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ABSTRACT 

The consumption and production of energy are more 

dynamic as distributed energy resources (DERs) such as solar 

photovoltaics (PV) are deployed within the electric distribution 

system. The existing techniques for bulk generation do not take 

full advantage of DERs and can lead to wasted energy and higher 

costs for both utility companies and consumers. Commercial and 

residential building energy management systems are usually on 

a fixed schedule and are not able to respond to changes in energy 

price instantaneously. There is a need for a real-time pricing 

structure that can accommodate the fluctuating cost of energy 

based on supply and demand, and for an energy management 

system that is able to respond to the dynamic utility rate. As such, 

there is a need for a robust energy management control strategy 

and methodology to validate new approaches.  

To address this gap, a strategy to control heating, ventilation, 

and air conditioning (HVAC) systems in a residential house was 

developed along with a validation methodology. A model of 

predictive control was implemented to optimize the thermostat 

setpoints and minimize energy cost for an individual residential 

house while maintaining thermal comfort of residents. This 

model was integrated with EnergyPlus simulation via an open 

source co-simulation platform previously developed at the 

National Institute of Standards and Technology (NIST). Total 

energy consumption and cost for consumers were compared 

between a case with the proposed model and a baseline case that 

used fixed-temperature setpoint control. The simple dynamic 

pricing model used in simulations was proportional to the 

demand of energy at that time of day. This work will contribute 

to the development of dynamic utility pricing models and 

residential control strategies for grid-interactive buildings and 

homes. The outcome of this research can be expanded to 

different building models or locations in future work. 

 

Keywords: optimization; transactive energy; residential 

buildings; cost savings; co-simulation 

NOMENCLATURE 

α  Proportional constant of utility rate 

β  Delivery charge per kWh [$/kWh] 

Tindoor Indoor temperature [℃] 

Toutdoor Outdoor temperature [℃] 

Qsolar Solar radiation [W/m2] 

U  Overall heat transfer coefficient [W/m2K] 

A  Surface area of the building envelope [m2] 

m  Mass of the building materials [kg] 

c  Specific heat of the building materials [J/kgK] 

Q  Energy [J] 

Ci  Constants for energy prediction model 

Eused Energy consumption [kWh] 

CF  Cost function 

P  Price of energy [$/kWh] 

Tcomfort,lower Lower bound of temp. comfort zone [℃] 

Tcomfort,higher Upper bound of temp. comfort zone [℃] 

 

1. INTRODUCTION 
 The use of transactive energy concepts has the potential for 

a significant amount of energy savings. Transactive energy is a 

broad term that covers economic and control techniques used to 

manage the flow or exchange of energy within an existing power 

system [1]. Realizing the potential energy savings of transactive 

energy requires increased communication between the wholesale 

market and consumers. This increased communication is coming 

naturally as distributed energy resources (DERs) such as solar 

photovoltaics (PV) are deployed within the electric distribution 

system, leading to more dynamic consumption and production of 

energy. The wholesale market must react to real-time demand 

and price fluctuations, whereas traditionally residential 

consumers purchase energy at a predetermined rate. 

Predetermined rates cannot accommodate these dynamics and 

may lead to wasted energy and higher costs for both utility 

companies and consumers. Shifting the energy load from high-
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demand period to high-supply period can alleviate the wasted 

energy and unnecessary costs. 

 A method to encourage load shifting is to implement 

dynamic pricing. As energy infrastructure has evolved, utility 

companies have been able to change their pricing structure to 

motivate customers to alter their energy usage. Specifically, 

some utility companies have implemented Time-of-Use (TOU) 

pricing methods so the energy cost to the consumer will reflect 

the actual cost of energy at that time of day. If residential 

customers can change their energy consumption in response to 

changes in price, TOU pricing will result in a shift in energy 

consumption. 

 A real-time pricing structure could accommodate the 

fluctuating cost of energy based on supply and demand. For now, 

TOU pricing is a step closer to representing the actual cost of 

energy than flat-rate pricing, but is still an estimate of the 

appropriate price for that time period. As home energy 

management systems (HEMS) become more complex with the 

ability to respond to the varying price of energy, the utility 

company can continue to alter its pricing strategy to better reflect 

the true cost of energy. Eventually, this could significantly reduce 

peak demand and wasted energy. However, TOU pricing alone is 

often not enough motivation for a customer to effectively alter 

their energy usage, and a recent study [2] shows that there is no 

evidence that TOU pricing can contribute to peak load shaving 

or reduced energy consumption. 

 There is a need for an energy management system that is 

able to respond to a dynamic utility rate. While commercial 

buildings benefit from a building management system, 

residential energy system control strategies have not received 

significant attention due to the low economic viability to 

individual end users, in spite of their large impact at scale. In 

2019, residential and commercial building energy usage 

accounted for 39 % of energy consumption in the United States 

[3]. Heating, ventilation, and air conditioning (HVAC) accounts 

for over 50 % of that use [4]. One method to control residential 

energy usage is model predictive control (MPC). MPC is a 

control strategy that uses a model to predict the future of a 

complex system and alters its control accordingly. Often, a cost 

function is used with MPC to optimize the control under a set of 

constraints. It has been used to minimize energy usage, cost, and 

peak electricity demand [5]. MPC has been used with standard 

HEMS. A few studies have tried to integrate demand costs into 

MPC [6, 7]. TOU pricing has been used with MPC [8 - 10]. 

Further work can be done to create a cohesive model integrating 

various points of interest. Specifically, ensuring thermal comfort 

is critical to creating a control method that occupants will use. 

Occupancy sensing to save energy usage while maintaining 

thermal comfort has been previously investigated by the team. 

Adaptive control can save up to 54 % of energy consumption, 

and the occupancy information can increase the energy saving 

impact by 20 % [11]. 

 A validation tool is needed to evaluate the effectiveness of 

energy management techniques and dynamic pricing strategies. 

The validation tool should be able to assess the different factors 

taken into account within the MPC. This paper proposes a 

validation tool based on EnergyPlus, the most widely adopted 

building simulator, and an open-source co-simulation platform 

called the Universal Cyber-Physical Systems Environment for 

Federation (UCEF) [12, 13]. MPC can be used to optimize the 

thermostat setpoints and minimize energy cost for an individual 

residential house while maintaining the thermal comfort of users. 

Minimizing cost rather than energy consumption takes into 

consideration the surplus of energy during off-peak hours and the 

increased cost of energy during times of high demand. As the 

utility company’s pricing method better correlates to the actual 

cost of energy, minimizing residential energy costs will in turn 

minimize overall energy consumption. 

 This simulation strategy is adaptable to incorporate 

additional considerations and will contribute to the development 

of dynamic utility pricing models and residential control 

strategies for grid-interactive buildings and homes. Utility 

pricing models and control strategies can be tested independently 

so that a wide range of options can be considered. The outcome 

of this research can be expanded to different building models or 

locations in future work. 

 
2. MATERIALS AND METHODS 

The simulation was composed of EnergyPlus and UCEF. 

The input to EnergyPlus was a building model and weather file 

obtained from the U.S. Department of Energy [14]. The 

residential prototype building model was for an approximately 

2400 square foot single-family home in San Francisco with a 

heat pump and a crawlspace foundation type. The typical 

meteorological year (TMY3) weather file for Climate Zone 3C, 

where San Francisco is located, was used [15]. The residential 

building model was modified to send and receive information 

with a Functional Mockup Unit (FMU) external interface [16]. 

 

 
FIGURE 1: THE EXCHANGE OF INFORMATION BETWEEN 

ENERGYPLUS AND THE CO-SIMULATION PLATFORM TO FIND 

THE OPTIMAL SETPOINT TEMPERATURE 
 

The transfer of information is shown in Figure 1. Both 

EnergyPlus and the Controller were implemented in UCEF to 

facilitate the exchange of information between the two agents. 

Each timestep, EnergyPlus sends the current indoor temperature 

to the controller. The controller is where the EnergyPlus 

simulation is paused, so that it can process current simulation 

data and return commands for continuing the simulation, 

specifically the future indoor setpoint temperature. The 

controller uses the indoor temperature and the weather 

information, i.e., the outdoor temperature and solar radiation it 
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reads from a weather file, to perform optimization and set the 

setpoint temperatures for the next hour at five-minute timesteps. 

The setpoint information is sent back to EnergyPlus.  

 

2.1 Pricing Models 
To create a pricing model based on the real-time demand of 

the market, the day-ahead market price of energy for Pacific Gas 

and Electric Company (PG&E), California’s biggest utility 

company, was obtained from California Independent System 

Operator (CAISO), which oversees the operation of California’s 

bulk electric power system, transmission lines, and electricity 

market generated and transmitted by its member utilities [17]. 

The day-ahead market price is recorded hourly by CAISO.  

The day-ahead hourly market price was recorded for two 

seven day periods: January 1 - 7, 2021 and February 12 - 18, 

2021 as shown in Figure 2. As seen in the figure, the wholesale 

price during the week in January acted periodically with a range 

of $50/MWh between its peak and trough. However, the 

wholesale price for the week in February grew dramatically to a 

peak of $953/MWh. The week in January may represent an 

average week whereas the week in February represents a period 

of significant demand changes, causing the wholesale price to 

rise.  

 

 
FIGURE 2: WHOLESALE MARKET PRICE OF ENERGY 

ACCORDING TO CAISO FOR JANUARY 1 TO 7, 2021 AND 

FEBRUARY 12 TO 18, 2021 

 

A linear relationship between the market price and retail 

price of energy was created by comparing PG&E’s range of 

electricity cost with the range of market price [18]. For dynamic 

pricing, the difference in pricing based on demand should be 

significant enough to motivate changes in user behavior during 

high demand so that the energy management system shifts usage 

appropriately. The linear relationship follows the equation: 

 

𝑅𝑒𝑡𝑎𝑖𝑙 𝑃𝑟𝑖𝑐𝑒 =  𝛼 × 𝑊ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒 𝑃𝑟𝑖𝑐𝑒 +  𝛽         (1) 

 

where α is the proportional constant of utility rate and β 

represents a delivery charge per kWh. For these simulations, the 

constants α = 4 and β = $0.10 were used, which results in a retail 

price range of $0.15 to $0.38 for the one week period in January 

and a range of $0.11 to $3.94 for the one week period in 

February. The pricing structure can be changed and tested in the 

future. 

 

2.2 Optimization 
In order to optimize future energy consumption, there was a 

need to predict the relationship between indoor temperature and 

energy consumption. 

The indoor temperature is a function of energy used, outdoor 

temperature, solar radiation, and building materials. An 

approximate representation of the change in indoor temperature 

is given by: 

 
𝑑𝑇𝑖𝑛𝑑𝑜𝑜𝑟

𝑑𝑡
=

𝑈𝐴

𝑚𝑐
(𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟 − 𝑇𝑖𝑛𝑑𝑜𝑜𝑟) +

1

𝑚𝑐
𝑄 + 𝐶3𝑄𝑠𝑜𝑙𝑎𝑟                (2) 

 

where Tindoor is the indoor temperature, U is the overall heat 

transfer coefficient, A is the surface area of the building 

envelope, m is the mass of the building materials, c is the specific 

heat of the building materials, Q is the amount of energy added 

to the space, Toutdoor is the outdoor temperature, Qsolar is the solar 

radiation, and C3 is a constant which defines a relationship 

between solar radiation and the energy gain in a house.  

Equation 2 can be rewritten to solve for the indoor 

temperature at the next timestep as: 

 

𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑛 = 𝑑𝑡 × (𝐶1 (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟

𝑛 − 𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑛−1 ) + 𝐶2 𝐸𝑢𝑠𝑒𝑑

𝑛 + 𝐶3 𝑄𝑠𝑜𝑙𝑎𝑟
𝑛 ) + 𝑇𝑖𝑛𝑑𝑜𝑜𝑟

𝑛−1       (3) 

 

where superscript n represents the timestep number, dt is the 

number of seconds in a timestep, and C1, C2, and C3 are unknown 

constants. 

The constants cannot be precisely found theoretically due to 

the intricacies of a building thermal model, inaccuracies between 

design and build, and inconsistencies in factors such as 

insulation. Rather, the constants can be determined by analyzing 

data from the building model. In order to estimate the constants, 

an annual EnergyPlus simulation was run with the identical 

building model. The energy used, indoor temperature, outdoor 

temperature, and solar radiation were recorded. Linear 

regression was performed with the dataset to solve for the 

constants: C1 = 1.72e-05, C2
 = 3.10e-03, and C3 = 3.58e-07 [19]. 

With a relationship between energy consumption and indoor 

temperature found, optimization could be done. For 

optimization, an open source software package for convex 

optimization based on the Python programming language, 

CVXOPT, was used [20]. In this case, the goal was to find the 

values of energy usage that would minimize the following cost 

function, CF: 

 

𝐶𝐹 = ∑ 𝑃𝑛 × 𝐸𝑢𝑠𝑒𝑑
𝑛𝑁

𝑛=1    (4) 

 

where Pn is the cost of electricity at each timestep and En
used is 

the energy used at each timestep. 

A set of constraints were used with the objective equation to 

limit the energy consumption to be positive or negative for 

heating and cooling, respectively, and for the indoor temperature 
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at each timestep to be within the comfort zone as shown in: 

 

𝐸𝑢𝑠𝑒𝑑
𝑛 ≥ 0   (when heating)                (5a) 

𝐸𝑢𝑠𝑒𝑑
𝑛 ≤ 0    (when cooling)               (5b) 

𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑛 ≥ 𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡,𝑙𝑜𝑤𝑒𝑟

𝑛        (5c) 

𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑛 ≤ 𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡,ℎ𝑖𝑔ℎ𝑒𝑟

𝑛        (5d) 

 

where 𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡,𝑙𝑜𝑤𝑒𝑟
𝑛  and 𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡,ℎ𝑖𝑔ℎ𝑒𝑟

𝑛  are the lower and upper 

bound of the indoor temperature comfort zone at each timestep. 

With the inputs of the current indoor temperature, the future 

outdoor temperature and solar radiation, and the price of energy, 

the energy consumption can be optimized to minimize the total 

cost of energy while keeping the indoor temperature within the 

comfort zone. 

 

3. RESULTS AND DISCUSSION 
Three sets of simulations were run for one week periods: 

January 1 - 7, February 12 - 18, and September 27 - October 3. 

The week in January was chosen to represent a random week in 

winter months. The week in February tests optimization when 

there is a significant change in cost throughout the day. The week 

in September was chosen to test the optimization in summer 

months. September 27 - October 3 required the highest amount 

of cooling energy out of any week in summer months with the 

building model. Since wholesale pricing data for September 27 - 

October 3, 2021 is unavailable, the data from February 12 - 18 

was used. The following four energy control strategies were 

implemented for each time period: 

1. Baseline: Fixed Heating Setpoint Without Optimization 

2. Optimization with a Fixed Comfort Zone 

3. Adaptive Control without Optimization 

4. Adaptive Control with Optimization 

The baseline control strategy represents the most common 

user behavior of setting a fixed setpoint. Optimization with a 

fixed comfort zone represents a fixed setpoint with preheating or 

precooling. Adaptive control has been shown to provide 

significant energy savings while maintaining thermal comfort. 

The adaptive control without optimization strategy sets the 

setpoint temperature as the lower bound of the adaptive comfort 

model for heating and the upper bound of the adaptive comfort 

model for cooling, given by ASHRAE Standard 55 [21]. The last 

control strategy examines the effects of adding optimization to 

adaptive control. 

The controller optimized the setpoint temperature schedule 

for the next two hours to ensure a thorough prediction, and the 

setpoint schedule for the next hour was sent back to be 

implemented in EnergyPlus. 

Based on constraints used in optimization, the indoor air 

temperature is always within the comfort region. A cost function 

for thermal comfort could be determined in the future and added 

to the optimization process. 

The total cost for the consumer was compared between the 

four simulations for the three time periods as shown in Table 1. 

January 1 - 7 resulted in the most savings between simulations 

with and without optimization whereas September 27 - October 

3 resulted in the least savings. All three time periods found 

savings of over $2 when comparing optimization with an 

adaptive comfort zone to a fixed setpoint.  

 

TABLE 1: SUMMARY OF COST SAVINGS BETWEEN 

SIMULATIONS WITH OPTIMIZATION AND THE 

CORRESPONDING SIMULATIONS WITHOUT OPTIMIZATION 

Simulation 

Period 

Savings from 

Optimization 

with Comfort 

Zone 

Compared to 

a Fixed 

Setpoint 

Savings from 

Optimization 

with 

Adaptive 

Comfort 

Zone 

Compared to 

Adaptive 

Comfort 

Alone 

Savings from 

Optimization 

with 

Adaptive 

Comfort 

Zone 

Compared to 

a Fixed 

Setpoint 

January 1 - 

7 
$5.65 $3.89 $7.16 

February 

12 - 18 
$0.92 $0.05 $2.87 

September 

27 - 

October 3 

$0.03 $0.19 $5.20 

 

The total cost and energy usage between the four 

simulations are shown in Figure 3 for January 1 - 7. Adding 

optimization resulted in less energy consumption and less cost 

for both sets of simulations.  

 

 
FIGURE 3: ENERGY CONSUMPTION AND COST FOR EACH 

HVAC CONTROL STRATEGY FOR JANUARY 1-7 

 

The total cost and energy usage between the four 

simulations are shown in Figure 4 for February 12 - 18. When 

compared to a fixed setpoint temperature, optimization provided 

a reduction in both cost and energy consumption. However, 

when compared to an adaptive comfort zone, optimization 

reduced the cost by $0.05. The week in January saw more 

significant savings than the week in February since the weather 

was colder, resulting in 3 to 4 times higher energy consumption. 
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Adaptive control with optimization saved around $3 compared 

to the fixed setpoint behavior.  

 

 
FIGURE 4: ENERGY CONSUMPTION AND COST FOR EACH 

HVAC CONTROL STRATEGY FOR FEBRUARY 12-18 

 

The total cost and energy usage between the four 

simulations are shown in Figure 5 for September 27 - October 3. 

This simulation resulted in the least amount of cost reduction. 

This time period was chosen to test optimization during summer 

months with cooling energy. Although this week was chosen 

since it resulted in the highest consumption of cooling energy 

during a simulation with a fixed setpoint, the building model 

does not consume enough energy for the optimization to make 

an impact comparable to that in January or February. The 

location chosen for simulations, San Francisco, does not 

experience long-term high temperatures and does not require 

high amounts of air conditioning in the summer. The simulations 

still resulted in a decrease in cost of $0.03 to $0.19 and a decrease 

in energy consumption of 0.13 kWh to 0.18 kWh. Optimization 

with an adaptive comfort zone resulted in $5.20 savings when 

compared to a fixed setpoint.  

 

 
FIGURE 5: ENERGY CONSUMPTION AND COST FOR EACH 

HVAC CONTROL STRATEGY FOR SEPTEMBER 27 – OCTOBER 

3 
 

There are several areas of interest within the results 

including preheating, deviation from the comfort zone, and 

possible limitations of cost savings. To take a closer look at how 

the optimization is affecting the HVAC system, the energy 

consumption of the simulation under a fixed setpoint and under 

optimization are plotted in Figure 6a together with the price of 

energy at each hour. The optimized energy consumption can be 

seen to increase in comparison to the fixed setpoint energy 

consumption directly before an increase in price. The increase in 

the optimized energy consumption represents the optimization of 

preheating the house to take advantage of the lower cost of 

energy. For a closer look, the results are shown for a shorter 

timeframe, January 2 12:00 - 24:00, in Figure 6b. The energy 

usage in the hours leading up to a higher price is significantly 

greater for the simulation with optimization than the one with a 

fixed setpoint. After the price increase, the simulation with 

optimization is able to continue to use less energy than the one 

with the fixed setpoint due to the effect of preheating. 

 

 

 
FIGURE 6a: ENERGY CONSUMPTION FOR THE TWO CASES 

OVER THE THREE-DAY TIME PERIOD WITH THE PRICE OF 

ENERGY AT EACH TIMESTEP 

6b: ENERGY CONSUMPTION FOR THE TWO CASES OVER A 

12-HOUR PERIOD (JANUARY 2, 12:00-24:00) WITH THE PRICE 

OF ENERGY AT EACH TIMESTEP 

 

The indoor temperature of the simulations with a fixed 

setpoint and with optimization with a fixed comfort zone are 

shown in Figure 7. The indoor temperature for the fixed setpoint 

temperature case oscillates within 1 ℃ of the setpoint 

temperature as expected whereas the indoor temperature for the 

optimization case increases before the price of energy increases 

to take advantage of lower costs. The indoor temperature remains 
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within the set comfort zone of 20 ℃ to 23 ℃. Preheating is only 

effective for a limited period until the indoor temperature 

decreases to the lower bound of the comfort zone. This limitation 

hinders the ability to shift the load more than approximately an 

hour. 

 

 
FIGURE 7: INDOOR TEMPERATURE FOR THE TWO CASES 

OVER THE THREE-DAY TIME PERIOD WITH THE PRICE OF 

ENERGY AT EACH TIMESTEP 

 

Another area of interest is the cause of the week in February 

savings to be less than those of the week in January. One 

contributing factor is that there was no energy usage during the 

times of extreme high prices. The indoor temperature and energy 

consumption during one of the times of extreme price increase is 

shown in Figure 8 and Figure 9 respectively. As shown in the 

figures, no energy is consumed with or without optimization 

during the time of extremely high price. The indoor temperature 

naturally remains within the adaptive comfort zone during that 

time. Therefore, any potential savings from optimization are not 

brought to fruition. 

 

 
FIGURE 8: INDOOR TEMPERATURE IN FEBRUARY DURING 

A TIME OF HIGH PRICE INCREASE 
 

 
FIGURE 9: ENERGY CONSUMPTION IN FEBRUARY DURING 

A TIME OF HIGH PRICE INCREASE 

 

A potential cause of this discrepancy is that the weather file 

and wholesale cost data are from two different years. Therefore, 

the wholesale price may not correspond to times of high energy 

consumption in this set of simulations.  

Overall, the results of the study show the optimization 

working to preheat the house before a price increase. The greater 

the proportional constant, α, from Equation 1, between retail and 

wholesale price, the greater impact preheating will have on cost 

savings. This work calls for future work to determine the most 

effective pricing models for load shifting and decreasing overall 

costs. The simulation strategy can be expanded to include 

different building models, locations, timeframes, and setpoint 

control strategies, including occupancy sensing. 

 

4. CONCLUSION 
This work provides a validation approach for energy 

optimization models of grid-interactive buildings. Using co-

simulation, the energy usage of a building can be optimized by 

taking into account the future pricing of energy. The optimization 

control strategy resulted in significant savings in the January, 

February, and September weeks compared to the fixed setpoint 

temperature schedule. The month of September resulted in the 

least cost savings since little cooling energy was used regardless 

of optimization due to the temperate climate of San Francisco. 

The optimization control strategy with a fixed comfort zone 

resulted in less savings compared to the adaptive setpoint 

temperature strategy. The adaptive setpoint control strategy 

already provides significant savings compared to a fixed setpoint 

temperature schedule, so that optimization can only provide a 

slight improvement. 

The validation method of using UCEF and EnergyPlus 

allowed for testing the energy control strategy with the building 

simulator and is highly adaptable for different control strategies, 

pricing models, locations, and building models. The validation 

method is scalable to include multiple building models with 

different characteristics in the same simulation.  

Further research can build on the developed simulation 

strategy of this work. Other building models and locations can 

be used in future work to expand the breadth of this work. 

Occupancy-driven setpoint control can be added. A cost function 
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for deviation from the comfort zone can be determined and added 

to the objective function of the optimizer to allow the indoor 

temperature to leave the comfort zone in pursuit of increased 

savings. The simulation strategy can be utilized to develop a 

pricing model under transactive energy. With more wholesale 

pricing information, an annual simulation can be run for further 

analysis. 
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