
End-to-End Quality-of-Service Assurance with
Autonomous Systems: 5G/6G Case Study

Van Sy Mai
CTL, NIST

Gaithersburg, MD USA
vansy.mai@nist.gov

Richard J. La
ITL, NIST and

ECE & ISR, Univ. of MD
Gaithersburg, MD USA

richard.la@nist.gov

Tao Zhang
CTL, NIST

Gaithersburg, MD USA
tao.zhang@nist.gov

Abdella Battou
CTL, NIST

Gaithersburg, MD USA
abdella.battou@nist.gov

Abstract—Providing differentiated services to meet the unique
requirements of different use cases is a major goal of the fifth
generation (5G) telecommunication networks and will be even
more critical for future 6G systems. Fulfilling this goal requires
the ability to assure quality of service (QoS) end to end (E2E),
which remains a challenge. A key factor that makes E2E QoS
assurance difficult in a telecommunication system is that access
networks (ANs) and core networks (CNs) manage their resources
autonomously. So far, few results have been available that can
ensure E2E QoS over autonomously managed ANs and CNs. Ex-
isting techniques rely predominately on each subsystem to meet
static local QoS budgets with no recourse in case any subsystem
fails to meet its local budgets and, hence will have difficulty
delivering E2E assurance. Moreover, most existing distributed
optimization techniques that can be applied to assure E2E QoS
over autonomous subsystems require the subsystems to exchange
sensitive information such as their local decision variables. This
paper presents a novel framework and a distributed algorithm
that can enable ANs and CNs to autonomously “cooperate” with
each other to dynamically negotiate their local QoS budgets and
to collectively meet E2E QoS goals by sharing only their estimates
of the global constraint functions, without disclosing their local
decision variables. We prove that this new distributed algorithm
converges to an optimal solution almost surely, and also present
numerical results to demonstrate that the convergence occurs
quickly even with measurement noise.

I. INTRODUCTION

A major goal of the fifth generation (5G) telecommunication
networks is to provide differentiated (or even optimized)
services to meet different use cases’ unique requirements,
e.g., on performance, availability, and security [1]. The ability
to provide such differentiated support is a prerequisite for
many IoT (Internet of Things) applications such as automated
manufacturing, vehicle-to-vehicle communications, remote op-
eration (teleoperation) of ground vehicles and drones, and
telesurgery. It represents a fundamental advancement over the
previous generations of networks that had focused on provid-
ing one-size-fits-all network connectivity for all applications.

To enable differentiated services, 5G shifted from a
communication-centric architecture to a service-centric archi-
tecture that separated network and service control functions
from the physical infrastructure, further modularized these
functions, and defined their interactions in terms of providing
and consuming services. This service-centric architecture en-
ables network slicing that creates end-to-end (E2E) logical net-

works (network slices) dedicated for specific services, forming
a foundation for delivering differentiated services. Current 5G
specifications further describe a framework and its enabling
protocols for collecting network performance data required to
support service assurance [3]–[7].

Despite recent advances, fundamental challenges remain to
be addressed before the promise of differentiated services can
be fully realized in 5G and future generations of telecommu-
nication networks [19]. One such challenge is to assure E2E
quality of service (QoS). Such assurance is essential to, for
example, many delay-sensitive applications [24], [25] and will
be more critical for future 6G systems that will support more
use cases and more stringent requirements [15], [19].

A key factor that makes E2E service assurance difficult
in telecommunication networks is the fact that access net-
works (ANs) and core networks (CNs) manage their re-
sources autonomously. While such autonomous management
simplifies the tasks of designing, operating, and evolving a
large system, limited coordination among ANs and CNs on
resource management also leaves E2E service assurance more
challenging [20].

To achieve E2E QoS assurance over autonomously man-
aged ANs and CNs, current 5G specifications decompose the
E2E Key Performance Indicator (KPI) targets (e.g., packet
delay, packet drop ratio) into KPI budgets for each CN and
AN, and rely on each of them to autonomously manage its
resources to satisfy its allocated KPI budgets. For example,
5G specifications decompose the E2E Packet Delay Budgets
(PDBs) into CN PDBs and AN PDBs, with the CN PDBs for
standardized QoS flows predefined in the specifications and to
be statically configured in each CN [2]. A network operator
will then need to determine the AN PDBs for each AN, which
is done statically today.

Static KPI budget allocations cannot effectively respond
to dynamic network conditions or account for the varying
characteristics of different networks (e.g., different network
capabilities, capacities, and supported services). Also, since
an AN or CN may violate its KPI budgets due to random
events such as network congestion, network operators will
need ways to ensure that such violations will not lead to
intolerable violations of E2E KPI requirements.

Recognizing the limitations of static KPI budget allocations,



5G permits non-standard QoS flows to support dynamic PDBs
and allows the dynamic PDBs to be signaled between ANs and
CNs. However, current 5G specifications do not prescribe how
dynamic PDBs for each AN or CN should be determined or
enforced, and how E2E PDB requirements can be assured in
case any autonomous network along an E2E path violates its
allocated PDB budgets.

The past few years have also seen growing efforts in
developing resource allocation mechanisms for assuring E2E
QoS for 5G and beyond systems. Here, we summarize only
the most closely related studies that focused on E2E QoS
rather than QoS for RANs or CNs alone. We emphasize that
this is not meant to be an exhaustive list. In [14], the 5G
QoS architecture is extended to incorporate the Framework
for Abstraction and Control of Traffic Engineered Networks
(ACTN), which was developed by the IETF (IETF RFC
8453) to manage large multi-domain networks. This extended
architecture calls for the resource controllers in different
technology or administrative domains (e.g., ANs and CNs)
to be orchestrated by a Multi-Domain Service Coordinator
function to achieve E2E service assurance. But, it does not
describe how such orchestration can be accomplished. In [22],
a high-level architecture for 5G service assurance is described.
It focuses on monitoring E2E KPIs rather than providing
mechanisms for achieving E2E service assurance. A dynamic
resource slicing method aimed at E2E service assurance is
proposed in [23], and it treats resource slicing in the radio ANs
and the CN independently. A technique that combines user
device QoS provisioning with network QoS provisioning is
proposed in [8]. It treats QoS provisioning in ANs and CNs as
independent tasks and relies on an unrealistic assumption that
the KPI budgets for each network node are fixed and known.
In [11], path configuration methods are proposed for ensuring
E2E QoS in Software-Defined Networks (SDNs). SDNs are
expected to be widely used in 5G systems. But, the path
configuration methods in [11] require centralized provisioning
and control of E2E network paths, which is impractical in
telecommunication systems where ANs and CNs are expected
to continue to be managed separately.

In order to assure E2E service quality while allowing the
ANs and the CNs to control their resources independently,
these autonomous networks should be able to coordinate with
each other to meet E2E KPI requirements. To this end, we pro-
pose an optimization-based framework in which the E2E KPI
requirements are captured by global constraints. Based on this
framework, we design a new distributed algorithm; existing
distributed optimization algorithms require the subsystems to
maintain and exchange their local decision variables with each
other. This can result in heavy signaling overheads, increase
technology inter-dependency among ANs and CNs, or reveal
how different subsystems manage their internal resources,
and thus are impractical or undesirable in telecommunication
systems [9], [12], [21].

In contrast, our algorithm only needs the subsystems to
exchange their estimates of the global constraint functions.
When the subsystems update their local decision variables

using the proposed algorithm, they converge to an optimal
point with probability 1. We present numerical results to
demonstrate that the proposed algorithm quickly reduces the
cost of the system to near the optimal value even with
measurement noise. Finally, we illustrate that each optimal
point gives rise to a stationary state Nash equilibrium of an
associated state-based potential game.

Notation: We denote set of nonnegative integers by IN.
Unless stated otherwise, all vectors are column vectors and
||·||2 denotes the `2 norm. Given a vector x, we denote the kth
element by xk. The vector of zeros (resp. ones) of appropriate
dimension is denoted by 0 (resp. 1). Given a closed convex
set S and a vector x, PS(x) denotes the Euclidean projection
of x onto S.

II. PROPOSED OPTIMIZATION FRAMEWORK

In the rest of the paper, we refer to an AN or a CN as
an agent, and let A be the set of N agents. The problem
of ensuring E2E QoS over autonomously managed networks
can be formulated as a distributed optimization problem with
both local and global constraints. Let yi be the local decision
variables of agent i ∈ A, which are used by agent i to manage
its network resources. The local constraints of agent i restrict
yi independently of the decision variables chosen by other
agents. We call the set of yi that satisfies agent i’s local
constraints its local constraint set and denote it by Gi. Let
y := (yi : i ∈ A) be the vector comprising the decision
variables of all agents. The set of y that satisfies the local
constraints of all agents is denoted by G :=

∏
i∈A Gi.

We capture the E2E QoS guarantees, which the agents
must meet collectively, using K global constraint functions
g1, . . . , gK . The global constraints depend on the decision
variables of more than one agent and, hence, require their
coordination.

If (i) the local objective functions of individual agents, (ii)
local constraint sets Gi, i ∈ A, and (iii) global constraint
functions g1, . . . , gK are known, we can formulate the problem
of optimizing the overall network performance subject to the
E2E QoS requirements as a constrained optimization problem
of the form given below, where (a) the objective function is
separable, and (b) global (inequality) constraints couple the
decision variables of agents:

min
y∈G

∑
i∈A

φi(yi) (1a)

s.t. g(y) :=
∑
i∈A

gi(yi) ≤ 0, (1b)

where φi denotes the local objective function that agent
i aims to minimize using its decision variables yi. Here,
g := (g1, . . . , gK) is the vector function consisting of K
global constraint functions. In our setting, each agent i knows
gi, which represents its contributions to global constraint
functions, but not gj , j ∈ A \ {i}.
A. Example: End-to-end Delay Constraints

Consider a network consisting of N domains or autonomous
systems, which are the agents in our framework, and denote



the set of agents by A. Suppose that the network provides nS
different service classes and S is the set of service classes.
Let F be the set of nF flows that need to be supported. Each
flow f ∈ F is of service class sf ∈ S. Thus, the set F can be
partitioned into {Fs : s ∈ S}, where Fs is the set of service
class s flows in F with ns := |Fs|, s ∈ S . Each flow f
traverses a subset of agents in Af . We use an ns ×N matrix
Rs = [Rsf,a : f ∈ Fs, a ∈ A] to describe the routes taken
by the flows of service class s, where Rsf,a = 1 if flow f
traverses agent a, and Rsf,a = 0 otherwise.

a) Problem for individual agents: Let N a be the set of
egress/ingress nodes in agent a and ma := |N a|. An agent a’s
flow b refers to a triple (s, pi, pe) ∈ S × N a × N a with the
understanding that it carries service class s traffic that enters
and leaves agent a at pi (ingress point) and pe (egress point),
respectively. We denote the set of flows of service class s in
agent a by F̃as , and let F̃a := ∪s ∈AF̃as .

For each agent a ∈ A, there is a fixed traffic tensor that
describes the amount of traffic that needs to be transported
for each ingress-egress pair and each service class. We denote
this traffic tensor by Ta, which is an ns×ma×ma tensor; the
element T as,pi,pe denotes the demand of flow b = (s, pi, pe),
i.e., it is the amount of traffic belonging to service class s ∈ S,
which needs to be transported from ingress node pi ∈ N a to
egress node pe ∈ N a. We use I(b) and E(b) to denote the
ingress and egress node, respectively, of flow b.

Let La be the set of (directed) links in agent a. Each link
` ∈ La has a finite capacity ca` , and ca := (ca` : ` ∈ La). Each
flow b ∈ F̃a is supported by a set of routes in Rab connecting
I(b) to E(b), and a route r ∈ Rab utilizes a subset of links
in agent a, which we denote by La(r) with a little abuse of
notation.1 For each s ∈ S , we define Pas := ∪b∈F̃a

s
Rab and a

routing matrix Ra
s , which is a |Pas |× |La| matrix; the element

Rar,` = 1 if ` ∈ La(r) and Rar,` = 0 otherwise.
The variable xab,r, r ∈ Rab for some flow b ∈ F̃a, denotes

the amount of flow b traffic traversing route r. Define xa =
(xab,r : b ∈ F̃a and r ∈ Rab ) to be the local decision variables
of agent a. These local decision variables must be nonnegative
and support the given traffic tensor: for every b ∈ Fa,

xab,r ≥ 0 for all r ∈ Rab and
∑
r∈Ra

b
xab,r = T ab .

We use Ga to denote the set of agent a’s decision variables
that satisfy these conditions.

The goal of agent a is to minimize its own local cost given
by Ca(xa). This local cost Ca(xa) can be, for example, the
(weighted) average delay experienced by the traffic traversing
agent a or the costs associated with packet losses suffered in
its network. Oftentimes, this cost includes a summable cost,
i.e., the sum of the costs of individual links, which can be
written as

∑
s∈S

(∑
`∈La cs,`(x

a)
)
, where cs,`(xa) is the cost

of class s traffic on link ` as a function of xa.
b) E2E delay requirements: The traffic of service class

s cannot tolerate (average) E2E delays larger than d∗(s). We

1Note that two routes used for two distinct flows may utilize the same set
of links. In this case, we treat them as two separate routes.

handle these E2E delay constraints using the following global
constraints: suppose that, given local decision variables xa of
agent a, the delay experienced by service class s traffic on
link ` is given by Da

s,`(x
a). Then, the delays experienced by

flows of service class s through agent a are given by

Ra
sD

a
s(xa),

where Da
s(xa) := (Da

s,`(x
a) : ` ∈ La). In general, it is

reasonable to assume that Da
s,`(x

a) is a convex function of
xa. We define

ga,s(x
a) := max(Ra

sD
a
s(xa)), s ∈ S,

to be the maximum delay experienced by service class s traffic
in agent a’s network.

Let x := (xa : a ∈ A) and G :=
∏
a∈A Ga. The problem

of minimizing the total cost of all agents can be set up as the
following constrained optimization problem:

min
x∈G

∑
a∈A

Ca(xa) (2a)

s.t.
∑
a∈A

Rsf,aga,s(x
a) ≤ d∗(s), s ∈ S and f ∈ Fs (2b)

It is evident that the above problem in (2) is of the form in (1).
Note that the decisions by the agents are coupled only via the
constraints in (2b), while the objective function is separable.

III. DISTRIBUTED OPTIMIZATION ALGORITHM WITH
NOISY MEASUREMENTS

It is clear from the discussion and the example in the
previous section that, in order for the agents to optimize
the overall network performance with global constraints, we
need a new distributed optimization framework that will
allow the agents to cooperate with each other to satisfy the
global constraints without incurring prohibitive overheads for
information exchange. Furthermore, in order to allow different
agents to use different networking technologies, equipment,
and equipment vendors, it will be important to eliminate
or minimize the need for the agents to exchange sensitive
information that may reveal how they manage their networks.

A. Penalty Method with Noisy Measurements

One popular approach to solving a constrained optimization
problem is a penalty method, which adds a penalty function to
the objective function. The penalty increases with the level of
violations of constraints. Although a general penalty function
can be used in our problem, we assume a specific penalty
function to simplify our exposition: consider the following
approximated problem with a penalty function:

min
y∈G

∑
i∈A

φi(yi) +
µ

2N

∑
k∈KG

(
[gk(y)]+

)2
=: Φ(y), (3)

where µ > 0 is a penalty parameter, KG is the set of K
global constraints, φi is the (local) objective function of agent
i (introduced in (1)), and [·]+ := max(0, ·). The original
problem in (1) is recovered by letting µ→∞. The function Φ



is convex on G provided that φi and gi,k, i ∈ A and k ∈ KG,
are convex.

Unfortunately, the usual gradient projection method does
not lead to a distributed algorithm for our problem because the
penalty function and its gradient are coupled. Also, in many
problems of practical interest, (a) the analytic expression of
φi and its gradient are unknown to agent i and (b) only noisy
measurements are available to estimate them. For instance, in
the example discussed in the previous section, an agent needs
to estimate its local costs from network measurements (e.g.,
packet loss rates), which contain measurement noise.

In order to deal with the issues of (i) noisy estimates of
local costs and (ii) global constraints that couple the decision
variables of agents, we propose a new distributed optimization
algorithm that requires each agent i to keep an estimate ei(t)
of the constraint functions g(y(t)). These estimates are used
to approximate the gradient of the penalty function and are
updated using a consensus-type algorithm.

a) Update rule for decision variables: Consider the
following iterative update rule, which is used by each agent
to update its local decision variables: for every agent i ∈ A
and t ∈ IN,

yi(t+ 1) = PGi
(
yi(t) + γtUi(t)

)
, (4)

where Ui(t) are random vectors, and γt is a step size at
iteration t. The initial value yi(0) is chosen arbitrarily in Gi.
The random vector can be decomposed as follows:

Ui(t) = −∇φi(yi(t))−
µ

N

∑
k∈KG

∇gi,k(yi(t))[gk(y(t))]+ (5)

+µ
∑
k∈KG

∇gi,k(yi(t))
( 1

N
[gk(y(t))]+−[ei,k(t)]+

)
+Vi(t)

= −∇φi(yi(t))−µ
∑
k∈KG

∇gi,k(yi(t))[ei,k(t)]++Vi(t).

The first and second terms on the right-hand side (RHS)
in (5) are the gradient of the local objective function φi
and the penalty function associated with global constraints,
respectively. The third term models the difference between
the correct gradient of the penalty function and the estimated
gradient on the basis of agent i’s estimates of constraint func-
tions, namely ei(t). The last term represents noise or stochastic
perturbation in the estimates U(t) := (Ui(t) : i ∈ A), the
statistical distribution of which may depend on the current
decision variables y(t). We emphasize that the exact gradients
in (5) are unavailable to agent i and only a noisy estimate
given by Ui(t) is available, which need to be computed from
measurements.

b) Update rule for global constraint function estimates:
In addition to updating local decision variables according to
(4), each agent also updates its estimate of global constraint
functions using the following update rule:

ei(t+ 1) =
∑
j∈A

wijej(t) + gi(yi(t+ 1))− gi(yi(t)), (6)

where W = [wij : i, j ∈ A] is the weight matrix, and ei(0) =
gi(yi(0)), i ∈ A.

Clearly, the first term on the RHS of the consensus-type al-
gorithm in (6) requires exchanging the estimates of constraint
functions maintained by agents, but not their local decision
variables. Furthermore, each agent i ∈ A needs to exchange
its estimate ei only with its neighbors specified by the weight
matrix W . This update rule is designed to track the average of
the constraint functions. Moreover, under the assumption that
the weight matrix W is doubly-stochastic, we have

eavg(t) :=
1

N

∑
i∈A

ei(t) =
1

N

∑
i∈A

gi(yi(t))

=
1

N
g(y(t)) =: ḡ(t). (7)

As a result, the sum of the estimates maintained by all
agents equals the correct value of constraint functions, and
we can view ei(t) as a local estimate of the average constraint
functions. We note that, since agents exchange their estimates
only with (direct) neighbors, the communication overheads
scale linearly with the number of global constraints.

In (6), we assumed that the same weight matrix W is
used for all constraints to simplify our discussion. In practice,
however, agents may contribute to different sets of constraints
and may not want to keep an estimate of constraint functions
to which they do not contribute. In this case, we can adopt
different weight matrices, one for each set of constraints with
the same contributing agents.

B. Convergence Results

In this subsection, we introduce the assumptions under
which agents’ decision variables converge almost surely to an
optimal point of (3) when they adopt the proposed algorithm
given by (4) and (6).

Assumption 1: (a) The local constraint sets Gi, i ∈ A, are
nonempty, compact and convex; and (b) the local objective
functions φi and constraint functions gi,k, i ∈ A and k ∈ KG,
are convex and Lipschitz continuous on Gi.

Assumption 1 is likely to hold in many, if not most,
networking-related problems, such as resource allocation and
performance optimization problems.

Assumption 2: The directed graph associated with the
weight matrix W is strongly connected, and the weight matrix
W is doubly stochastic.

This assumption simply asserts that the agents can com-
municate with each other over one or more hops. When this
assumption is violated, it would not be possible for some
agents to cooperate with each other, making it difficult to
satisfy global constraints in dynamic environments.

Assumption 3: Given y(t) = y, the distribution of the
perturbation V(t) is µy and satisfies (a)

∫
v µy(dv) = 0

for every y ∈ G and (b) supy∈G
∫
||v||2 µy(dv) =: ν <∞.

This assumption states that, although measurements are
noisy, (a) if the measurements are taken many times, the
average value will be close to the correct value and (b)
the noise is not large enough to prevent the agents from
extracting information pertinent to the network performance.



For example, when the noise is bounded, the second part of
the assumption holds, which is likely the case in practice.

Example: Before we proceed, we explain what these as-
sumptions mean in the context of the example discussed in
Section II-A. The local problems described in Section II-A
are essentially a (probabilistic) routing problem. Therefore,
for each ingress-egress pair (with positive traffic), the feasible
local decision variables lie in an appropriate standard simplex,
which is compact and convex. Assumption 2 means that the
network is connected so that traffic can be routed from one
agent to any other. It is reasonable to assume that network
measurements are unbiased, i.e., the sample average will
converge to the correct value when the number of samples is
large. In this case, Assumption 3a holds. Further, in practice
the network measurements are bounded and, consequently,
Assumption 3b will be true.

Let us denote the optimal set, i.e., the set of optimal points
of (3), and the optimal value by Y∗ and Φ∗, respectively. The
following result asserts that, under Assumptions 1 through 3,
the decision variables updated in a distributed manner by the
agents converge to an optimal point almost surely. Its proof
can be found in [17]. Define dY∗ : G → IR+, where

dY∗(y) = inf{||y − y∗||2 | y
∗ ∈ Y∗}.

Theorem 1: Suppose that Assumptions 1 through 3 hold.
Under our proposed algorithm given by (4) and (6) with step
sizes γt satisfying

∑
t∈IN γt=∞ and

∑
t∈IN γ

2
t <∞, we have

P [limt→∞ dY∗(y(t)) = 0] = 1.

Note that the step size condition in this theorem is standard
for many iterative (stochastic) optimization algorithms and
is needed to ensure the almost sure convergence under the
proposed algorithm. In practice, however, a fixed step size
may be used instead, and it has been shown in many cases
that weak convergence hold, i.e., the optimization variables
converge to a small neighborhood around the optimal set and
remains there with high probability, when a sufficiently small
constant step size is adopted [13].

IV. NUMERICAL STUDIES

In this section, we provide numerical studies to illustrate
how our proposed framework and algorithm described in
Sections II and III can be used to assure E2E QoS over a
telecommunication system with autonomously managed ANs
and CNs. This simplified scenario highlights the key benefits
of the proposed framework and some practical considerations
in applying such distributed optimization methods to real
world problems.

A. Description of setup

We consider one CN and two ANs - AN 1 and AN 2, as
shown in Fig. 1. For the numerical study, we only consider
downstream traffic that enters the CN from the Internet and
is destined for either AN 1 or AN 2. The networks support
two traffic classes, which require different average E2E delay

Core 
NetworkInternet

Access Network 1

Access Network 2

link 2
link 1

link 2
link 1

Fig. 1. Network used for numerical studies.

guarantees. The traffic destined for AN i is given by Fi =
(F i1, F

i
2), where F is is the class s traffic destined for AN i.

Each AN has two links to carry traffic (links 1 and 2 shown
in Fig. 1). The local decision variables of AN i are yi =(
(ri`,1, r

i
`,2, b

i
`) : ` = 1, 2

)
, where ri`,s is the fraction of class

s traffic routed through link ` by AN i, and bi` is the amount
of bandwidth provisioned on link ` by AN i. The cost of AN
i comprises (i) the cost of reserving bi`, ` = 1, 2, on each link
` and (ii) the cost that is dependent on the average delays
experienced by its traffic. More precisely, the cost of AN i,
i = 1, 2, is given by

φi(yi) =

2∑
`=1

(
pi`(b

i
`) +

2∑
s=1

ξis(r
i
`,sF

i
s , d

i
`(f

i
` , b

i
`))
)
, (8)

where f i` = ri`,1F
i
1 + ri`,2F

i
2 is the total flow rate on link `,

pi` is the function that determines the total reservation cost on
link `, di` determines the average delay on link ` as a function
of reserved bandwidth and the total flow rate, and ξis is the
delay cost function of class s traffic.

Similarly, the local decision variables of the CN are the
amounts of the bandwidth provisioned for each traffic class
and are given by yc = (b1, b2), where bs is the amount of
bandwidth reserved for class s traffic. For fixed yc and traffic
F = (F1, F2), where Fs = F 1

s + F 2
s is the total amount of

class s traffic handled by CN, its cost is given by

φc(yc) =
∑2
s=1

(
pcs(bs) + ξcs(Fs, d

c
s(Fs, bs))

)
, (9)

where pcs(bs) is the cost of provisioning bandwidth bs for class
s traffic, dcs determines the delay as a function of the total rate
and provisioned bandwidth for class s traffic, and ξcs is the
delay cost function for class s traffic.

The CN and the ANs collectively must satisfy constraints on
the average E2E delays experienced by the traffic. Specifically,
the average E2E delay for traffic class s should not exceed Ds.
This gives rise to the following global constraints:

gi,s(yi,yc) :=
1

F is

2∑
`=1

f i`,sd
i
`(f

i
` , b

i
`) + dcs(Fs, bs)−Ds ≤ 0,

i = 1, 2 and s = 1, 2, (10)

where f i`,s = ri`,sF
i
s is the amount of class s traffic traversing

link `.



The approximated optimization problem we are interested
in solving is given by

min
y∈G

((
φc(yc) +

2∑
i=1

φi(yi)
)

+
µ

6

2∑
i=1

2∑
s=1

(
[gi,s(y)]+

)2)
(11)

with decision variables y = (yc,y1,y2).

B. Practical Modifications of the Proposed Algorithm

Our proposed framework and convergence results in Sec-
tions II and III, respectively, guarantee the almost sure con-
vergence of the decision variables to an optimal point when
the approximated problem in (3) is convex. However, there
are a few practical issues that one should consider, which are
discussed here.
• Modification 1 – While the step sizes γt, t ∈ IN, can
be chosen sufficiently small to avoid large fluctuations in
the decision variables, which are updated in accordance with
(4) and (6), selecting small step sizes also hampers their
convergence to the optimal set. In order to skirt this issue,
we apply a limiter to (some elements of) γtUi(t) in (4).
Specifically, we use the limiter to the elements corresponding
to the routing probabilities ri`,s so that the elements of γtUi(t)
corresponding to these decision variables always lie in [-0.01,
0.01]. The use of such limiters alters our proposed algorithm
from that described in Section II. However, the almost sure
convergence to the optimal set shown in Section III still
holds with the modified algorithm under the assumed Lipschitz
continuity of gradients functions and bounded noise.
• Modification 2 – We observe from (5) that when agent i’s
estimate of the kth global constraint at iteration t, namely
ei,k(t), is positive, it introduces the corresponding term
µ∇gi,k(y(t))[ei,k(t)]+ in the update term used in (4). Hence,
when ei,k(t) oscillates around zero, it is added to the update
term whenever ei,k(t) > 0 while it makes no contribution
to the update term when ei,k(t) ≤ 0, causing a non-negligible
change in the update term. This is undesirable and slows down
the convergence of decision variables.

In order to cope with this issue, rather than using the true
delay budgets Ds, s = 1, 2, we use target delay budgets
equal to DT

s = τDs, where τ ∈ (0, 1]. We call the global
constraints with the delay budgets replaced by the target
delay budgets the fictitious global constraints. The main idea
behind the use of fictitious global constraints is two-fold. First,
satisfying the global constraints with true delay budgets in
general requires selecting a large penalty parameter, which
increases the sensitivity to the constraint function values (and
their estimates). Second, using fictitious constraint functions
allows us to use a smaller penalty parameter (hence, reduces
the aforementioned sensitivity to the global constraint function
values); we can violate the fictitious delay constraints while
still satisfying the true delay constraints. This implies that
the agents’ estimates of fictitious constraint functions stay
positive, avoiding the aforementioned oscillations, while still
satisfying the original global constraints.

C. Numerical Results

In our numerical study, we assumed following functions:

di`(f, b) = υ`
(
f/b
)a
, dcs(f, b) =

(
f/b
)a
, pi`(b) = κi` · bk,

pcs(b) = κs · bk, ξcs(f, d) = βsfd, and ξis(f, d) = βisfd,

where κi` > 0, κs > 0, γs > 0, βis > 0, a ≥ 1 and k ≥ 1. The
following parameter values are used in the study:

υ1 = 1, υ2 = 0.8, κ11 = 4, κ12 = 5, κ21 = 7, κ22 = 9,

κ1 = 4, κ2 = 6, a = 2.5, k = 1.1, βi1 = β1 = 40,

and βi2 = β2 = 10, i = 1, 2.

The flow rates are F1 = (40, 20) and F2 = (50, 30). The
delay budgets are chosen to be D1 = 0.7 and D2 = 0.5 with
the target delay budgets set to 60 percent of the true delay
budgets, which are DT = (0.42, 0.3). The penalty parameter
is set to 2 ·104: a relatively large value of penalty parameter is
necessary in our scenario because the delay budgets are much
smaller than the costs of reserving bandwidth for the networks.
The employed doubly-stochastic weight matrix W := [wij :
i, j ∈ {c, 1, 2}] used in (6) is given by

W =

3/4 1/8 1/8
1/8 7/8 0
1/8 0 7/8

 .
The stochastic perturbation Vi(t) introduced in the

noisy observation of gradient is uniformly distributed over
[−σ∇φi(yi(t)), σ∇φi(yi(t))]. For the reported numerical re-
sults, we pick σ = 0.75. The step sizes are selected to be
γt = min(0.1, (t + 1)−0.6), t ∈ IN. Finally, the decision
variables are initialized as follows. Let F i =

∑2
s=1 F

i
s ,

i = 1, 2, and FT = F1 + F2 = F 1 + F 2:

yc = (B1, B2), y1 = (0.5, 0.5, 0.5, 0.5, B1
1 , B

1
2),

and y2 = (0.5, 0.5, 0.5, 0.5, B2
1 , B

2
2),

where Bs ∼ Uniform(0, 2FT ), s = 1, 2, and Bi` ∼
Uniform(F i, 2F i), i = 1, 2 and ` = 1, 2. These random
variables are selected independently.
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Fig. 2. Plot of the objective function Φ(y(t)).
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Fig. 3. End-to-end delays experienced by traffic traversing to AN 1 (left) and
AN 2 (right).

First, we plot the value of the objective function Φ(y(t)) of
the approximated optimization problem in (11) for t in {1, 2,
. . . , 1000} (top) and {1, 2, . . . , 150} (bottom) in Fig. 2. The
dotted red lines represent the optimal value we obtained using
the MATLAB optimization tool.2 The plots suggest that the
value of Φ(y(t)) converges to the optimal value quickly. In
fact, the bottom plot indicates that we are within 2-3 percent
of the optimal value within 150 iterations, despite large noises.

Fig. 3 plots the realized E2E delays experienced by the
traffic destined for AN 1 (left) and AN 2 (right). With the
employed parameters, the true delay constraints are satisfied
for both traffic classes. In contrast, when there is no penalty
function, the realized E2E delays for class 1 and 2 traffic
destined for AN 1 (resp. AN 2) are 3.7 and 8.7 (resp. 5.6 and
10.6), respectively. Obviously, these numbers are many times
larger than their delay budgets and, hence, are unacceptable.
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Fig. 4. Estimates of constraint functions maintained by agents.

Recall that the E2E target delay budgets for class 1 and 2
traffic are DT

1 = 0.42 and DT
2 = 0.3, respectively. The delays

experienced by the traffic destined for AN 1 in the left plot
of Fig. 3, which include the delays in both the CN and AN 1,

2Mention of commercial products in this paper is for information only; it
does not imply recommendation or endorsement by NIST.

exceed the target delays by approximately 0.17 and 0.03 for
class 1 and 2 traffic, respectively. Hence, according to (7), the
estimates of the agents must be approximately 0.06 and 0.01.
Similarly, according to the right plot in Fig. 3, the agents’
estimates for class 1 and 2 traffic should be approximately
0.1 and 0.03. Fig. 4 shows the estimates ei(t), i ∈ {c, 1, 2};
the top figures (resp. bottom figures) are the estimates of g1,s
(resp. g2,s), s = 1, 2. It is clear from the figure that the agents
are indeed able to closely track the average constraint function
values using the proposed consensus-type algorithm in (6).

V. DISCUSSION: RELATION TO NASH EQUILIBRIA OF A
STATE-BASED POTENTIAL GAME

In the previous sections, we implicitly assumed that the
agents are willing to employ the proposed algorithm to co-
operate in order to satisfy global constraints. In general, the
agents will adopt the proposed algorithm only if they believe
that they cannot reduce their own costs without significantly
increasing global constraint violations by deviating from the
equilibrium, i.e., an optimal point of (3). It turns out that there
is a close relation between an optimal point of (3) and a Nash
equilibrium of a state-based potential game (SBPG) associated
with the problem.

An SBPG consists of the following [18]:
a) a set of agents A;
b) a state space X ;
c) for each agent i ∈ A and each state x ∈ X , (i) a state-

dependent admissible action set Yi(x) and (ii) a state-
dependent cost function Ji, where Ji(x,a) is agent i’s
cost at the state x when the agents adopt action profile
a ∈

∏
i∈A Yi(x) =: Y(x); and

d) a deterministic state transition function f : given the
current state x and agents’ action profile a ∈ Y(x), the
next state is given by f(x,a) ∈ X .

There is also a null action profile a0 such that a0 ∈ Y(x)
and x = f(x,a0) for all x ∈ X . In other words, the
state does not change when the agents adopt the null ac-
tion profile. A state-action pair (x?,a?) is said to be a
stationary state Nash equilibrium of the SBPG if (i) a?i ∈
arg minai∈Yi(x?) Ji

(
x?, (ai,a

?
−i)
)

for every agent i ∈ A,
where a?−i is the action profile of all agents except for agent
i, i.e., a?−i = (a?j : j ∈ A \ {i}), and (ii) x? = f(x?,a?).

Consider a game with the state given by x = (y, e), where y
is the vector of decision variables in our optimization problem,
and e = (ei : i ∈ A) is the vector of constraint function
estimates. Given a state x ∈ X , an action ai of agent i is a
tuple

(
ŷi, (êi→j : j ∈ Ni)

)
, where ŷi is the change in agent

i’s decision variables and êi→j is the estimates of constraint
functions agent i forwards to its neighbor j ∈ Ni := {j ∈
A | wij > 0}. Suppose that the state transitions to a new state
based on the current state x and the chosen action profile a
as follows:

yi = yi + ŷi

ei = ei + gi(yi)− gi(yi) +
∑
j∈Ni

(
êj→i − êi→j

)
.



Consider the cost function of agent i given by

Ji(x,a) = φi(yi) +
µ

2

∑
j∈Ni

‖[ej ]+‖22, (12)

where µ > 0 is a trade-off parameter. This gives rise to an
SBPG with a global potential function given by [16]

Φµ(x,a) =
∑
i∈A φi(yi) + µ

2

∑
i∈A ‖[ei]+‖22. (13)

Note the similarity between the objective function in (3)
and the global potential function in (13). From (7), we have
g(y(t)) =

∑
i∈A gi(yi(t)) =

∑
i∈A ei(t). Hence, when all

agents have the correct estimate of the average constraint
function values, i.e., ei(t) = eavg(t) for all i ∈ A, the global
potential function coincides with the objective function in (3)
with a different penalty parameter. This observation can be
used to prove the following proposition.

Proposition 1: Suppose that y∗ ∈ Y∗ is an optimal point
of (3). Then,

(
(y∗,g(y∗)/N),0

)
, where 0 is the null action

profile, is a stationary state Nash equilibrium of the SBPG.
The above proposition means that each optimal point in Y∗

leads to a stationary state Nash equilibrium and there is an
one-to-one mapping from Y∗ to a set of stationary state Nash
equilibria of the SBPG.

VI. CONCLUSIONS

We proposed a novel distributed algorithm that enables
autonomously managed ANs and CNs in a telecommunication
system to cooperate with each other to meet E2E KPI goals.
The new algorithm overcomes two major limitations of prior
techniques. First, unlike prior approaches that require static
local KPI budgets for each autonomous subsystem, the new
algorithm allows the autonomous subsystems to dynamically
negotiate their local KPI budgets. Second, rather than requiring
the autonomous subsystems to share their local decision vari-
ables with each other, our proposed algorithm only needs the
subsystems to exchange their estimates of the global constraint
functions. We proved that the new algorithm converges to an
optimal solution almost surely, and presented numerical results
to demonstrate that the convergence occurs quickly even with
measurement noise.
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