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Abstract

A Green’s function formalism has been applied to solve the equations of motion
in classical molecular dynamics simulations. This formalism enables larger time
scales to be probed for vibration processes in carbon nanomaterials. In Green’s
function molecular dynamics (GFMD), the total interaction potential is ex-
panded up to the quadratic terms which, which enables an exact solution of the
equations of motion to be otained for problems within the harmonic approxima-
tion, reasonable energy conservation, and fast temporal convergence. Differently
from conventional integration algorithms in molecular dynamics, GFMD per-
forms matrix multiplications and diagonalizations within its main loop, which
make its computational cost high and, therefore, has limited its use. In this
work, we propose a method to accelerate GFMD simulations by treating the
full system of N atoms as a collection of N smaller systems of size n. Diago-
nalization is performed for smaller nd×nd dynamical matrices rather than the
full Nd×Nd matrix (d = 1, 2, or 3). The eigenvalues and eigenvectors are then
used in the GFMD equations to update the atomic positions and velocities. We
applied the method for one-dimensional lattices of oscillators and have found
that the method rapidly converges to the exact solution as n increases. The
computational time of the proposed method scales linearly with N , providing a
considerable gain with respect to the O(N3) full diagonalization. The method
also exhibits better accuracy and energy conservation than the velocity-Verlet
algorithm. An OpenMP parallel verison has been implemented and tests indi-
cate a speed up of 14× for N = 50000 in affordable computers. Our findings
indicate that GFMD can be an alternative, competitive integration technique
for molecular dynamics simulations.
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1. Introduction

Molecular dynamics (MD) simulations are important tools to study atomic
and molecular systems in biology, chemistry, physics, and material science.
These simulations rely on the integration of the equations of motion to de-
termine the evolution of atomic positions, velocities, and other quantities. One5

important component of the integration techniques is the integration time step
size. Because atoms in molecules and crystals vibrate very rapidly with periods
of the order of 1 fs, the time step size should also be of this same order to
properly resolve individual atomic motions. Such small time step sizes limit the
time span MD simulations can achieve because of the large number of time steps10

necessary to reach the time scales of realistic processes. For example, protein
folding occurs in the time scale of µs to s, which requires 109 to 1015 integration
steps. On the other hand, error accumulation due to numerical truncation be-
comes an issue for such long simulations. Therefore, developing techniques that
allow the use of larger time step sizes in MD integrators is a route to increase15

the applicability of MD simulations.
MD occurs through a series of events that change the system from one state

to another in the energy landscape. Techniques that simulate such events have
been used to accelerate the dynamics [1]. These techniques are ways to provide
larger time steps or even time “jumps” to speed up the simulation. Techniques20

based on the transition state theory have been used to induce changes in the
atomic states more rapidly in the energy landscape in order to overcome energy
barriers during the simulation [2]. Multiple simulations running in parallel with
different atom momenta is the basis of the parallel replica technique [3, 4] where
one initial simulation “explores” the system and, if it lasts long enough, other25

simulations are started to reach another energy minimum states. In order to
avoid these states, the hyperdynamics technique modifies the real potential to
a biased potential to increase the probability of changing between energy states
[5]. Another way to increase these probabilities is by increasing the temperature
of the simulated system in temperature-accelerated dynamics [6].30

Differently from those techniques that rely on changes in the actual system
to accelerate the dynamics, Tewary proposed a different approach based on
the Green’s function formalism [7]. The Green’s functions molecular dynamics
(GFMD) integrates the equations of motion with a less severe constraint in the
time step size than in conventional MD integrators to obtain the exact solutions35

of the equations of motion for up quadratic terms in the atomic displacements
in the total interatomic potential. Applied to the study of vibrations of one-
dimensional lattices of nonlinear oscillators and graphene, GFMD was able to
extend the time scale of these simulations by eight orders of magnitude, allowing
to study these systems in the µs scale [7]. Initially developed for MD simulations40

on the micro-canonical ensemble, GFMD has been extended to the canonical
ensemble to study systems in contact with thermal baths [8].

The use of GFMD, however, has been partially limited due to its high compu-
tational cost when compared to conventional MD integrators. GFMD requires
matrix multiplications and diagonalizations of the dynamical matrix during the45
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integration loop. Tewary proposed some strategies to reduce the GFMD com-
putational cost [7]. For example, for short range interaction potentials, the
dynamical matrix is sparse and may be banded. Another suggestion was the
single atom iteractive calculation where GFMD is applied to a single atom,
keeping all the rest fixed during the integration interval t to t + ∆t. In this50

case, the dynamical matrix is a 3 × 3 matrix in 3D systems that can be easily
diagonalized.

In this work, we propose a method called the n-atom approximation, to
accelerate GFMD that generalizes the single atom iteractive calculation. In
section 2, we present the GFMD technique and its main equations. The details55

of the n-atom approximation is described in Section 3. A parallel version of
the method is described in Section 4 and the analysis of the accuracy and the
computational cost of the n-atom approximation is shown in Section 5. Finally,
the conclusions are presented in Section 6.

2. Green’s Function Molecular Dynamics60

We present in this section a detailed derivation of the GFMD main equations
[7]. We consider a system composed of N interacting atoms of mass mi (i =
1 . . . N). The position of the i-atom at the initial time (t = 0) is specified by
r0i. Expressing r0i in terms of the atomic displacement ui(t) as

ri(t) = ri(0) + ui(t), (1)

the Newton’s equations of motion can be written as

mi
∂2ui,α
∂t2

= − ∂V

∂ui,α
, (2)

where V is the total interaction potential, and ui,α is the α-component (α =
x, y, z) of the atomic displacement.

Expanding V in a Taylor’s series in powers of |ui(t)|, we can rewrite Eq. (2)
as

mi
∂2ui,α
∂t2

= Fi,α −
N∑
j=1

∑
β=x,y,z

∂2V ({|r0i|})
∂ui,α∂uj,γ

uj,β(t) + ∆Fi,α(t). (3)

where Fi,α is the first Taylor’s coefficient, and ∆Fi,α contains all the higher65

order non-harmonic terms associated with the potential. Defining Ui,α(t) ≡√
mi ui,α(t), Eq. (3) can be rewritten as

∂2Ui,α
∂t2

=
Fi,α√
mi
−

N∑
j=1

∑
β=x,y,z

1√
mi

∂2V

∂Ui,α∂Uj,β
({|r0i|})

1
√
mj
Uj,β(t)

+
∆Fi,α(t)√

mi
. (4)
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The set of non-homogeneous coupled differential equations represented in
Eq. (4) can be written in the following matrix form(

I
∂2

∂t2
+ D

)
U = F + ∆F(t) ≡ Feff, (5)

where I is the identity matrix (at most size Nd×Nd, with d =1,2 or 3) and U
is a column vector (maximum size Nd) containing all the displacements Ui,α(t),
F (∆F(t)) is a squared matrix with maximum size Nd × Nd with elements70

Fi,α/
√
mi (∆Fi,α(t)/

√
mi), and D is the dynamical matrix with maximum size

of Nd×Nd and elements
1√
mi

∂2V ({|r0i|})
∂ui,α∂uj,β

1
√
mj

.

The formal solution of Eq. (5) can be expressed as

U =

(
I
∂2

∂t2
+ D

)−1

Feff. (6)

If we consider G(t− t′) as the causal Green’s function, which is 0 for t < 0,
therefore, (

I
∂2

∂t2
+ D

)
G(t− t′) = Iδ(t− t′), (7)

where δ(t− t′) is the Dirac’s delta function.
Applying the Laplace transformation in Eq. (7), we obtain[

s2I + D
]
L[G]− sG(0)−G′(0) = IL[δ(t− t′)], (8)

where s is the Laplace variable conjugated to t. For the boundary conditions
G(0) = G′(0) = 0, Eq. (8) becomes75 [

s2I + D
]
L[G] = I, (9)

and, therefore,
L[G] = [s2I + D]−1. (10)

The Laplace transform of Eq. (5) is[
s2I + D

]
L[U]− sU(0)− U′(0) = IL[Feff], (11)

or
L[U] = L[G]L[Feff] + s L[G] U(0) + L[G] U′(0). (12)

Since D is real and symmetric, we can write VTDV = E2, where V is the
matrix containing the eigenvectors of D and E2 is a diagonal matrix with the
eigenvalues E2

i of D.
Multiplying Eq. (12) by VT and using I = VVT , it can be written as

UL,∗ = K FL,∗eff + sK UL,∗(0) + K U
′L,∗(0), (13)
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where K = VTL[G]V, UL,∗ = VTL[U], FL,∗eff = VTL[Feff], UL,∗(0) = VTU(0),

and U′L,∗(0) = VTU′(0), with L standing for Laplace transform. The super-80

script * indicates the vectors is “projected” in the space of the eigenvectors of
D.

The inverse Laplace transform of Eq. (13) is

L−1UL,∗ = L−1[K FL,∗eff ] + L−1[sK UL,∗(0)] + L−1[K U
′L,∗(0)], (14)

where K is a diagonal matrix with elements Ki = (s2 + E2
i )−1.

The term of the left hand side of Eq. (14) is evaluated as L−1[WL,∗
i ] = W ∗i (t)85

whereas the terms of the right hand side are evaluated as follows:

L−1 [KiL [Fi]] = L−1

[
1

s2 + E2
i

F ∗i (s)

]
= L−1

[
1

s2 + E2
i

]
∗ L−1[F ∗i (s)], (15)

where (∗) here means the convolution of two functions and it can be written as

L−1 [KiL [Fi]] =
1

Ei
sin (Eit) ∗ L−1[F ∗i (s)]︸ ︷︷ ︸

F∗i (t)

=
1

Ei

∫ t

0

F ∗i (ε) sin (Eiε)dε. (16)

Here we consider the Laplace transform

F ∗i (s) =

∫ ∞
0

F ∗i (t)e−stdt, (17)

for the case where F ∗i (s) =
F ∗i
s

and

F ∗i (t) =

{
F ∗i if t ≥ 0,
0 if t < 0.

(18)

This case corresponds to the harmonic approximation, which means that the90

higher order terms in the potential expansion are neglected (∆F(t) = 0).
Consequently,

L−1 [KiL [Fi]] =
1

Ei

∫ t

0

F ∗i sin (Eiε)dε =
−F ∗i
E2
i

cos (Eiε)

]t
0

=
−F ∗i
E2
i

[cos (Eit)−H(t)] , (19)

where H(t) is the Heaviside function.
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L−1[KiU
′∗
i (0)] = L−1

[
U
′∗
i (0)

s2 + E2
i

]
=
U
′∗
i (0)

Ei
sin (Eit); (20)

L−1[s KiU
∗
i (0)] = L−1

[
s

s2 + E2
i

U∗i (0)

]
= U∗i (0) cos (Eit); (21)

Therefore, the components of U∗ are

U∗i (t) =
−F ∗i
E2
i

[cos (Eit)−H(t)] +
U
′∗
i (0)

Ei
sin (Eit) + U∗i (0) cos (Eit), (22)

where Fi is a constant, and C∗i (t) ≡ U ′∗i (t) =
dU∗i (t)

dt
are given by95

C∗i (t) =
F ∗i
Ei

sin (Eit) + C∗i (0) cos (Eit)− U∗i (0)Ei sin (Eit). (23)

Finally, the atomic displacements and velocities are obtained by U(t) =
VU∗(t) and C(t) = VC∗(t).

The quantities U(t) and C(t) provide the exact solutions for the atomic
displacements and velocities at all times t for the harmonic approximation.
For non-harmonic potentials (∆Fi,α 6= 0), the exact solution is impossible to100

obtain. However, for these potentials, V can be locally approximated to an
harmonic potential at each time step. Within this approximation, Eqs. (22)
and (23) can be used to calculate the displacements and velocities for future
times. Discretizing time in steps of ∆t and knowing the displacement, velocity
and first Taylor’s coefficient in time t, we keep them fixed during the interval ∆t105

to obtain them at t = t+ ∆t. The displacements and velocities at time t+ ∆t
are obtained using the values at time t by

U∗i (t+ ∆t) = −F
∗
i (t)

E2
i (t)

[cos [Ei(t)∆t]− 1] +
C∗i (t)

Ei(t)
sin [Ei(t)∆t]

+ U∗i (t) cos [Ei(t)∆t], (24)

and

C∗i (t+ ∆t) =
F ∗i (t)

Ei(t)
sin [Ei(t)∆t] + C∗i (t) cos [Ei(t)∆t]

− U∗i (t)Ei(t) sin [Ei(t)∆t]. (25)

The value of ∆t should be small enough to keep ∆F(t) negligible during ∆t.
In this case, F∗ and D should be updated at each time step.110
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3. n-atom approximation

GFMD requires the diagonalization of the dynamical matrix D for the whole
system (N atoms), which is a O(N3) process. In order to reduce this computa-
tional cost, we propose here dividing the whole system into N smaller regions
and associate a smaller dynamical matrix D̃ to each of them. In general, these115

regions can have different sizes, comprised of ni atoms, with a dynamical ma-
trix of size nid×nid (d = 1, 2, or 3). Additionally, atoms in one region can also
belong to other regions. For simplicity, here we take all regions with the same
number of atoms n. In this approximation – the so-called n-atom approxima-
tion – we apply the GFMD for each region Ri around atom i, assuming the120

atoms of the remaining regions to have fixed positions. The n-atom approxima-
tion is a generalization of the single atom iteractive calculation proposed earlier
by Tewary [7]. The special case of the n-atom approximation when the region
R contains a single atom (n = 1) corresponds to the single atom iteractive
calculation.125

In the n-atom approximation, for each region Ri, the GFMD step involves
the calculation of the first Taylor’s coefficients and the construction of the dy-
namical D̃ matrix, the calculation of the eigenvalues and eigenvectors of D̃,
matrix multiplications, and the update of the displacements and velocities us-
ing Eqs. (24) and (25). The construction of the dynamical matrix can be time130

consuming, especially for large three dimensional systems. However, if n is kept
relatively small, the computational cost of determining D̃ can also be kept small,
compared to the one of the diagonalization process. As we will see, the value of
n depends on the number of the interacting neighbors for the atoms within the
region R.135

In order to benchmark the n-atom approximation, we determined the evo-
lution of an one-dimensional atomic chain with fixed boundary conditions con-
sidering only interactions between nearest neighbors. The N atoms of the chain
have the same mass m (m = 12 amu) and are initially separated by 1Å. The
central atom is then displaced from equilibrium by a distance d0 (d0 = 0.1 Å).
The interaction between nearest neighboring atoms is described by the harmonic
potential with a spring constant µ (µ = 55.25 N/m). For this system, an exact
solution is available for the displacements, which provides an appropriate way to
measure the accuracy of the proposed method. In particular, the displacement
of the central atom in a N -chain (N odd) is given by

uexact
0 (t) =

d0

2J

∑
ki

cos[ω(ki)t], (26)

where J = (N − 1)/2, ω2(k) = 2(µ/m)(1− cos k), k is the wave vector, and i is
an integer varying from −J to J − 1. The allowed values of ki are (2i+ 1)π/2J .

Algorithm 1 presents the steps to apply the n-atom approximation to a linear
chain with N atoms. In the algorithm, D̃ is a n× n matrix, calculated for each
region Ri. Fig. 1 illustrates the application of the n-atom approximation for a140

linear chain. Because of the fixed boundary used here and to keep the same size
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for all the regions, the regions corresponding to the atoms close to the borders
and their respective inner atoms (blue rectangle, Fig. 1b) are redefined before
applying the GFMD (black rectangle, Fig. 1b). For example, to update the
position and velocity of atom 1 (Fig.1 (b)), the region R1 is considered where145

the atom 1 will interact with atom 2 and with fixed wall (nearest neighbor
interactions). For more general 3D systems, the regions Ri can be chosen to be
spheres based on a cutoff radius dependent on the system. Alternatively, Verlet
lists or cell list algorithms, already available in MD codes [9], can be used to
provide the list of the atoms for each Ri.150

i

Ri

1
R1

(a)

(b)

Figure 1: Illustration of the n-atom approximation for a 13-atom chain for n = 3. In (a) the
rectangle indicates the region Ri respective to the atom i. For the linear chain, this atom is
chosen to be in the middle ofRi. After applying GFMD toRi, the region is moved to next site
and the process is repeated (dashed rectangle). In (b) the blue dashed rectangle indicates the
region for atom 1 (R1). Because the fixed boundary conditions, this region is redefined to the
one represented by the black rectangle in order to keep the same size. Analogous procedure
is used to the other side of the chain.
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Algorithm 1: GFMD pseudo-code for N -atom chain using n-atom
approximation.

1 Set up simulation parameters (time step size ∆t, number of integration
steps Nsteps);

2 Initialize t← 0 ;
3 Set initial positions xi(0);
4 Set initial velocities ci(0) = 0;

5 Integration loop;
6 for step=1, . . . , Nsteps do
7 Loop over the N atoms;
8 for i=−(N + 1)/2, . . . ,−1, 0, 1, . . . , (N + 1)/2 do
9 Build the list of atoms for the region Ri;

10 Calculate the first Taylor’s coefficients Fj of Fn×1 with xj(t)
for j ∈ Ri (n atoms) ;

11 Calculate D̃n×n for the current configuration {xj(t)};
12 Diagonalize D̃(t) to obtain the n eigenvalues E2

j ;

13 Set Vn×n with the normalized eigenvectors of D̃(t);
14 Set U← [0, . . . , 0]n×1;
15 Set C← [cj(t)]n×1;

16 Calculate U∗(t)← VTU(t);

17 Calculate C∗(t)← VTC(t);

18 Calculate F∗(t)← VTF(t);
19 Update U∗(t+ ∆t) using Eq.(24);
20 Update C∗(t+ ∆t) using Eq.(25);
21 Calculate U(t+ ∆t)← VU∗(t+ ∆t);
22 Calculate C(t+ ∆t)← VC∗(t+ ∆t);
23 Update future position of atom i with uj (j ∈ Ri, j = i):

xi(t+ ∆t)← xi(t) + uj(t+ ∆t);
24 Update future velocity of atom i with cj (j ∈ Ri, j = i):

ci(t+ ∆t)← cj(t+ ∆t);

25 end
26 Update time t← t+ ∆t.

27 end

The atomic trajectories were obtained by GFMD using the full diagonaliza-
tion and using the n-atom approximation. We also obtained the trajectories
with the commonly used velocity-Verlet method, representing here the conven-
tional MD. In order to determine the accuracy of each of these methods in
describing the exact solution, we calculated the cumulative squared difference
between the displacement of the central atom, obtained from the testing method
and from the exact solution (Eq. 26). The accuracy is then quantified by the
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dimensionless parameter ξ given by

ξ(t) =
1

d2
0

Nsteps∑
p=1

[u0(p∆t)− uexact
0 (p∆t)]2, (27)

where Nsteps is the necessary number of time steps to reach the time t (t =
Nsteps∆t), u

exact
0 is the exact displacement (Eq. 26) and u0 is the displace-

ment of the central atom obtained by the full diagonalization, by the n-atom
approximation, or by the velocity-Verlet method. The values of ξ is expected155

to increase with time due to the accumulation of truncation errors. However, ξ
values can be compared among the three methods for a same time t.

In order to measure the energy conservation presented by the methods, we
also quantified the cumulative difference in energy given by

ξE(t) =
1

E2
T (0)

Nsteps∑
p=1

[ET (p∆t)− ET (0)]2, (28)

where ET (t) is the total energy at time t.

4. Parallel implementation

The computational cost of the n-atom approximation is expected to be of160

O(Nn3) since N diagonalizations of a n×n matrix are necessary in each time
step. However, the steps within the loop over the atoms in Algorithm 1 (line 8
to 25) involve calculations that can be carried out independently at the same
time step. Thus, we applied shared memory techniques with OpenMP [10, 11]
to parallelize the loop over the atoms. The loop steps were then distributed165

and executed in parallel by computational threads, which are responsible for
executing a group of steps of approximately same size. All the simulations
were carried out in a node with 24 Intel Xeon X5650 cores (2.67 GHz, 12 MB
Cache) with 50 GB RAM [12]. Thus, the maximum number of threads were
24, the same number of available processing cores. Diagonalizations inside the170

loop were performed by the LAPACK dsyev routine [13]. The computational
cost was quantified by the wall time spent by the integration loop (lines 6–27,
Algorithm 1).

5. Results and discussions

The size of the R region is an important parameter for the accuracy of the175

n-atom approximation. Correct results were only obtained for n values equal to
3 or larger, with ξ ' 10−5 and ξ ' 10−7 for N = 51 and N = 501, respectively
(Fig. 2, black data). A region with 3 atoms includes all the interacting neighbors
when only the nearest neighbors are considered. It is expected when more atoms
interact with the central atom of the R region, the size of R should be enlarged180

enough to cover all the interacting neighbors and, thus, guarantee the accuracy
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of the n-atom approximation. To test this, we performed some simulations
where the interaction of the next-nearest neighbors was included in the force
calculations. Indeed, we observed that a larger region (larger n) is necessary to
get convergence when more neighbors are included (Fig. 3).185

Increasing the size of the region, further than the size of the interacting
region, however, provides no additional improvement on the n-atom approx-
imation accuracy. On the other hand, this increases the computational time
(Fig. 2, blue data). For a fixed N , we found that the computational time is
O(n2) for 10 < n < 50. These sizes are within the n-by-n double precision190

matrices that can fit in the Xeon X5650’s 12 MB cache used here. This leads to
a dependence of the computational time on n lower than the expected O(n3) for

larger matrices (in our case, for n larger than 1224). Thus, if the size of the D̃
matrices, which depends on the number of neighbors and on the dimensionality
of the system, is such that cache memory can be explored, the computational195

cost of the n-atom approximation can be reduced to O(Nn2).
The dependence of the computational time on the system size N for the

GFMD with full diagonalization shows the expected O(N3) for N & 300 (Fig.
4). On the other hand, O(N) is obtained when the n-atom approximation is
used. Considering the cost for the case when the cache memory can be explored,200

this represents a gain in the computational time of ∼ N2/n2, which can be
significant for N � n. For example, the gain is ∼ 106 for n ∼ 10 and N ∼ 104.

OpenMP parallelization allowed reducing the computational time of the n-
atom approximation even further. Fig. 5 illustrates this by showing the reduc-
tion when CPU threads are used for large chain (N = 50001). For 24 threads,205

the computational time for the parallel version is about 7% of the time of the
serial version, which corresponds to a 14× speedup. Optimization and fine tun-
ning of the parallelization strategy probably can lead to larger speedups, but
this was not explored in this work. For a fixed number of threads, the compu-
tational cost of the parallel version of the n-atom approximation exhibits the210

same linear dependence on the system size as the serial version (Fig. 4).
The parallel version of the n-atom approximation provided considerable re-

duction on the computational cost with respect to the full diagonalization pro-
cess used in the original GFMD. In comparison with the velocity-Verlet method,
the parallel version has the same O(N) dependence of the computational time215

but still presents a larger cost (Fig. 4). However, these methods present differ-
ent accuracies. Whereas the ξ values obtained from the velocity-Verlet method
are of the order of 10−6, the values obtained from the n-atom approximation
are of the order of 10−11 (for 200 time steps, Fig. 4). The evolution of ξ for a
long (2×107 steps), 10 ns-simulation is shown in Fig. 6 (top). The difference220

between the velocity-Verlet method and the n-atom approximation decreases
with time but the n-atom approximation still provides a better accuracy over
the full time range. Results for the energy conservation (Fig. 6, bottom) also
show a better performance of the n-atom approximation, with energy variations
about 10× smaller than the ones obtained from the velocity-Verlet method.225

Finally, GFMD with the n-atom approximation allows one to use larger
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time step sizes with better accuracy (smaller ξ values) than the ones necessary
in velocity-Verlet method (Fig. 7, black data). Whereas increasing time step
size from 0.01 fs up to 4 fs has almost no effect on trajectory accuracy for the n-
atom approximation, the accuracy decreases for the velocity-Verlet method. For230

this entire range, the n-atom approximation exhibits better trajectory accuracy.
The quality of the energy conservation starts to worsen after 4 fs for the n-atom
approximation and 0.2 fs for the velocity-Verlet method (Fig. 7, blue data).
These time step sizes can serve as the upper limit provided by each method
for the linear chains studied here in order to guarantee trajectory accuracy235

and energy conservation. For the oscillation period of the linear chains studied
here of about 120 fs, the maximum time step size provided by the n-atom
approximation is 20 times larger than the one provided by the velocity-Verlet
method.
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Figure 2: Convergence and computational cost for the n-atom approximation. (Black) Depen-
dence of ξ as a function of the size n of region R for two linear chains. (Blue) Computational
time for 20000 time steps as function of n. The blue dashed lines correspond to the behavior
of the computational time ∼ n2 and the black dashed lines correspond to the ξ value when
the full diagonalization is used.

12



100 101 102
10−22

10−18

10−14

10−10

10−6

10−2

102

106

next-nearest

neighbors
nearest

neighbors

n

ξ

Figure 3: Influence of the interacting neighbors on the convergence of the n-atom approx-
imation. Dependence of ξ on the size of region R for N = 51 taking into account nearest
neighbors and next-nearest neighbors interactions. The values of ξ were obtained for 20000
time steps. For this figures, ξ was calculated taking the solution of the full diagonalization
instead of the exact solution, which gives smaller values for ξ when compared to the values
presented in Fig. 2.
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and velocity-Verlet (red) methods. The dashed lines correspond to times that are proportional
to N3 (blue) and to N (black, gray, and red). The times correspond to a run of 200 time
steps using a time step size of 0.5 fs.
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Figure 5: Dependence of the computational time on the number of threads for the 5-atom
approximation with N=50001 atoms. The times correspond to a run of 20000 time steps.
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Figure 7: Values of ξ (left) and ξE (right) for 100 ps runs using different time step sizes
∆t with the 5-atom approximation (filled and empty squares) and velocity-Verlet (filled and
empty circles) methods (N=51). In order to compare the curves for the different time step
sizes, the ξ and ξE values were normalized by the corresponding number of steps (Nsteps) of
each run. This is because different time step sizes require different Nsteps for a fixed simulation
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6. Conclusions240

We have improved the Green’s function molecular dynamics method by
treating the full system of N atoms as a collection of N smaller systems of
size n. This improved GFMD is then applied to these smaller systems to obtain
the updated positions and velocities. This approach – the so-called n-atom ap-
proximation – has been parallelized using OpenMP and provides a O(N) com-245

putational time with accuracy and energy conservation better than the ones
obtained from the commonly used velocity-Verlet integration algorithm. The
proposed approach also allows the use of larger time step sizes and can be used
as an alternative integration algorithm for molecular dynamics simulations, es-
pecially for studying vibrational phenomena.250
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