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Optical parametric oscillation in a Kerr nonlinear microresonator can generate coherent laser light
with frequencies that are widely separated from the pump frequency, allowing, for example, visi-
ble light to be generated using a near-infrared pump. To be practically useful, the pump-to-signal
conversion efficiency must be far higher than what has been demonstrated in microresonator-based
oscillators with widely-separated output frequencies. To address this challenge, here we theoret-
ically and numerically study parametric oscillations in Kerr nonlinear microresonators, revealing
an intricate solution space that arises from an interplay of nonlinear processes. As a start, we use
a three-mode approximation to derive an efficiency-maximizing relation between pump power and
frequency mismatch. However, realistic devices, such as integrated microring resonators, support
far more than three modes. Hence, a more accurate model that includes the entire modal land-
scape is necessary to determine potential inefficiencies arising from unwanted competing nonlinear
processes. To this end, we numerically simulate the Lugiato-Lefever Equation that accounts for the
full spectrum of nonlinearly-coupled resonator modes. We observe and characterize two nonlinear
phenomena linked to parametric oscillations in multi-mode resonators: Mode competition and cross
phase modulation-induced modulation instability. Both processes may impact conversion efficiency.
Finally, we show how to increase the conversion efficiency to ≈ 25 % by tuning the microresonator
loss rates. Our analysis will guide microresonator designs that aim for high conversion efficiency
and output power.

I. INTRODUCTION

Integrated photonics offers scalable options for gen-
erating, processing, and routing optical signals within
classical and quantum networks [1–5]. In general, op-
tical processors apply linear and/or nonlinear operations
to light. A notable case is the optical microresonator,
whose small size and large quality factor (Q) work to
intensify circulating light and promote efficient nonlin-
ear interactions [6, 7]. Indeed, microresonators host a
veritable zoo of nonlinear eigenstates, including soliton
frequency combs [8], Raman frequency combs [9], Hz-
linewidth lasers based on stimulated Brilluoin scattering
[10], χ(2) and χ(3)-type parametric oscillators [11, 12],
and more for applications in communications, timekeep-
ing, and sensing [13–16].

Many of the experiments cited above were motivated
by a high demand for coherent light sources on a chip.
One important type of coherent source is the optical
parametric oscillator (OPO), which is often employed
to reach wavelengths not directly accessible by conven-
tional laser gain [17, 18]. Optical parametric oscilla-
tions occur in χ(3)-nonlinear media when vacuum fluc-
tuations are amplified by stimulated four wave mix-
ing (FWM), if the FWM gain exceeds the resonator
losses [19]. Degenerately-pumped OPOs are a special
case in which two frequency-degenerate pump photons
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are converted into one higher-frequency signal photon
and one lower-frequency idler photon. In principle, a
degenerately-pumped OPO can generate coherent light
within the frequency range DC − 2ωp, where ωp is
the pump laser frequency [20]. Hence, a chip-scale,
degenerately-pumped OPO could offer superior scala-
bility, higher efficiencies, and broader spectral coverage
than alternatives. It would be readily implemented in
miniaturized technologies, from optical clocks in which
the OPO could be tuned to clock-type or cooling-type
atomic transitions, to quantum processors in which the
OPO could be tuned to qubit frequencies.

Recently, several experiments have been reported that
advance the microresonator-based, degenerately-pumped
OPO (µOPO) and make real headway towards a chip-
scale, wavelength-by-design light source. Achievements
include sub-milliwatt oscillation thresholds [12], octave-
spanning and tunable spectra [21, 22], visible-light gen-
eration spanning red to green [23, 24], and a µOPO
that uses a 2D photonic crystal cavity [25]. Nonethe-
less, the reported pump-to-signal conversion efficiencies
are typically (except in instances involving narrow spec-
tral bandwidths) < 0.1% – a nonstarter for applications
[21–24]. Indeed, while the demand for efficiency calls
for a deeper understanding of the underlying nonlinear
physics, models have so far relied on a three-mode ap-
proximation (TMA). Usually, the model consists of three
coupled mode equations, in which only the pump, sig-
nal, and idler modes interact through Kerr nonlinearity
[21, 26]. Of course, real microresonators comprise a more
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FIG. 1. Introduction to the microresonator-based, degenerately-pumped optical parametric oscillator (µOPO). (a) Schematic
of a microring resonator coupled to an access waveguide that carries the input and output fields. (b) Energy diagram for the
degenerate four wave mixing (FWM) process that drives parametric oscillation. (c) Depiction of an ideal output spectrum.
Energy from the pump laser is exclusively distributed to a single pair of signal and idler modes with mode numbers µs � 0
and µi = −µs, respectively. (d) Depictions of mode spectra, nonlinear couplings, and frequency shifts in both a three-mode
approximation (TMA) and multi-mode model. Dashed lines correspond to zero frequency mismatch. Red arrows indicate mode
frequency shifts induced by Kerr nonlinearity. The TMA considers FWM between only the pump, signal, and idler modes,
while multi-mode models account for the nonlinear couplings (orange, hollow arrows) between all mode sets conducive to FWM.

complex spectrum of modes that are nonlinearly coupled
together. As a result, a TMA may not explain some
features of real-world µOPOs. For instance, normal dis-
persion near the pump is required to suppress frequency
comb formation, while higher-order dispersion facilitates
frequency matching; yet, a TMA neglects dispersion en-
tirely. Moreover, a TMA does not account for nonlinear
interactions between modes other than the pump, signal,
and idler that may compete with the µOPO process.

Here, we construct a generalized µOPO solution space;
thereby, we reveal connections between the µOPO state
and experimental parameters, and we identify processes
that limit conversion efficiency. We adopt a model based
on the Lugiato-Lefever Equation (LLE) [27, 28] and sup-
port our main numerical results with theoretical analy-
ses. To avoid confusion, we note that the LLE has typi-
cally been used to study Kerr frequency combs in which
power is transferred from a monochromatic pump to a
multitude of parametric sidebands. Here, we investigate
a different regime – transfer of power into a single pair of
widely-separated parametric sidebands is the objective,
but the full mode spectrum must be considered to study
the potential for competing nonlinear processes.

In the next section, we explain our modeling and
present simulation results using a TMA. Then, we ex-
pand the model to include a spectrum of nonlinearly-
coupled resonator modes. We demonstrate two nonlinear
phenomena that cannot be explained within a TMA. In
the first, a mode competition takes place between multi-

ple signal and idler mode pairs. In the second, modula-
tion instability induced by cross-phase modulation con-
strains the µOPO conversion efficiency. Finally, we pro-
pose two strategies for increasing the µOPO conversion
efficiency and output power. Surprisingly, when compar-
ing microresonators with different loss rates but identical
geometries, we find that the resonator with greater losses
will, in some cases, promote higher efficiency.

II. MODELING THE µOPO

A. The Lugiato-Lefever Equation and simulation
methods

To study µOPOs, we consider a microring resonator
coupled to an optical access waveguide and pumped by a
continuous-wave (CW) laser, as depicted in Fig. 1a. Our
target process is one in which a centrally-located pump
at frequency ωp generates a single signal-idler pair at
frequencies ωs and ωi, respectively, as shown in Figs. 1b-
c. The microring supports whispering gallery modes, in
which azimuthal modes are grouped into families sharing
a transverse spatial mode profile. Modes within a family
are spaced (in the frequency domain) by a free-spectral
range (FSR) that is inversely proportional to the ring
circumference, L. In our model, we consider a single
mode family and denote its resonant frequencies as ωµ,
where µ is the azimuthal mode number shifted to make
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ω0 the frequency of the pumped mode. The pump laser
waveguide power is Pin, and the intraresonator field, a,
obeys the Lugiato-Lefever Equation (LLE) [28]:

da

dt
=

√
κc(0)

h̄ωp
Pin−

(
κi
2

+ i
κ(0)

2
α− ig0|a|2

)
a− iD(µ)ã,

(1)
where |a|2 gives the intraresonator energy in units of pho-
ton number, κc(µ) is the mode-dependent coupling rate
to the access waveguide, κi is the mode-independent in-
trinsic loss rate, κ(µ) = κi +κc(µ) is the mode-dependent

total loss rate, α =
ω0−ωp

κ(0)/2 is the normalized pump-

resonator frequency detuning, g0 =
n2ch̄ω

2
0

n2V is the non-
linear gain per photon, n2 is the Kerr index, c is the
speed of light in vacuum, n is the refractive index, V is
the mode volume, and D(µ) = ωµ− (ω0 +µD1) + iκc(µ),
where D1 = 2π × FSR; ã indicates that operations to a
are performed in the frequency domain. Notably, the in-
tegrated dispersion, Dint, is contained in Eq. 1 as Dint =
Re(D)/κ(0). For concreteness, we use n2 = 2.4 × 10−19

m2/W and n = 1.9, which are typical values for silicon
nitride (SiN) microrings, and ωp ≈ 2π× 384 THz (≈ 780
nm wavelength). The initial simulation conditions are
that of an unoccupied resonator with a noise variance
of one-half photons per mode. Unless otherwise stated,
we use κi = 2π × 200 MHz and κc = κi (i.e., critical
coupling).

Figure 1d introduces some key concepts and illustrates
differences between the TMA and multi-mode models
(here, ’multi-mode’ refers to the inclusion of many lon-
gitudinal modes from the same spatial mode family).
Briefly, a multi-mode model accounts for many more
modes that can be coupled together by the Kerr non-
linearity, while a TMA only considers nonlinear interac-
tions (e.g., FWM) between the pump, signal, and idler
modes. The key point we endeavor to understand is how
an ideal µOPO output spectrum, shown in Fig. 1c, may
be achieved in the face of many additional nonlinearly-
coupled modes (Fig. 1d). To ensure the consistency
of our numerical methods, we use the split-step Fourier
method to simulate Eq. 1 for both the TMA and multi-
mode LLE (the only difference being the number of
modes carried in the simulation).

Importantly, both models account for imperfect fre-
quency matching between the pump, signal, and idler
modes. In general, phase-matched mode pairs (i.e., with
azimuthal numbers ±µ) are not frequency matched – the
associated FWM process does not conserve energy. Im-
perfect frequency matching is often quantified by the fre-
quency mismatch parameter

δµ =
ωµ + ω−µ − 2ω0

κ(0)
. (2)

Throughout, we use δµ to refer to the dispersive mis-
match spectrum and δ to refer to the value of δµ(−µ)

at the targeted signal (idler) mode. A degenerate FWM
process only conserves energy and momentum if δ is com-
pensated by nonlinear frequency shifts of ωp(s,i), which

we denote as Np(s,i) for the pump (signal, idler) mode
(see Appendix A for the definition of Np(s,i) and other
LLE-derived quantities). Nonlinear shifts arise from self-
and cross-phase modulation (SPM and XPM, respec-
tively) and are related to the intraresonator intensity
spectrum. Indeed, an occupied resonator necessarily im-
plies Np(s,i) < 0; therefore, δ = 0 is not conducive to
parametric oscillation.

B. Simulation results using a TMA

Using a TMA, we investigate how changes in δ im-
pact the µOPO; later, we introduce other modes into
our LLE simulations. Our primary goal is to understand
the efficiency with which pump photons are converted
into signal or idler photons. Accordingly, we define the
conversion efficiency in units of photon flux as

CE =
ωp

ωs(i)

Ps(i)

Pin
, (3)

where Ps(i) is the signal (idler) output power in the access
waveguide. (Because CE in practical devices is our main
focus, our analysis of the TMA is limited in scope. We
direct the reader to Ref. [26], which studies in-depth
the steady states and their stability.) Importantly, the
underlying symmetry of the FWM process implies that
the signal and idler fields have equal CE values and that
Ns = Ni for a critically-coupled resonator. Throughout,
we present CE for the signal; the same results apply to
the idler.

In Fig. 2, we present simulation results obtained using
a TMA. In a single simulation, Pin and δ are held fixed;
we vary α to simulate a ωp scan across resonance from
blue to red detuning, as shown in Fig. 2a. During the
simulation, we record various data, including the CE,
Np(s,i), and optical spectra (see Appendix A for details).
In Fig. 2a, each panel corresponds to Pin = 20 mW, but
δ is increased from top to bottom. Our results indicate
a highest obtainable CE of 12.5 % for critically-coupled
resonators, in agreement with Ref. [21]. Additionally,
each panel depicts the effective signal detuning, defined
as ∆s = δ+α

2−Ns. Notably, when CE becomes apprecia-
ble, ∆s ≈ 0, which indicates that dispersion is balanced
by detuning and nonlinearity in the µOPO state.

To fully characterize the relationship between CE, Pin,
and δ, we construct the universal CE map shown in Fig.
2b. The parameter space is defined by Pin and δ; in Fig.
2b, we normalize Pin as

X =
Pin

Pth
, (4)

where Pth = h̄ω0κ
3(0)

8g0κc(0) is the oscillation threshold power

[29]. Each data pixel in the CE map represents the max-
imum CE value taken from the corresponding LLE sim-
ulation, as indicated by the dashed line connecting Figs.
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FIG. 2. Study of the µOPO conversion efficiency using a three-mode approximation. (a) Conversion efficiency, CE (gray), and
effective mismatch, ∆s (green), versus the pump-resonator frequency detuning, α, for a pump laser power Pin = 20 mW. From
top to bottom, the mismatch values are δ = 1.25, 2, 4, and 7, respectively. Dashed sections indicate unstable or oscillatory
solutions. (b) A generalized CE map showing the relationship between maximum CE, normalized pump power, X, and δ. The
white dashed line is expressed as X = 8δ and closely follows the contour of highest maximum CE. (c) CE (gray) and effective
pump-resonator detuning, ∆p (green), versus α, for Pin = 20 mW and δ = 2. (d) ∆p versus δ at values of α that maximize CE
for Pin = 15 mW (red, X ≈ 5) and Pin = 25 mW (orange, X ≈ 8).

2a and 2b. The CE map has a few notable features.
First, we do not observe parametric oscillation for any
values of Pin when δ ≤ 0. This indicates that nonlinear
frequency shifts of ωµ inhibit frequency matching even
when X ≈ 1. Second, CE contours follow clear trends
through the parameter space. In particular, to maintain
CE at larger values of X, δ must be increased, apparently
to compensate for larger Ns(p,i). Remarkably, we can de-
rive an analytical expression for the contour of highest
CE. We provide the derivation in Appendix B; here, we
present the final result, X = 8δ, and indicate it with
the white dashed line in Fig. 2b. Clearly, to maximize
CE for a given Pin, the microresonator dispersion (i.e.,
δ) should be designed appropriately.

In Fig. 2a, it is perhaps remarkable that CE values
tend to increase monotonically until an abrupt cutoff.
To elucidate this observation, we monitor the effective
pump detuning, ∆p = α

2 − Np, during our simulations
and present a sample result in Fig. 2c. When CE is
greatest, ∆p reaches a minimum value near zero. Phys-
ically, this condition implies that ωp is nearly resonant;
intuitively, this is necessary to maximize the dropped
power and, in turn, the nonlinear gain. The cutoff results
from Kerr bistability; i.e., when further increases in α are
no longer compensated by Np, the intraresonator field
abruptly transitions to the CW state. To characterize
the universality of this feature, we record ∆p (evaluated
for the highest CE) versus δ for two different powers, as
shown in Fig. 2d. Apparently, realizing high CE requires
∆p ≈ 0.

C. Dispersion

As a first step towards transitioning from a TMA
to a multi-mode LLE, we briefly discuss the microres-
onator dispersion and its different representations. In
Fig. 3a, we present δµ and Dint spectra for the fundamen-
tal transverse electric (TE) mode family, labeled TE1, of
a SiN microring resonator (hereafter referred to as our
test device) with ring radius RR = 15 µm, ring width
RW = 800 nm, and height H = 600 nm. We extract
Dint(µ) and δµ = Dint(µ)+Dint(−µ) from the mode spec-
trum, ωµ, that we calculate from finite-element method
eigenfrequency simulations [30]. We have assessed that
analyzing δµ is sufficient to understand the µOPO dy-
namics, which are not sensitive to odd orders of Dint

[21]. This is a notable departure from other nonlinear mi-
croresonator eigenstates, e.g., dissipative Kerr solitons.

There are two defining features of the δµ spectrum
shown in Fig. 3a. First, its negative curvature around
µ = 0 indicates normal dispersion, which is required
to suppress comb formation. Second, to overcome the
normal dispersion and achieve frequency matching, the
Dint expansion must contain higher order (even) terms
such that δµ turns and becomes positive. Physically, this
means that an anomalous-to-normal dispersion transition
is necessary. Indeed, the dashed lines connecting Figs. 3a
and 3b illustrate how ng(µ) = ng(−µ) corresponds to a
δµ turning point, where ng(µ) is the dispersive group ve-
locity refractive index.

Next, we preview the differences between CE maps cal-
culated from multi-mode and TMA models. We observe
two FWM processes, depicted in Fig. 4a, that require the
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tration of the test device cross section. (b) Group velocity
refractive index, ng, versus ω/2π for the same device as in
(a). The dashed lines illustrate how a turning point in δµ
occurs when ng(−µ) = ng(µ).

multi-mode model. In one case, we observe mode compe-
tition between mode pairs with consecutive µ values. In
the second case, we observe modulation instability (MI)
in the normally-dispersive spectral region around ωp, and
we explain it as arising from XPM between the pump,
signal, and idler fields. We mostly constrain our multi-
mode LLE simulations to Pin ≤ 25 mW (X ≤ 8); at
higher values of Pin, the µOPO dynamics become more
complex.

Figure 4b shows a CE map for our test device pumped
near ωp = 2π×382 THz. To make a straightforward com-
parison between these data and Fig. 2b, we calculate the
difference in CE between the two CE maps, as shown
in Fig. 4c. In general, XPM-induced MI (XPM-MI) ex-
plains CE differences for small δ, while mode competition
is responsible for the abrupt cutoff in CE (marked by the
sharp transition to zero CE in Fig. 4b or the bold yellow
stripe in Fig. 4c) that indicates a different mode pair is
oscillating. In the following sections, we explore mode
competition and XPM-MI in detail.
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rameters are RR = 15µm, RW = 800 nm, H = 600 nm, and
ωp = 2π×382 THz. (c) Difference in CE between simulations
based on a TMA and the CE map in part (b).

III. MODE COMPETITION AND SWITCHING

Mode competition is ubiquitous in laser systems with
multi-mode resonators [31, 32]. In general, mode com-
petition occurs when several resonator modes experience
amplification simultaneously; hence, modes compete for
gain and become coupled. In this section, we present the
results of multi-mode LLE simulations in which several
mode pairs are simultaneously nearly frequency matched.
We use our findings to establish general principles for
mode competition that will inform future microresonator
designs.

In Fig. 5, we present simulation results for our test
device pumped near ωp = 2π × 382 THz. The FWM
process related to mode competition is illustrated in
Fig. 5a. Modes that are spectrally adjacent to the
targeted signal and idler pair may be nearly frequency
matched; hence, light in these modes may become am-
plified through FWM. To explore this phenomenon, we
consider the δµ spectrum shown in Fig. 5b. According
to the TMA, any mode pairs with δµ > 0 may oscil-
late, provided Pin is large enough. In Fig. 5b, the data
points covered by the pale gold stripe indicate mode pairs
that would oscillate when Pin = 20 mW, if they (along
with the pump mode) were the only modes in the sys-
tem (i.e., in a TMA). Hence, we endeavour to under-
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stand how a mode pair (or pairs) is chosen for oscillation
over its spectral neighbors. To study mode competition
in our test device, we perform multi-mode LLE simula-
tions, from which we construct CE maps for the modes
corresponding to µ = 46, µ = 45, and µ = 44, as shown
in Fig. 5c. To vary δµ (which is fixed for a given geom-
etry), we apply a quadratic dispersion to ωµ, such that
ωµ → ωµ + βκ(0)µ2, where β quantifies the added dis-
persion. We choose this approach in order to maintain
the overall shape of δµ. Note that δ45 and δ44 are both
negative in Fig. 5b, but they will become positive as β
is increased.

The CE maps in Fig. 5c present clear evidence for
mode competition, and we identify three notable features
in them. First, the CE map for mode µ = 46 resembles
that of the TMA for small δ46. Second, as β is increased,
the maximum CE for mode µ = 46 declines sharply,
and this coincides with δ45 > 0 and oscillation on mode
µ = 45. This pattern repeats as β is increased further –
the oscillating mode changes from µ = 45 to µ = 44, and
so on. Hence, we assess that the mode pair with smallest
positive δ is favored for oscillation. Finally, there are
small regions of parameter space where multiple mode
pairs seem to oscillate simultaneously – we explore this

phenomenon in Figs. 5d and 5e.

Figure 5d shows CE for modes µ = 46 and µ = 45 dur-
ing a ωp scan (i.e., varying α) with β = 5×10−4 (δ46 ≈ 3)
and Pin = 20 mW. During the scan, mode µ = 46 begins
to oscillate first; its CE closely follows predictions made
using a TMA (pale blue stripe) and reaches a maximum
when α ≈ 1.3. In this regime, the µOPO spectrum is
tri-modal, as depicted by the blue spectrum in Fig. 5e
(the spectral bandwidth in Fig. 5e only spans ωp and
ωs; we have confirmed the spectrum is symmetric around
ωp). Beyond α ≈ 1.3, mode µ = 45 begins to oscillate,
and CE for mode µ = 46 deviates from its TMA counter-
part. Between α ≈ 1.3 and α ≈ 2.2, both modes oscillate
simultaneously, but their respective CE values are not
predicted by a TMA. Moreover, in this region the µOPO
spectrum is not tri-modal; rather, it is strongly multi-
moded with intensity peaks occurring near ωp, ωs, and
ωi, as shown by the orange spectrum in Fig. 5e. Be-
yond α ≈ 2.2, CE for mode µ = 46 is zero, and CE for
mode µ = 45 follows its TMA counterpart. We term this
phenomenon, wherein CE values for different mode pairs
conform to their TMA counterparts for different portions
of a ωp scan, mode switching. Finally, at α ≥ 3, the
µOPO decays in favor of MI. Remarkably, the MI state is
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FIG. 6. Characterization of XPM-MI in microresonators with normal dispersion. (a) Illustration of the XPM-MI FWM process
(purple arrows), in which XPM between the pump, signal, and idler fields induces MI that distributes pump energy into
spectrally-nearby sidebands. (b) δµ for β = 0.0625 (green circles), β = 1.25 (cyan upward-pointing triangles), and β = 5 (blue
downward-pointing triangles). One mode pair (µ = ±50) is frequency shifted to be frequency matched to the pump mode. (c)
CE versus α for the δµ spectra in (b), with Pin = 20 mW and δ = 3. (d) Optical spectrum associated with part (c), with α = 4
and β = 0.0625. (e) CE maps for microresonators with the δµ spectra in (b), ordered from least to greatest β.

supported in the normally-dispersive region around µ = 0
and without strong signal or idler fields. The MI spec-
trum is shown by the shaded red curve in Fig. 5e. In the
next section, we explore MI and its impact on CE.

IV. XPM-MI: CHARACTERIZATION AND
THEORY

It is clear from Fig. 5 that mode competition is not the
only process that differentiates the multi-mode LLE and
TMA. Specifically, Figs. 5d and 5e establish that MI can
suppress or extinguish the signal and idler fields, and this
occurs in regions of parameter space where a TMA pre-
dicts efficient parametric oscillation. In this section, we
isolate the MI process in our simulations by considering a
special dispersion profile that eliminates mode competi-
tion, and we develop a theory for MI as arising from XPM
between the pump, signal, and idler fields. We term this
process XPM-MI to link it to previous investigations [33].

The XPM-MI FWM process is illustrated by the pur-
ple arrows in Fig. 6a. Energy from the pump laser is
distributed to sidebands in a narrow spectral bandwidth
around ωp. If we use a multi-mode LLE to simulate our
test device, the effects of mode competition can obfus-

cate the impact of XPM-MI. Therefore, we contrive the
heuristically useful δµ spectra depicted in Fig. 6b. Here,
we define δµ = −2βµ2 for all µ 6= ±50. The modes
µ = ±50 are designated for parametric oscillation and
assigned a frequency mismatch value δ that can be ma-
nipulated apart from β.

In Fig. 6c, we present LLE simulations of CE versus α
for microresonators with the δµ spectra in Fig. 6b; these
data overlay the corresponding simulation using a TMA
(pale gray stripe). They are representative of the en-
tire (Pin, δ) parameter space, and they are noteworthy
for two reasons. First, in all cases CE follows the gray
stripe until α ≥ αON, where αON corresponds to the on-
set of XPM-MI and marks the deviation of CE from a
TMA. An example XPM-MI spectrum is shown in Fig.
6d. Unlike the XPM-MI spectrum shown in Fig. 5e, here
the XPM-MI and µOPO states co-exist, albeit with sup-
pressed CE. Second, αON increases with increasing β.
As a result, CE fully converges to its TMA counterpart
in the high-β limit. To investigate this convergence, we
construct the CE maps for different values of β, and we
present the results in Fig. 6e. We observe steady conver-
gence to the TMA CE map as β is increased. Clearly, it
is crucial to realize strong normal dispersion near ωp to
observe efficient parametric oscillation when X >> 1.
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FIG. 7. Theory of XPM-MI. (a) MI gain parameter, λ, versus
α for µ = 1. Orange and gold curves correspond to Pin = 15
mW, δ = 1.5, β = 0.25, and Pin = 25 mW, δ = 2.5, β = 0.25,
respectively. The red curves both use Pin = 20 mW, with
bold and dashed curves corresponding to δ = 2.5, β = 1 and
δ = 5, β = 0.25, respectively. (b) The value of α at which
CE deviates from a TMA, αON, versus β for Pin = 20 mW
and δ = 2.5. The dark blue diamonds mark values predicted
by LLE simulations, while the pale blue stripe corresponds to
λ(αON) = 0 calculated from Eq. 5. (c) αON map for µ = 1 and
β = 0.25. αON is normalized to the detuning, αMAX, at which
CE is maximized in a TMA. The purple region indicates that
XPM-MI is absent, and the border between the purple and
gold regions indicates threshold Pin values for XPM-MI.

Next, we present an expression for the XPM-MI gain
that we derive from a set of coupled mode equations (see
Appendix C for details), and we analyze this expression
to support our conclusion that XPM underlies the ob-
served MI states. As noted in Ref. [26], MI may occur
in normally-dispersive microresonators; however, it usu-
ally requires a hard excitation, i.e., the MI sidebands
are not amplified from vacuum fluctuations. This fact
explains how the MI state can sometimes persist after
parametric oscillations decay. Still, in our simulations
we have never observed MI emerge before parametric
oscillations. Indeed, it was predicted in Ref. [33] that
XPM between two waves can make them modulation-
ally unstable, even when one or both waves propagates
in normally-dispersive media. Motivated by this study,
we analyze a set of coupled mode equations that assume
the pump, signal, and idler modes are occupied, and we
derive the MI gain, λµ, as

λµ = −1 +
√
I2
0 + 4I2

s + 4I0Iscos(∆φ)− k2
µ, (5)

where I0 and Is are the photon numbers for the pump and
signal modes, respectively, ∆φ = 2φp−φs−φi is the rela-

tive phase mismatch between the pump, signal, and idler
fields, which are expressed as ãp(s,i) =

√
Ip(s,i)e

−iφp(s,i) ,

and kµ = 2I0 + 4Is − βµ2 − α. MI occurs when λµ > 0,
for any µ. Note from these definitions that βµ2 is the fre-
quency mismatch parameter for the MI sidebands, with
mode numbers ±µ, and not the frequency mismatch for
the µOPO mode pair, which we denote as δ. In the limit
Is → 0, Eq. 5 is equivalent to the MI gain expression
derived in Ref. [26]. Moreover, it is clear that λµ is
maximized when the pump, signal, and idler fields are
in phase (i.e. when ∆φ = 0), which corresponds to the
in-phase addition of two FWM processes: the degenerate
FWM process 2ωp → ωµ + ω−µ and the non-degenerate
process ωs + ωi → ωµ + ω−µ.

To analyze XPM-MI using Eq. 5, we perform LLE sim-
ulations, using a TMA, for various values of Pin and δ and
extract values for I0, Is, and ∆φ that we use to calculate
λµ. When λµ > 0, the mode pair with mode numbers
±µ will be amplified and steal energy from the µOPO. In
general, a large normal dispersion leads to the sideband
pair with µ = ±1 having the largest gain; therefore, in
what follows we drop the µ subscript and define λ as the
MI gain for this pair. We have confirmed that λµ < 0
whenever Is = 0 and β > 0; physically, this means that
XPM between the pump, sigal, and idler fields is required
to initiate MI in microresonators with normal dispersion.
Hence, we term this process XPM-MI. Figure 7a presents
λ calculations for various values of Pin, δ, and β. They in-
dicate that λ grows with increasing α, which is explained
by the stronger XPM that results from more powerful
µOPO sidebands at large α. To compare our XPM-MI
theory (i.e., Eq. 5) to multi-mode LLE simulations, we
calculate αON in both cases, for different values of β.
Overall, we observe excellent agreement, indicating that
the onset of XPM-MI strongly correlates to a suppression
in CE. A sample comparison of this type is presented in
Fig. 7b.

To more comprehensively compare our theory with
multi-mode LLE simulations, we calculate αON for dif-
ferent values of Pin and δ, with β = 0.25. We use these
data to construct the normalized αON map presented in
Fig. 7c. We normalize αON to the value αMAX, which is
the detuning at which CE is maximized within a TMA.
Hence, lower normalized values of αON indicate greater
deviations from a TMA. The αON map accurately pre-
dicts the threshold Pin values for XPM-MI (border be-
tween purple and gold regions), and it has the overall
trend that αON/αMAX decreases with increasing Pin and
δ. This trend is consistent with the CE maps presented
in Fig. 6e, which deviate from the TMA as Pin and δ
are increased. Importantly, our observations may explain
prior experimental results, which consistently report that
increasing Pin leads to the formation of undesired side-
bands [12, 22, 34]. Overall, our theory supports the hy-
pothesis that XPM drives MI in a µOPO. Moreover, we
can now form a concise description of parasitic FWM
in µOPOs: Mode competition dictates which mode pair
oscillates, while XPM-MI constrains CE.
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V. TOWARDS EFFICIENT AND HIGH-POWER
µOPO

Our results suggest several design rules for avoiding
mode competition and mitigating XPM-MI through dis-
persion engineering. For example, Fig. 6 demonstrates
that larger normal dispersion around ωp will suppress

XPM-MI. Moreover, increasing
dδµ
dµ will help prevent

mode competitions. This can be accomplished by using
smaller resonators or in resonators with greater disper-
sion. Still, in practice it is nontrivial to fabricate de-
vices with ideal dispersion characteristics. Therefore, in
this section we describe two strategies to increase CE
by tuning the microresonator loss rates, κc(µ) and κi.
We assume that users of real-world µOPO devices will
value high output power; therefore, we focus on ways to
increase CE for fixed Pin.

A. Impact of κi on CE

Figure 8a depicts the coupling and intrinsic loss rates
that are quantified by κc(µ) and κi, respectively. In
practice, κc(µ) is controllable by various design param-

eters, including the waveguide-resonator separation and
waveguide-resonator coupling length, for example, in a
‘pulley’ configuration [35]. Moreover, κi can be reduced
within some spectral bands by annealing [36, 37]; hence,
one gains some control over κi by making a suitable choice
for the annealing time or temperature (also, increasing
κi can be realized through, for example, intentionally-
introduced surface roughness).

We consider two ways to increase CE. First, by in-
creasing Pth, one increases the Pin values for which XPM-
MI occurs. To demonstrate this approach, we perform
multi-mode LLE simulations of our test device for three
different values of κ. In every simulation, κc(µ) = κi

and ωp = 2π × 385 THz. The simulated modal line-
shapes for these resonators are shown in Fig. 8b, and
the corresponding CE maps are shown in Fig. 8c. In
Fig. 8c, κ is increased from the left-most panel to the
right-most panel. As κ is increased, the region of highest
CE is shifted towards higher values of Pin. Moreover,
this region is broadened along both axes, indicating that
devices with larger κ will have a greater tolerance for de-
sign errors in δ. While increases in κ prevent high CE
at low Pin, the obtainable output power generated with
high Pin has grown; for instance, with Pin = 30 mW,
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the maximum output power increases from Psig ≈ 2.25
mW at κ/2π = 250 MHz (Fig. 8c, left-most panel) to
Psig ≈ 3.75 mW at κ/2π = 550 MHz (Fig. 8c, right-most
panel).

B. Impact of κc on CE

So far, we have defined κc = κi. This allowed us to use
12.5% as a performance benchmark for CE and, conve-
niently, to evaluate CE maps by directly comparing them
to Fig. 2b. Of course, it is practically important to un-
derstand how CE may be increased beyond 12.5%. To
this end, we consider the relationship between the sig-
nal mode coupling rate, κc, and CE. This relationship
was explored in Ref. [21], with the result that CE ap-
proaches 25% in the limit κc/κi � 1 (overcoupling the
pump mode may further increase CE). Here, we reiter-
ate this result and explore it within the µOPO parameter
space, laying the groundwork for future studies. Figure
8d shows simulated signal mode lineshapes for two val-
ues of κc, and Fig. 8e shows the CE map for Pin = 20
mW in a parameter space defined by the coupling ratio,
κc/κi, and δ. In our simulations, we use a TMA and
keep the pump and idler modes critically coupled. We
not only observe an increase in the highest obtainable
CE to nearly 25%, but we also observe that the region
of highest CE is broadened for increasing κc/κi. Broad-
ening occurs until κc/κi ≈ 30, at which point the advan-
tages of overcoupling are overcome by the corresponding
increases in Pth.

VI. DISCUSSION

In conclusion, we have established a foundation of sim-
ulation results for µOPOs that moves beyond a TMA
and will help guide experimental efforts to realize the
high conversion efficiencies predicted by the simplified
theory. We introduced a CE map that encapsulates the

µOPO solution space, and through multi-mode LLE sim-
ulations we reveal nonlinear dynamics not predictable
from a TMA. In particular, we identified mode competi-
tion and demonstrated how it determines the oscillating
mode pair. Meanwhile, the range of parameter space
over which high CE can be obtained is constrained by
XPM-MI. Mode competition and XPM-MI both depend
on the microresonator dispersion, δµ, and suitable disper-
sion engineering may circumvent these processes. Still,
optimizing δµ may be nontrivial in practice; therefore, we
have proposed two strategies to increase CE apart from
dispersion engineering. Ultimately, suitable control of
both resonator loss (including waveguide coupling) and
dispersion makes it possible to tailor microresonator ge-
ometries for high CE at a targeted pump power, that
is, to produce a useful amount of output power. Such
engineering will be crucial in the development of com-
pact, coherent light sources that take advantage of the
enormous wavelength flexibility inherent to χ(3) OPOs.
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Appendix A: Calculations of µOPO variables

In this section, we describe mathematical formulae
that relate LLE variables to the data (e.g. CE and op-
tical spectra) presented in the main text. Simulations
of the Lugiato-Lefever Equation (LLE) yield solutions
for the complex intraresonator field, a; we denote the
intraresonator field spectrum ã = F(a), where F de-
notes the Fourier transform, and a is normalized such
that |ã|2ω=ωµ gives the number of intraresonator photons
in the mode µ.

Variable Description (units) LLE Calculation

Psig Output signal power (W) κch̄ωs|ã|2ω=ωs

φp Pump phase (rad) 6 ãω=ω0

Np Pump mode nonlinear frequency shift (κ(0)/2π) 1
κ(0)

(
F(g0|a|2a)

ã

)
ω=ω0

Pout Pump laser output power (W ) h̄ωp|
√
κc(0)ãω=ω0 −

√
Pin
h̄ωp
|2

TABLE I. List and descriptions of variables derived from the LLE.

Table I lists the important variables, along with their physical descriptions and how they are calculated from a,
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ã, and simulation parameters. Notably, the expressions
for φp and Np also apply to the signal and idler modes
when the expressions are evaluated at the appropriate
value of ω. We follow Ref. [38] in our calculation of the
nonlinear mode frequency shifts.

Appendix B: Derivation of highest maximum CE
contour

Next, we seek to derive the result - stated in the main
text - that the contour of highest maximum CE in the
TMA is given by X = 8δ. Our starting point is the
following set of coupled equations [21]:

dAp

dt
= −(1 + iα)Ap + i(|Ap|2 + 2|As|2 + 2|Ai|2)Ap + 2iA∗

pAsAi +
√
X (B1)

dAs

dt
= −(1 + iα+ iδ)As + i(|As|2 + 2|Ap|2 + 2|Ai|2)As + iA∗

i ApAi (B2)

dAi

dt
= −(1 + iα+ iδ)Ai + i(|Ai|2 + 2|Ap|2 + 2|As|2)Ai + iA∗

sApAs, (B3)

where Ap(s,i) =
√
Ip(s,i)e

−iφp(s,i) denotes the pump (sig-

nal, idler) field, and Ip(s,i) = |Ap(s,i)|2 is proportional
to the pump (signal, idler) intraresonator photon num-

ber. If we substitute the field expressions into the above
equations, we obtain six coupled equations for the real
variables Ip(s,i) and φp(s,i),

dIp
dt

= −2Ip − 4Ip
√
IsIisin(∆φ) + 2

√
IpXcos(φp) (B4)

dIs
dt

= −2Is + 2Ip
√
IsIisin(∆φ) (B5)

dIi
dt

= −2Ii + 2Ip
√
IsIisin(∆φ) (B6)

dφp

dt
= Ip + 2Is + 2Ii + 2

√
IsIicos(∆φ)− α−

√
X

Ip
sin(φp) (B7)

dφs

dt
= Is + 2Ip + 2Ii + Ip

√
Ii
Is

cos(∆φ)− α− δ (B8)

dφi

dt
= Ii + 2Ip + 2Is + Ip

√
Is
Ii

cos(∆φ)− α− δ, (B9)

where ∆φ = 2φp−φs−φi. We next reduce this system to
four equations by first noting that, from the symmetry
of Eqs. B2 and B3, Is = Ii. Therefore, we define M =
Is = Ii. Moreover, momentum conservation implies that
d
dt (φs + φi) = 0. Hence, for steady state conditions we
obtain

Ip = −2IpMsin(∆φ) +
√
IpXcos(φp) (B10)

1 = Ipsin(∆φ) (B11)√
X

Ip
sin(φp) = Ip + 4M + 2Mcos(∆φ)− α (B12)

Ipcos(∆φ) = α− 3M − 2Ip + δ. (B13)

Equations B10-B13 are still sufficiently general to study
the stationary solutions. However, we proceed to sim-

plify them via two ansatzes associated with a maximally
efficient µOPO. Specifically, we set φp = 0, which cor-
responds to the pump laser being on resonance, and

M =
Ip
2 . The validity of these assumptions is confirmed

by our numerical results, but they are also physically
intuitive. For instance, because the FWM process that
drives µOPO (2ωp → ωs + ωi) is reversible, one expects
the intraresonator photons to be evenly distributed be-
tween the pump mode and sideband pair.

After inserting our two ansatzes into Eqs. B10-B13,
we combine Eqs. B10 and B11 to obtain Ip = X/4.

Then, Eqs. B12 and B13 are combined to obtain
Ip
2 = δ.

Insertion of the former into the latter yields the desired
result, X = 8δ.
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Appendix C: Derivation of XPM-MI gain

Finally, in this section we derive Eq. 4 from the main
text. We follow the classical procedure of linearizing a

set of coupled equations around a steady-state solution
and then allowing plane-wave perturbations to grow ex-
ponentially. We start from the equations of motion for
the fields Aµ and A−µ when the pump, signal, and idler
modes are occupied,

dAµ
dt

= iβµ2 + i(2Ip + 2Is + 2Ii + 2I−µ + Iµ)Aµ − (1 + iα)Aµ + iA∗
−µA

2
p + 2iA∗

−µAsAi (C1)

dA−µ

dt
= iβµ2 + i(2Ip + 2Is + 2Ii + I−µ + 2Iµ)A−µ − (1 + iα)A−µ + iA∗

µA
2
p + 2iA∗

µAsAi, (C2)

where β quantifies the dispersion. Next, we introduce
the perturbation δfµ(t), so that the equations of motion
for the perturbations, after simplifying, read

dδfµ
dt

= (ikµ − 1)δfµ + i(A2
p + 2AsAi)δf

∗
−µ (C3)

dδf∗−µ
dt

= −(ikµ + 1)δf∗−µ − i(A∗2
p + 2A∗

sA
∗
i )δfµ, (C4)

where kµ = βµ2 + 2Ip + 4Is − α, and we have again
assumed Is = Ii. If we set δfµ(t) = aeλµt, then we obtain
a set of linear homogenous equations with eigenvalue λµ.

Solving the eigenvalue problem yields

λµ = −1±
√
I2
p + 4I2

s + 4IpIscos(∆φ)− k2
µ, (C5)

which is the desired result. Notably, the original
set of coupled equations are approximations in several
ways. For instance, we neglect FWM processes that
do not involve both MI sidebands (e.g. the interaction
A∗
µA

∗
sApAs+µ). Inclusion of these terms may be neces-

sary to fully analyze the XPM-MI and its steady states.
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