2〉/〈λ1〉 are both small, see Figs. 5 and 6. As
we introduce defects in the 3D nanogel particle struc-
ture, dangling branched chains start to emerge and be-
come longer, resulting in the overall molecular shape
becoming more anisotropic. Interestingly, it follows
the geometric mean, 〈λ2〉 ∼

√
〈λ3〉〈λ1〉 which star

polymers exhibit.59 Near the bond percolation transi-
tion, the molecular shape is relatively similar to that
of 2D nanogel particle before it unfolds. Unlike the
2D nanogel particles where the molecular shape starts
from being anisotropic shape of defect-free sheet to a
more spherically symmetric, in 3D nanogel particles the
molecular shape starts from a isotropic shape of defect-
free cubuidal shape to a more anisotropic one. This
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suggests that topology of the initial defect-free nanogel
structure play an important role in the final defect domi-
nated nanogel structure, compare typical molecular con-
figurations in Fig. 5 C & F.

An alternative and more experimentally accessible
way to quantify the shape of the molecular conforma-
tions of the nanogel particles is by utilizing the dif-
ference in the variation between of Rh and Rg when
molecular shape is varied. Indeed, the ratio Rh/Rg,
the hydrodynamic ‘penetration function’,47,68,86,87 is
often used as a descriptor to quantify the shape of
polymers.46,47 For the purposes of the current study,
Rh is determined with the use of a path-integration al-
gorithm ZENO, which calculates hydrodynamic, elec-
trodynamic, and shape properties of the polymer and
particle suspensions, as described in the subsection II A.
The values of Rh/Rg for a uniform sphere is Rh/Rg =

(5/3)1/2 ≈ 1.29, for a random walk is 0.79, and for
an infinite long rod is 0.68,88 Each molecular architec-
ture (linear chain, ring, and star) exhibits a relatively
simple trend as Mw increased, as discussed in our pre-
vious studies.59,70 For example, Rh/Rg of linear chains
decreases from the uniform sphere limit (when the lin-
ear chain is composed of a single segment) to the more
anisotropic conformations characteristic of polymer ran-
dom coils Rh/Rg ≈ 0.79 at larger molecular masses.
Highly branched stars exhibit little variation Rh/Rg

with molecular mass and this ratio takes a value close
to the value of a uniform sphere Rh/Rg ≈ 1.29.70

The trends in Rh/Rg (Fig. 7) further support the be-
havior of molecular shape as quantified by the eigenval-
ues of Rg. Specifically, when there are no or few defects
the nanogel particles exhibit Rh/Rg values near those
for a uniform sphere where Rh/Rg ≈ 1.29 and a circular
disc where Rh/Rg ≈ 0.9 for 3D and 2D nanogel parti-
cles, respectively. We also note that Rh/Rg for cube
and square plate equal 1.32 and 0.89847 so that sensi-
tivity of Rh/Rg to the boundary shape is not great when
the boundary shape is not highly irregular. Evidently,
a small number of defects does not influence Rh/Rg for
3D nanogel particles. However, we find that Rh/Rg pro-
gressively increases for initially perfect 2D nanogel par-
ticles towards a value of this ratio near 1.1, near that es-
timated for percolation clusters68 near the geometrical
percolation threshold of these network structures, see
Fig. 7. Decimation of the three-dimensional network
causes this limit to be approached from the opposite
direction. Introducing a still larger concentration of de-
fects causes Rh/Rg for both networks to a sharp drop
to a value corresponding to a more anisotropic value.
For 2D nanogel particles, Rh/Rg drops from a value
near percolation clusters to a value corresponding to the
shape of star polymers (Rh/Rg ≈ 0.88) from which the
network is constructed.70,89 For 3D nanogel particles,
Rh/Rg drops from a value near uniform sphere to a value
slightly smaller than percolation clusters. Even though
the 2D and 3D nanogel particles are composed of the
same repeating unit, the resulting structures after deci-
mation of the bonding network can evidently be differ-

Uniform sphere

Random walk

Circular plate

FIG. 7. Ratio of the average hydrodynamic radius over
the average radius of gyration Rh/Rg of 2D (circles) and 3D
(squares) nanogel particles as a function of the fraction of
bonds cut (fcb) or removing units (fru) without the nanogel
structure disintegrating. Circles correspond to 2D nanogel
particle having Nb = 30, f = 4, and M = 1, squares corre-
spond to 3D nanogel particle having Nb = 10, f = 4, and
M = 1, open symbols correspond to introducing defects by
cutting bonds, and filled symbols correspond to introducing
defects by removing units. From top to bottom, the dot-
ted lines correspond to exact results of Rh/Rg for uniform
spheres, a circular discs, and an estimate of this ratio for ran-
dom walks, self-avoiding walks, and percolation clusters.68

The highlighted region outlines approximately the regime
near the percolation transition for these systems. The un-
certainty estimates correspond to two standard deviations.

ent, which signifies the importance of the topology of the
original structure. The ‘penetration function’47,68,86,87

Rh/Rg then contains valuable information about the
‘universality class’ of network polymers that it is diffi-
cult to obtain by simply examining the scaling of poly-
mer size (e.g., Rg) with polymer mass.

C. Intrinsic viscosity

The size and compactness of nanogel particles also in-
fluence hydrodynamic solution properties. The viscosity
of a dilute dispersion of particles can be developed in a
power series in the particle volume fraction (φ) as,

η(dispersion) = η(dispersing fluid){1 + [η]φ+O(φ2)}.
(2)

The first coefficient in φ is independent of interparti-
cle interaction and is conventionally called the ‘intrinsic
viscosity’, [η], and is defined in the limit of the particle
concentration in the solution c→ 0 as,

[η] = lim
c→0

η − ηs
c ηs

, (3)

where η and ηs are the solution and solvent viscosity.
The intrinsic viscosity is a useful metric to character-
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FIG. 8. Intrinsic viscosity, [η], of 2D nanogel particles as
a function of the fraction bonds cut, fcb (squares) and as
a function of the fraction units removed, fru (circles). The
nanogel particles have a degree of branching f = 4, chain
length M = 1 and Nb = 30. The highlighted region outlines
approximately the regime near the percolation transition for
these systems.

ize how the molecular structure influences the hydrody-
namic properties of the solution, especially in the dilute
regime.87,90,91 Solution properties are often described
in reduced concentration, e.g., c[η]. For the purposes
of the current study, [η] is determined with the use if
a path-integration algorithm ZENO, which calculates
hydrodynamic, electrical, and shape properties of the
polymer and particle suspensions, as described in sub-
section II A.

The introduction of defects is expected to influence
[η], in a similar fashion as it influences Rg. Indeed, a
small number of defects, either by cutting bonds or by
removing units, does not significantly influence [η], as
seen in Fig. 8. However, [η] sharply increases as the
number of defects increases and approaches the perco-
lation transition. As discussed above, the loops keeping
the original structure are broken near this point, caus-
ing the polymer structure to swell considerably. This
swelling significantly alters the segmental distribution
of the nanogel particle in a way that would more effi-
ciently change the dynamic properties of the solution.
Both mechanisms/approaches of introducing defects ex-
hibit the same trends, however, the approach of remov-
ing units provides systems beyond the percolation point,
where [η] has a significant decrease because Mw de-
creases by the removal of repeating units, Fig. 8. This
decrease in Mw may also make [η] of nanogel parti-
cles more sensitive as the percolation threshold is ap-
proached, which may explain the deviation in [η] be-
tween the two methods at fcb ≈ fru ≈ 0.4.

Now that we have an understanding of the effect
of defects on [η], we focus on its mass scaling. The
molecular mass dependence of the intrinsic viscosity
is often represented by the Mark-Houwink equation,
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[η
]
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0.03
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0.44

FIG. 9. Intrinsic viscosity, [η], of 2D (squares) and 3D
(circles) nanogel particles. The open symbols correspond to
nanogel particles having no defects, while the filled symbols
correspond to nanogel particles near the percolation transi-
tion by randomly cutting the bonds between the repeating
units of the nanogel particles. The nanogel particles have a
degree of branching f = 4 and chain length M = 1. Results
for linear chains (cross) and unknotted rings (stars) are also
presented. The dashed lines are power-laws as guide for the
eye.

[η] = KMα
w ,52,92,93 where K and α are material spe-

cific parameters. The exponent α becomes α ≈ 0.71
and α ≈ 0.5 for linear polymer chains in good and
θ-solvent conditions, respectively. This is supported
by experimental94 and simulation studies.32,95 However,
deviation from this is expected for molecular structures
that differ from linear polymer chains. For example,
α ≈ 2 for rod-like polymers like Tobacco mosaic virus96

and [η] = 5/2 for rigid spheres at infinite dilution.97

Nanogel particles exhibit significantly smaller [η] than
the corresponding value for linear chains and unknot-
ted rings at the same Mw, providing a measure of their
compact nature.

Polymer sheets without any defects exhibit a mass
scaling exponent α ≈ 0.35 for small molecular masses,
Mw . 1 000, and for larger molecular masses α ≈ 0.45,
see Fig. 9. The same systems near the percolation tran-
sition by cutting bonds exhibit a mass scaling exponent
α ≈ 0.45. However, the values of [η] near the percolation
transition are higher by a factor of approximately 2.8
compared to the polymer sheets without defects. Both
cases exhibit the same scaling exponent is further sup-
ports that randomly branched polymers can be thought
of as imperfect or perforated sheets. We find that 3D
polymer gels without defects exhibit little dependence
on molecular mass. This is understandable because
compact 3D gels behave similarly to rigid spheres.32

However, introducing defects results in the mass scal-
ing becoming α ≈ 0.44 similar to 2D cases. Neverthe-
less, these structures are smaller in size than randomly
branched structures near percolation transition gener-
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ated from 2D nanogel particles and as a result [η]2D,perc
/ [η]3D,perc ≈ 1.24± 0.1. We then see that the crossover
from a sheet-like structure to randomly branched poly-
mer structure does not influence this ratio significantly
since the structure remains within the same universal-
ity class. On the other hand, the crossover from a com-
pact 3D gel structure to a structure near its percolation
regime results in significant changes and the intrinsic
viscosities between them, and this difference diverges as
a function of molecular mass,
[η]3D,perc / [η]3D,compact ≈M0.4

w .

D. Form factor of ‘Open’ versus ‘Closed’ Nanogel
Particles

To probe the structure of nanogel particles, we fo-
cus on calculating the spatial correlations between the
polymer segments. The form structure factor, P (q), is
a suitable property for this purpose and describes the
mean correlations in the positions of a collection of point
particles distributed in space. P (q) is defined as:

P (q) =
1

Ns

〈
Ns∑
j=1

Ns∑
k=1

exp [−iq · (rj − rk)]

〉
, (4)

where i =
√
−1, q = |q| is the wave number, rj is the

position of particle j, 〈〉 denote the time average, and
Ns is the total number of polymer segments defined as
Ns = NxNyNz(fM + 1).

In the scattering profile of a defect-free polymer
sheet, we find two distinct power-law behaviors with
our model. In the high q-regime (q σ & 0.8), we find
that P (q) exhibits P (q) ∼ q−2.5 and in the low q-
regime (q σ . 0.8), P (q) is described by a power-law
P (q) ∼ q−2, see Fig. 10. The structure is swollen at
large scale and has the exponent of the 2D swollen sheet
and at higher q (smaller length scales) there is some
screening and the apparent exponent corresponds to the
θ exponent for the sheet. The latter behavior in the
low q-range is superficially reminiscent of the scatter-
ing of ordinary uncharged polymers in solution where
the scattering intensity decays smoothly with a power-
law near −2, corresponding to ideal non-interacting ran-
dom coils in solution. Evidently, a power-law scaling of
P (q) with a power-law around −2 certainly does not
imply that the conformations of polymer sheets and
randomly branched polymers are anything like ‘ran-
dom coil’ polymer. The range of power-law behavior
with an exponent of −2 becomes larger for higher Mw

sheets (not shown here). As mentioned above, a differ-
ent power-law behavior emerges in the high q-regime,
qσ & 0.8 due to the excluded volume interactions be-
tween the repeating units. Indeed, the length scale at
which this crossover is observed occurs roughly at the
length span of two repeating units, which have a length
span of ls ≈ 2(2M + 1) for M . 3 corresponding to
q ≈ 2π/ls ≈ 1 for M = 1. Cutting the bonds be-
tween the repeating units in 2D nanogel particles re-
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FIG. 10. Form factor of 2D nanogel particles having a de-
gree of branching f = 4, chain length M = 1, and mesh size
Nb = 30 at different fractions of bonds cut, fcb. The dashed
lines are power-laws as guides for the eye. Representative
molecular configurations for fcb = 0 and fcb = 0.44 are also
presented as indicated by the arrows.
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FIG. 11. Form factor of 3D nanogel particles having a de-
gree of branching f = 4, chain length M = 15, and mesh size
Nb = 8 at different fractions of bonds cut, fcb. Representa-
tive molecular configurations for fcb = 0 and fcb = 0.44 are
also presented as indicated by the arrows.

duces the impact of excluded volume interactions and
as a result the difference between the power-law behav-
iors between the low q- and high q-regimes of the orig-
inal structure becomes smaller. Near the percolation
threshold, the structure becomes fractal with the scat-
tering profile been described mainly by a single power-
law, i.e., q−2. Interestingly, while we find significant
changes in the molecular shape of 2D nanogel particles
with the introduction of defects (see Figs. 5 and 6), the
scattering profiles exhibit less pronounced changes.

We continue with some general comments on scat-
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of the nanogel particles. The dashed lines are power-laws as
guides for the eye.

tering characteristics of 3D compact gels, see Ref. 32
for further details.. At intermediate length scales,
π/(2M) . q σ . π/M , a power-law regime emerges
that is distinct from the power-law behavior of the lin-
ear chains for nanogel particles having M fixed and in-
creasing the mesh size. At these length scales, P (q)
reflects the conformation of multiple chains forming an
empty compartment in the nanogel structure. This fea-
ture is absent in P (q) profiles of smaller in size nanogel
particles, suggesting a ‘critical’ threshold for this type
of structure to be identified by scattering experiments.
The scaling exponent that characterizes this regime de-
creases towards zero (an exponent of zero corresponds
to a perfect plateau) with increasing the mesh size.
P (q) reaches to a plateau at low q corresponding to
P (q → 0) → Mw. However, nanogel particles having a
large enough mesh size Nb & 5 start to exhibit a scat-
tering peak in P (q) at length scales close to q σ ∼ Rg,
as illustrated in Fig. 11.

The introduction of defects decreases the structural
correlations of the compact nanogel particle by breaking
up the loops and enhancing the tree-like backbone struc-
ture of branched polymer structure where many dan-
gling chain ends are prevalent in the polymer. As a re-
sult, the scattering peak and the intermediate power-law
observed in 3D compact nanogel particles, as discussed
above, starts to disappear progressively, see Fig. 11.
Near the percolation threshold, the scattering profiles
of a 3D nanogel particle at relatively high q values ex-
hibits a power-law behavior with an exponent of −1.7,
which corresponds to the scaling of self-avoiding random
walks. At this range of length scales, we are probing
the mesh structure of the network, which are similar
geometrically to linear self-avoiding polymers in solu-
tion. At lower q, qσ . 2π/Rg, where the overall net-
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FIG. 13. Small angle neutron scattering (SANS) profile of
natural 0.06% m/m aggrecan solution; the data are repro-
duced from F. Horkay, A. Chremos, J. F. Douglas, R. Jones,
J. Lou, Y. Xia, J. Chem. Phys. 155, 074901 (2021) with
the permission of the AIP Publishing. The dashed lines are
power-laws as a guide for the eye.

work structure is probed, we see an extensive power-
law regime characterized by an apparent power-law near
−2.7. This scaling corresponds to a ‘fractal’ dimension
df = 2.7, which is the expected value of df for branched
polymers having a relatively high grafting density or a
three-dimensional network corresponding to the θ-value
of the Wiener sheet model.38 The range of this power-
law regime increases by increasing Nb. However, we
find that for Nb & 10, the exponent in this power-law
regime changes to −2.5, see Fig. 12. This accords with
df for randomly branched polymers (‘lattice animals’)
with screened binary excluded volume interactions,98,99

i.e., percolation clusters.57,100 We then see evidence of
appreciable excluded volume screening in these densely
branched structures.

E. Scattering profile of aggrecan

Before we conclude our study, we briefly discuss
the usefulness of our approach in generating randomly
branched structures for the specific study of aggrecan.
Indeed, the scattering29 and rheological observations on
aggrecan under physiologically relevant conditions of ag-
grecan concentration, salt, etc., are consistent with the
formation of branched polymer network structures in
solution.

At high q-regime, where we probe the small-scale
structure of the aggrecan, we see a wavevector scaling
exponent close to −1, reflecting the ‘rod-like’ structure
of the molecules; see Fig. 13. This effect also arises in
linear polymer chains with some bending stiffness, and
it can be captured by increasing the intrinsic stiffness in
the chains composing our nanogel particles (not shown
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here). At intermediate q-values, aggrecan scatters with
a power-law having a scaling exponent of −2.7. This be-
havior provides a clue on the topology of the aggrecan
assemblies in solution. Our previous work30 discusses
the differences in molecular interactions in the synthetic
and aggrecan bottlebrush solutions that would naturally
lead to their different solution organization, but this
is not the topic of the present work. This power-law
regime coincides with the emerging power-law behav-
ior found in 3D nanogel particles near the percolation
threshold, corresponding to the open sponge structure;
compare Figs. 12 and 13. At larger distances (lower
q-values), the simple power-law scaling starts to break
down, suggesting a limit size of the aggrecan clusters in
these measurements. Future work will focus on develop-
ing models of the open clusters to incorporate modeling
that addresses the structural organization of the aggre-
can clusters more faithfully. At this stage, we confirm
only that the aggrecan solution scattering data is qual-
itatively consistent with a hierarchical structure having
the form of an open sponge network, as inferred in pre-
vious work.32

IV. CONCLUSIONS

We proposed a novel approach to generate a wide
range of randomly branched polymeric structures, and
their conformational properties are investigated with
molecular dynamics simulations. Our approach is based
on constructing ‘perfect’ compact nanogel particles in
two- or three-dimensions and then introducing defects
that break the loops of the original structure result-
ing in a more open and fractal structure. Two dis-
tinct types of defects are explored: randomly cutting
the bonds between the repeating units composing the
nanogel particle, and the other kind of defect is by ran-
domly removing the repeating units from the nanogel
particle. We quantify the structure of the generated
branched polymers by calculating the radius of gyra-
tion and its eigenvalues, as well as, the intrinsic viscos-
ity, with the variation of the number of defects. We also
calculate the form factor for a wide range of nanogel par-
ticles. We find that two-dimensional polymers (having
no defects) and randomly branched polymers (generated
from two- or three-dimensional polymers by introduc-
ing defects) exhibit similar Rg and [η] mass scaling be-
havior and scaling behavior in their scattering profiles.
In other words, our findings support the general idea
that self-avoiding randomly branched polymers (‘lat-
tice animals’) can be considered as highly perforated
sheets.38 However, different kinds of randomly gener-
ated structures are formed, depending on the topology
of the structure before introducing defects. In addition
to a topological transition between ‘closed’ and ‘open’
nanogel particles with an increasing concentration of de-
fects, we also find a reduction in the effective topolog-
ical dimension with defect density. These topological
changes are accompanied by changes in the mass scal-

ing exponents and the ‘penetration function’, quantify-
ing the change in polymer universality class. Finally,
we point out that our calculations should provide valu-
able insights into single chain nanoparticles and self-
associating polymers such as aggrecan.

In future work, we hope to explore this interpretation
of the configurational properties of single chain nanopar-
ticles and the implications of the relationship for the
solution properties of these gel-like particles at higher
particle concentrations. Measurements57,58,101 indicate
that branched polymers having moderate cross-link den-
sity at their θ-point, or screened binary excluded volume
interactions, should have a fractal dimension near 2.5,
the fractal dimension of percolation clusters. This expo-
nent value has often been estimated for the θ-exponent
for randomly branched polymers.102 We expect the
same scaling relation for Rg in θ-solvents to hold for
SCNPs (having a relatively low cross-linking density),
moderately branched commodity polymers and other
gel particles in solution where the cross-links can be
physical (associative) and chemical bonds.

This correspondence also provides insight into re-
cent observations indicating that SCNPs form compact
structures in the melt state,103 similar again to model
randomly branched polymers104 and also to unknot-
ted ring polymers in the melt.85 The latter connec-
tion is natural given our proposed connection between
SCNPs and lattice animals under melt conditions, and
the known correspondence between ring melts and lat-
tice animal melts.105,106 All the known concentration
and mass scaling laws for linear chain solutions and
melts are changed for the branched polymers, which be-
long to separate universality classes of polymers. We
note, however, that SCNPs exhibit a change from uni-
versality class of linear polymers to branched poly-
mers with increased cross-linking density, which is a
different crossover than studied in the present paper
by decimating networks to obtain branched polymers
and it remains to be seen whether the ’random’ nature
of the cross-linking in chemically cross-linked networks
leads to networks having similar topological networks as
found from our decimation process. This type of ran-
domly cross-linked network will have to be studied sep-
arately to determine if these polymers really lie in the
same universality classes and, if so, under what condi-
tions this is true.
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