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Abstract

The exponentially correlated Hylleraas-configuration interaction wave function

(E-Hy-CI) is a generalization of the Hylleraas-configuration interaction (Hy-CI) in

which the single rij of an Hy-CI wave function is generalized to the generic type

r
νij
ij e

�ωij rij . This type of correlation has the right behavior both in the vicinity of the rij

cusp and as rij goes to infinity; this work shows that wave functions containing both

linear and exponential rij factors converge more rapidly than either one alone for

low-lying excited states of 1S symmetry. E-Hy-CI variational calculations with up to

8568 configurations lead to a nonrelativistic energy of �7.2799 1341 2669 3059

6491 6759 hartree for the 1 1S ground state of the Li+ ion.
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1 | INTRODUCTION

Variational methods based on explicitly correlated wave functions are known to give the most precise upper bounds to energy states, and hence

the inclusion of terms containing the interelectronic distance rij in the wave function has become increasingly common, at least for few-electron

atomic systems (N≤4) (so common in fact that a book dealing entirely with explicitly correlated wave functions has been produced [1]; for a

recent article see Grüneis et al. [2]). Wave functions that are commonly referred to now as Hylleraas (Hy) follow the landmark calculation of

Hylleraas [3] by employing powers of the interelectronic distance in the wave function. The Hylleraas-configuration interaction (Hy-CI) technique

(developed by Sims and Hagstrom (SH) [4] and also independently by Wo�znicki [5]) differs from the traditional Hy development by employing at

most a single, linear rij factor with traditional CI orbital bases in each configuration state function (CSF). While the work of Hylleraas demonstrated

that two-electron atoms could be calculated precisely (for that time) with powers of r12, it was Bunge [6] who demonstrated that linear terms

alone were sufficient for high precision for He.1 Hy-CI in its current incantation utilizes only linear terms in rij, hence R12/F12 [1, 2, 9, 10]

methods are related to Hy-CI but outside the scope of this study (but see Ruiz [11] for a discussion of CI-R12 and a comparison with Hy-CI in the

two-electron He atom case). In an interesting new development, Nakashima and Nakatsuji have introduced Hy-CI into their free-complement

chemical formula theory (FC-CFT) [12–15]. The other common exponentially correlated wave function, the exponentially correlated Gaussian

(ECG) [1] wave function, in contrast to Hy and Hy-CI wave functions has the rij correlation appearing as Gaussian exponentials.

In this paper we continue to explore2 a generalization of the Hy-CI method first proposed by Wang et al. [16], the Exponentially correlated

Hylleraas-configuration interaction (E-Hy-CI) method3 in which the single rij of an Hy-CI wave function is generalized to a form of the generic type

r
νij
ij e

�ωij rij . Pairing an exponential r12 factor with linear r12 was first suggested for helium by Hirschfelder who, in 1960 [17], suggested that this type

of correlation factor has the right behavior in the vicinity of the r12 cusp, and also has the right behavior as r12 goes to infinity, but he did no calcu-

lations. Whether functions having both linear and exponential rij factors might be more rapidly convergent than either one alone remained to be

seen. The E-Hy-CI proposal has been followed by many papers discussing the integrals arising in E-Hy-CI [16–21], but there had been no atomic
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or molecular structure E-Hy-CI calculations other than an examination of optimized values of ωij for the E-Hy-CI wave function by Nakatsuji

(which is referred to as unpublished in Wang et al. [16]) until our recent study [7] of the ground 1S state of the helium atom. The present contribu-

tion continues that work on the ground 1S state of the helium atom by examining not only the ground 1 1S state of the Li+ ion, but the 2 1S

through 6 1S excited states as well, comparing our present results with Hy-CI calculations [22] of these states.4

2 | VARIATIONAL CALCULATIONS

For Ne electrons, the total non-relativistic, stationary-point-nucleus energy ENR is defined as the exact solution (eigenvalue) of the time-indepen-

dent, non-relativistic Schrödinger equation

HNRΨ r1,r2,…rNeð Þ¼ ENRΨ r1,r2,…rNeð Þ, ð1Þ

where the Hamiltonian HNR is defined as (in atomic units)

HNR ¼
XNe

i¼1

Hiþ
XNe

i< j

r�1
ij : ð2Þ

Here Hi = T iþV i , Hi being a one-electron operator (electron i) consisting of a kinetic energy part T i ¼�1
2r2

i and a nuclear attraction part

V i ¼�Z=ri. Ne denotes the number of electrons and Z the corresponding nuclear charge. How Ψ r1,r2,…rNeð Þ in Equation (1) is constructed to be

an E-Hy-CI wave function with the correct symmetry for the atomic states of interest (including being antisymmetric to satisfy the Pauli exclusion

principle) is discussed in this and the next section.

The E-Hy-CI wave function for Ne electron atomic states is

Ψ¼
XN
K¼1

CKΦK , ð3Þ

where

ΦK ¼Λ rνKij e
�ωK rij

YNe

s¼1

ϕKs
rsð Þ

� �
ΘK

 !
¼OasOL,MLOS,MS rνKij e

�ωK rij
YNe

s¼1

ϕKs
rsð Þ

� �
ΘK

 !
ð4Þ

denotes the Kth antisymmetrized spin and angular momentum projected explicitly correlated CSF. Λ is the symmetry adaptation operator which

does the projection and is a product of a projection operator which makes the state antisymmetric, Oas, and OL,ML , OS,MS
which are idempotent

orbital and spin angular momentum projection operators of the Löwdin type [24] for a state of total quantum numbers L,ML,S,MS (Russell–

Saunders [LS] coupling is assumed). The idempotent antisymmetry projection operator Oas is given by

Ne!Oas ¼
X
p

�1ð ÞpP ð5Þ

where the summation runs over all the Ne! permutations P, with p being the parity of the corresponding permutation P. Each term K contains at

most one explicitly correlated factor rνKij e
�ωK rij which in addition to the Hy-CI case with ωK ¼0 can also have ωK ≠0. In practice it is sufficient to

take νK equal to 0 or 1, with νK ¼1, ωK ¼0 the Hy-CI case and νK ¼0, ωK ¼0 the CI case. ΘK is a primitive spin product function for term K and

ϕKs
rsð Þ represents the sth basis orbital in the Kth term.

The basis orbitals are un-normalized Slater-type orbitals (STOs) ϕ rð Þ which are defined as

ϕi rð Þ¼ ni, li,mi½ �ξi ¼ rni�1e�ξi rYmi
li

θ,ϕð Þ, ð6Þ

where Ym
l θ,ϕð Þ is a normalized spherical harmonic in the Condon and Shortley phase convention [25]. With this choice of phase convention, the

spherical harmonics satisfy
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Ym�
l θ,ϕð Þ¼ �1ð ÞmY�m

l θ,ϕð Þ: ð7Þ

The coefficients CK in Equation (3) are found in this work by solving the generalized eigenvalue problem

HC¼ ESC, ð8Þ

H�E0Sð ÞC¼ E�E0ð ÞSC, ð9Þ

C¼ E�E0ð Þ H�E0Sð Þ�1SC, ð10Þ

where the matrix elements are given by HKL ¼ ΦK H ΦLj ijh and SKL ¼ ΦK jΦLh i with the Hamiltonian H given by Equation (2) and E0 is some starting

approximation for the eigenvalue E of interest.

The details of how the authors solve this real symmetric-definite eigenvalue problem are discussed in Sims and Ruiz [26], including how to

obtain a quadruple precision version of our computationally fast Fortran 90+ portable parallel package suitable for large (80 000 x 80 000 or

greater) dense matrices. All results reported in this article were obtained using real*32 extended precision (quad-double-with exponent or QDE,

256-bit, ≈ 64 digits) floating point arithmetic, and the Message Passing Interface (MPI) Standard [27] was used to parallelize the code.

3 | METHOD OF CALCULATION

For two electrons, following Hy-CI [28] spin can be eliminated and the E-Hy-CI wave function becomes:

Ψ r1,r2ð Þ¼
XN
K¼1

CKΦK r1,r2ð Þ, ð11Þ

where the terms ΦK are specifically of the form

ΦK r1,r2ð Þ¼ rνK12e
�ωKr12 1�P12ð ÞOL,ML ϕK1

r1ð ÞϕK2
r2ð Þ

� �
: ð12Þ

P12 is the operator which permutes electrons 1 and 2, and the plus sign is for singlet levels, the minus sign for triplet levels. Equation (2) becomes

HNR ¼H1þH2þH12, ð13Þ

where H12 ¼ r�1
12 .

In the generalized eigenvalue problem HC¼ λSC, matrix element HKL is

HKL ¼ ΦK H ΦLj i ¼ ΛΦP
K H ΛΦP

L

�� �
,

������
ð14Þ

where ΦP
K denotes the Kth primitive (unprojected) function as given in Equation (4) above. SKL is similar, with H replaced by the unit operator 1.

The projection reduction of these matrix elements is same projection reduction used in lithium [29] and in beryllium [30] and is discussed in

appendix A of those references. The helium case is simpler so just the result is given here, which is that HKL is given by

HKL ¼ gKfK H OL,MLB gLfLð Þj i:jh ð15Þ

In Equation (15) one can apply OL,ML either before or after applying B =1 + P12. Here the permutations B are applied to gLfL first, then the

OL,ML projection is done on the resultant. The OL,ML projection is applied only on the orbital products since gL ¼ rνLij commutes with OL,ML [4].

Now to generalize Hy-CI to E-Hy-CI for the two electron He case, one merely has to take the correlation factor gK to be gK = rνKij e
�ωK r12 in the

formulas above since e�ωK r12 has the same symmetry properties as r12. Thus HKL becomes

HKL ¼ ϕK1 r1ð ÞϕK2 r2ð ÞrνK12e
�ωK r12 H rνL12e

�ωLr12 1þP12ð ÞOL,MLϕL1 r1ð ÞϕL2 r2ð Þ
�� �

:
���

ð16Þ
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A detailed discussion of the most general exponentially correlated integrals which have to be evaluated when using this wave function can be

found in section 3 of our recent study [7] of the ground state of helium.5

4 | COMPARISON OF E-HY-CI AND HY-CI

4.1 | Basis sets and optimization of the orbital exponents

The basis set orbitals in Hy-CI atomic calculations are STOs, see Equation (6). For the nonlinear orbital exponent parameters, there are essentially

four distinct approaches to be employed. The first approach is to work with a fixed set of orbital exponents. The fixed exponents have been previ-

ously optimized in a shorter expansion, corresponding to an outer region. Examples of this type of optimization are given in [31, 32]. This is the

approach favored by one of the authors (Ruiz [11, 22]); for two electron systems only a single orbital exponent is used and this exponent is opti-

mized. The second method consists of optimizing the exponents of the orbitals for each term as a term is added, and then recycle a subset of the

basis set and reoptimize the exponents one basis function at a time. In this procedure there are different orbital exponents for each term, leading

to a rather large number of orbital exponents to be optimized, a very computationally expensive task. An example of the use of this method is the

calculation of King and Bergsbaken [33]. The third approach is due to Drake [34, 35], who pointed out the need for ‘doubling’ basis sets so there

is a natural partition of the basis set into two distinct distance scales—one appropriate to the complex correlated motion near the nucleus, and

the other appropriate further out.6 The fourth approach is the one employed by Sims and Hagstrom in their He calculations in 2002 [28]. Drake

[34, 35] uses just two sets of orbitals to accelerate convergence, the Sims and Hagstrom approach uses two sets of basis functions for each l, dif-

fering in the nonlinear parameters ξ and ξ0.

In paper I [7] of this series, we explored what might be thought of as a synthesis of the Ruiz (single orbital exponent ξ) and Sims and Hagstrom

(two orbital exponents, ξ and ξ0 for each l) procedures by using just two orbital exponents (ξ and ξ0) in a calculation on the He ground 1S state.

That work is continued here in a calculation of ground and excited states of the Li+ ion. Frolov and Ruiz (FR) [22] used the Ruiz single (orbital

exponent) basis set in their Li+ Hy-CI calculations. In the ‘doubled’ (orbital exponent) basis set Hy-CI introduced in paper I and continued here,

the first set has an orbital with an orbital exponent ξ that makes it essentially a valence shell orbital similar to the Ruiz outer (valence) shell orbital,

whereas for the second set, the orbital has a large exponent ξ0 which brings it in closer to the nucleus. Results are very good for the ground state;

here we also explore how well this works for excited states.

4.2 | E-Hy-CI using single and “doubled” exponential r12 factors

To clarify this further, consider Table 1, where single and “doubled” basis sets for the Hy-CI calculations are listed (Table 2 will list basis sets for E-

Hy-CI calculations as well). Each line in the table specifies the {outer,outer} or {inner,inner} and {outer,outer} sets for each l quantum number

(¼ lmax). In the table, only the minimum information needed to specify the basis set is listed, namely, an exponent ξ, the l quantum number for

orbitals with that exponent, and norbs, the number of orbitals with that exponent (the ni in Equation (6) run from li + 1 to li + norbs). ω12, the expo-

nent of the exponentially correlated r12 factor if this is an E-Hy-CI calculation, is not included in this table since these are Hy-CI calculations, but

will be included in subsequent tables. There is of course just one norbs for the single (orbital exponent) basis set Hy-CI calculations and an outer

norbs and inner n0orbs basis set for ‘doubled’ basis sets. In all of the tables, N is used to refer to the number of terms in the wave function (see

Equation 3).

In Table 1 we start out with the FR [22] 820 term [16s14p13d12f],7 ξ =2.520933 wave function and extend it to 974 terms [18s15p14d13f].

Since ξ =2.9814 was the optimized single ξ for a comparable basis set for He [11], we also used this orbital exponent as well as the exponent, ξ

=4.4721, obtained by a simple nuclear charge based scaling of the He wave function (which in this case means to scale the orbital exponent by a

factor of 3.0/2.0). We still are not at a minimum, so one more calculation at ξ =5.9628 provided enough points to fit a smooth curve and yield an

optimized single orbital exponent of ξ =5.2424.

Next we doubled the basis set by including the {inner,inner} set as well. Optimizing ξ0 yields a ξ0 =16.93 which reduces the energy error from

≈ 5 nanohartree (FR) to ≈ 2 picohartree. The 1482 term result is intended to give an indication of the limit for a single basis set lmax =3, s,p,d, f

Hy-CI for ground 1S Li+. In Table 2 we include both the {inner,inner} and {outer,outer} terms which were key to the success of the current Hy-CI

formalism in the 2002 study [28], and examine whether the use of different orbital exponents for different l quantum numbers can be simplified

by the use of a just two orbital exponents, one for the {inner,inner} set and one for the {outer,outer} set. The table includes the SH 4284 term

l-wave expansion for Li+, 18 decimal place precision. This expansion was obtained, as mentioned above, from simple nuclear charge based scaling

of a He wave function which was obtained by meticulously optimizing the {outer,outer} and {inner,inner} orbital exponents for each l value in
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succession. Also included is our expansion, obtained from the same l-wave expansion, but using just the two “doubled” basis set exponents

obtained previously.

4.3 | E-Hy-CI versus Hy-CI using a different ‘doubled’ basis set for each different l-wave

Including both {inner,inner} and {outer,outer} terms was key to the success of the current Hy-CI formalism in the 2002 study [28]. The effect of

converting those ‘doubled’ basis set Hy-CI wave functions into “doubled” basis set E-Hy-CI wave functions is explored in this section using the

same simple procedure used in paper I: for each term in the wave function, add to the wave function a term now also containing an exponentially

correlated e�ω12r12 factor whose exponent ω12 is chosen to be the same 0.5 which satisfies the Kato cusp condition (here also scaled by the

nuclear charge based scaling of 3.0/2.0, i.e., we choose ω12 =0.75). The results are tabulated in Table 2, where very dramatic improvements can

be seen:

1. Hy-CI s-wave 3 decimal place precision becomes 6 decimal place E-Hy-CI s-wave precision (> Hy-CI p-wave precision),

2. Hy-CI p-wave 6 decimal place precision becomes 12 decimal place E-Hy-CI p-wave precision (> Hy-CI f-wave precision),

3. Hy-CI d-wave 9 decimal place precision becomes 18 decimal place E-Hy-CI d-wave precision (> Hy-CI g-wave precision), a huge 9 decimal

place improvement,

4. From here on, convergence gets slower, but already at the E-Hy-CI d-wave expansion, the result is almost as good as the Hy-CI l =6 result.

It is clear from the Table 2 results that the SH 18 decimal place l =6 Hy-CI result can be improved on with just an l =3 E-Hy-CI basis. It is also

clear that while optimizing each l-wave orbital exponents separately achieves the better results, as is to be expected (the best E-Hy-CI result being

21 decimal digit precision), 16 decimal digit precision can be obtained with just an s,p,d, f basis and just two ξ,ξ0 exponents.

TABLE 1 Comparison of theoretical Hy-CI energies for the Li+ ground state using a single basis set of orbitals (one ξ), and a “doubled” basis
set of orbitals (one ξ, one ξ0)

Technique Author lmax norbs ξ n0orbs ξ0 N Energy (hartree)

Hy-CI This work 0 18 2.5209 33a 342 �7.2795 3375 8749 7051 0936 6440

Hy-CI This work 0 18 4.4721 342 �7.2795 3506 4023 8622 6088 4297

Hy-CI This work 1 15 2.5209 33 582 �7.2799 1314 7044 7679 0886 1385

Hy-CI This work 1 15 4.4721 582 �7.2799 1316 0636 0229 7610 7764

Hy-CI This work 2 14 2.5209 33 792 �7.2799 1340 9842 1134 8060 2734

Hy-CI This work 2 14 4.4721 792 �7.2799 1341 2406 3723 2211 2329

Hy-CI This work 3 13 2.5209 33 974 �7.2799 1341 0126 1638 0754 7317

Hy-CI This work 3 13 4.4721 974 �7.2799 1341 2634 6416 7046 8968

Hy-CI FR (2010) [22] 3 16b 2.5209 33 820 �7.2799 1340 746

Hy-CI This work 3 18c 2.5209 33 974 �7.2799 1341 0126 1638 0754 7317

Hy-CI This work 3 18 2.9814 974 �7.2799 1341 1941 4309 4089 3918

Hy-CI This work 3 18 4.4721 974 �7.2799 1341 2634 6416 7046 8968

Hy-CI This work 3 18 5.2424 974 �7.2799 1341 2658 9150 6525 5767

Hy-CI This work 3 18 5.9628 974 �7.2799 1341 2651 6353 1849 6768

Hy-CI This work 3 19d 5.2424 1482 �7.2799 1341 2662 9081 2013 3837

Hy-CI This work 3 18 5.2424 18 15.50 1948 �7.2799 1341 2669 1060 7823 3099

Hy-CI This work 3 18 5.2424 18 16.93 1948 �7.2799 1341 2669 1062 1481 4476

Hy-CI This work 3 18 5.2424 18 20.50 1948 �7.2799 1341 2669 1053 6411 2505

Hy-CI This work 3 18 5.2424 18 40.50 1948 �7.2799 1341 2669 0691 2688 6261

Referencee �7.2799 1341 2669 3059 6491 9459

Note: All energies are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
aThe exponent is from Frolov and Ruiz [22].
b16 here represents norbs =16, 14, 13, and 12, respectively for l = 0–3.
c18 here and below represents norbs =18, 15, 14 and 13, respectively for l = 0–3.
d19 here represents norbs =19, 19, 19 and 18, respectively for l = 0–3.
eNakatsuji and Nakashima [38].
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4.4 | E-Hy-CI using a “doubled” basis set of exponential r12 factors

Channeling Hirschfelder's suggestion [17] that an exponentially correlated r12 paired with a linear r12 factor has the right kind of behavior both in

the vicinity of the r12 cusp as r12 goes to 0 and as r12 goes to infinity, in paper I of this series we considered a simple 4 term exponentially corre-

lated Hy (E-Hy) (which included both exponential and linear r12 terms) whose spacial part is

ΨE�Hy ¼ e�ω1r1�ω2r2 1þc1r12þc2e
�ω12r12 þc3r12e

�ω12r12ð Þ: ð17Þ

In that calculation, and indeed in all of our E-Hy-CI calculations, we considered only a single ω12r12 exponent (either 0.75 or 0.67

in Table 2). In Table 3 the second through fifth entries correspond to varying ω12 in calculations in which there is just a single ω12, which is

the case for all of the calculations in Table 2. From the second, third, and fifth entries in Table 3 an optimum ω12 value of 0.67 is obtained,

which improves on the energy only in the 17th decimal digit, indicating that the energy curve is flat with respect to a single ω12 and there

is no need to repeat the Table 2 calculations. This conclusion is verified in Table 2 where the 8568 calculations have been repeated

with ω12 =0.67.

TABLE 2 Comparison of theoretical E-Hy-CI and Hy-CI energies for the Li+ ground state using a “doubled” basis set of orbitals (one ξ, one ξ0)
and a “doubled” basis set of orbitals for each l-wave

Technique Author lmax norbs ξ n0orbs ξ0 ω12 N Energy (hartree)

Hy-CI This work 0 19 5.2424 19 16.93 760 �7.2795 3550 6348 5151 8152 0384

Hy-CI SH (2002) [28] 0 19 3.30 19 37.50 760 �7.2795 3549 6974 7375 7655 4093

E-Hy-CI This work 0 19 5.2424 19 16.93 0.75 1520 �7.2799 1336 0171 3369 9630 7659

E-Hy-CI This work 0 19 3.30 19 37.50 0.75 1520 �7.2799 1336 0182 4599 1732 3494

Hy-CI This work 1 19 5.2424 19 16.93 1520 �7.2799 1316 4908 1617 1579 6632

Hy-CI SH (2002) [28] 1 19 4.575 19 60.75 1520 �7.2799 1316 3232 2859 8804 0630

E-Hy-CI This work 1 19 5.2424 19 16.93 0.75 3040 �7.2799 1341 2669 2669 4750 6538

E-Hy-CI This work 1 19 4.575 19 60.75 0.75 3040 �7.2799 1341 2669 2617 5311 7615

Hy-CI This work 2 19 5.2424 19 16.93 2280 �7.2799 1341 2454 9261 6255 1259

Hy-CI SH (2002) [28] 2 19 5.25 19 60.75 2280 �7.2799 1341 2448 4952 1816 7709

E-Hy-CI This work 2 19 5.2424 19 16.93 0.75 4560 �7.2799 1341 2669 3059 3661 7108

E-Hy-CI This work 2 19 5.25 19 60.75 0.75 4560 �7.2799 1341 2669 3059 6441 0982

Hy-CI This work 3 18 5.2424 18 16.93 2964 �7.2799 1341 2669 1097 8147 1476

Hy-CI SH (2002) [28] 3 18 5.85 18 60.75 2964 �7.2799 1341 2669 0963 6600 9577

E-Hy-CI This work 3 18 5.2424 18 16.93 0.75 5928 �7.2799 1341 2669 3059 4858 9629

E-Hy-CI This work 3 18 5.85 18 60.75 0.75 5928 �7.2799 1341 2669 3059 6491 4628

Hy-CI This work 4 15 5.2424 15 16.93 3444 �7.2799 1341 2669 3056 3412 5515

Hy-CI SH (2002) [28] 4 15 6.75 15 60.75 3444 �7.2799 1341 2669 3057 5506 0295

E-Hy-CI This work 4 15 5.2424 15 16.93 0.75 6888 �7.2799 1341 2669 3059 5063 2462

E-Hy-CI This work 4 15 6.75 15 60.75 0.75 6888 �7.2799 1341 2669 3059 6491 5947

Hy-CI This work 5 14 5.2424 14 16.93 3864 �7.2799 1341 2669 3058 1870 8148

Hy-CI SH (2002) [28] 5 14 7.80 14 60.75 3864 �7.2799 1341 2669 3059 6464 5118

E-Hy-CI This work 5 14 5.2424 14 16.93 0.75 7728 �7.2799 1341 2669 3059 5226 1075

E-Hy-CI This work 5 14 7.80 14 60.75 0.75 7728 �7.2799 1341 2669 3059 6491 6410

Hy-CI This work 6 14 5.2424 14 16.93 4284 �7.2799 1341 2669 3058 2142 9810

Hy-CI SH (2002) [28] 6 14 9.00 14 60.75 4284 �7.2799 1341 2669 3059 6489 6870

E-Hy-CI This work 6 14 5.2424 14 16.93 0.67 8568 �7.2799 1341 2669 3059 5238 6189

E-Hy-CI This work 6 14 5.2424 14 16.93 0.75 8568 �7.2799 1341 2669 3059 5308 4206

E-Hy-CI This work 6 14 9.00 14 60.75 0.67 8568 �7.2799 1341 2669 3059 6491 6611

E-Hy-CI This work 6 14 9.00 14 60.75 0.75 8568 �7.2799 1341 2669 3059 6491 6759

Referencea �7.2799 1341 2669 3059 6491 9459

Note: All energies are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
aNakatsuji and Nakashima [38].
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It has been suggested that it might be reasonable to take two different non-linear parameters ω12, ω0
12 corresponding to whether the expo-

nential correlation term is paired with a linear r12 factor or not. Table 3 explores this. From the seventh, eighth and ninth line data points for vary-

ing ω0
12 with ω12 =0.67, an optimum value of ω0

12 ¼0:60 is obtained. This again improves the energy only in the 17th decimal digit, indicating that

the energy is flat with respect to ω0
12. Finally only ω12 was varied, keeping ω0

12 fixed; the entries are in Table 3 also. They give an optimized value

of 0.80 which again improves on the energy only in the 17th decimal digit, indicating that the energy is flat with respect to ω12 as well. Indeed

what stands out the most in Table 3 is how flat the energy is with respect to ω12, ω0
12, where the results are identical through 16 decimal digits for

all the 2912 term runs, so ω12 =0.75, the scaled value, is a good value for the exponential r12 value (and there is no need for a second ω12). As

mentioned in the previous paragraph, this conclusion is verified in Table 2 where the 8568 calculations have been repeated with ω12 =0.67. The

results are actually worse than the ω12 =0.75 results, with the ‘doubled’ basis set results differing in the 18th decimal and the ‘doubled’ basis set
for each different l-wave differing in the 22nd digit.

5 | EXCITED STATES OF Li+

In the following sections excited 2 1S through 6 1S states of Li+ will be discussed. Table 4 gives a summary of the best previous explicitly corre-

lated variational calculations on these states, with the Thakkar [42] calculations being the best previous calculations.

5.1 | Li+ 2 1S

The 2 1S state of Li+ is the first comparison of the convergence of an E-Hy-CI wave function expansion with that of the Hy-CI wave function

without exponential factors for excited S states; this will test whether both convergence acceleration and an improvement in precision for the

same basis holds for excited states as well as the ground state. In Table 5 we again start out with the FR [22] 820 term [16s14p13d12f] wave

function, this time with their ξ =2.310125 for the 2 1S state, and extend it to 974 terms [18s15p14d13f]. Optimizing this exponent for 974 terms

yielded ξ =2.46 and the 1482 term wave function result with this exponent gives an indication of the limit for a single basis set lmax =3, s,p,d, f

Hy-CI for this state, which is better than the best previous calculation, the ECS calculation of Thakkar [42].

Doubling the basis set by including the {inner,inner} set and optimizing ξ0 yields a ξ0 =7.77 which takes the (FR) estimated precision from 8

decimal digits to 12 decimal digits. The effect of converting “doubled” basis set Hy-CI wave functions into “doubled” basis set E-Hy-CI wave

functions is tested using the simple procedure of paper I: for each term in the wave function, add to the wave function a term also containing an

exponentially correlated e�ω12r12 factor whose exponent ω12 is taken to be the ground state 0.75 value. One can see from Table 5 that the opti-

mum value of ω12 is actually 0.33, but Table 5 shows the energy to be flat with respect to ω12, changing only in the 14th decimal digit as ω12 var-

ies from 0.33 to 0.75. As a sanity check on the use of ω12 =0.75 instead of 0.33, the 5928 term calculation in Table 5 with ω12 =0.75 is repeated

TABLE 3 E-Hy-CI using a “doubled” basis set of exponential factors

Technique Author lmax norbs ξ n0orbs ξ0 ω12 ω0
12 N Energy (hartree)

E-Hy-CI This work 1 13a 5.2424 13 16.93 0.75 0.75 1456 �7.2799 1341 2666 7550 9600 0469

E-Hy-CI This work 3 13b 5.2424 13 16.93 0.75 0.75 2912 �7.2799 1341 2669 3058 1179 4209

E-Hy-CI This work 3 13 5.2424 13 16.93 0.72 0.72 2912 �7.2799 1341 2669 3058 1332 8053

E-Hy-CI This work 3 13 5.2424 13 16.93 0.67 0.67 2912 �7.2799 1341 2669 3058 1783 5666

E-Hy-CI This work 3 13 5.2424 13 16.93 0.622 0.622 2912 �7.2799 1341 2669 3058 1383 4101

E-Hy-CI This work 3 13 5.2424 13 16.93 0.67 0.67 2912 �7.2799 1341 2669 3058 1783 5666

E-Hy-CI This work 3 13 5.2424 13 16.93 0.67 0.65 2912 �7.2799 1341 2669 3058 2045 8391

E-Hy-CI This work 3 13 5.2424 13 16.93 0.67 0.60 2912 �7.2799 1341 2669 3058 2345 7064

E-Hy-CI This work 3 13 5.2424 13 16.93 0.67 0.55 2912 �7.2799 1341 2669 3058 2118 7524

E-Hy-CI This work 3 13 5.2424 13 16.93 0.90 0.60 2912 �7.2799 1341 2669 3058 2409 5021

E-Hy-CI This work 3 13 5.2424 13 16.93 0.80 0.60 2912 �7.2799 1341 2669 3058 2542 0631

E-Hy-CI This work 3 13 5.2424 13 16.93 0.75 0.60 2912 �7.2799 1341 2669 3058 2063 1500

Referencec �7.2799 1341 2669 3059 6491 9459

Note: All energies are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
a13 here represents norbs =13, 13 respectively for l = 0–1.
b13 here and below represents norbs = 13, 13, 13, and 13, respectively for l = 0–3.
cNakatsuji and Nakashima [38].
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with ω12 =0.33, and they agree through 15 decimal digits with the 0.75 term result actually giving the lower energy. The ξ, ξ0, and ω12 values

decrease by about the same factor of 2.2 in going from the ground to first excited state, representative of an electron distribution on average fur-

ther away from the nucleus in an excited state.

The results are tabulated in Table 5. Since the 8568 term result is better than the best previous calculation, the formula of Pekeris and co-

workers [44]:

Eextrapolated ¼ E1þ
E1�E0ð Þ E2�E1ð Þ
2E1�E0�E2

ð18Þ

where the E0, E1 and E2 values are the 6888, 7728 and 8568 term results in Table 5), is used to extrapolate to an estimated exact non-relativistic

energy of this state.

These Table 5 results show dramatic improvements:

1. Hy-CI s-wave 4 decimal place precision becomes 7 decimal place E-Hy-CI s-wave precision (> Hy-CI p-wave precision),

2. Hy-CI p-wave 6 decimal place precision becomes 14 decimal place E-Hy-CI p-wave precision (> Hy-CI l =6 precision),

3. Hy-CI d-wave 10 decimal place precision becomes 14 decimal place E-Hy-CI d-wave precision (> Hy-CI l =6 precision),

4. From here on, convergence gets slower, but already at the E-Hy-CI p-wave expansion, the result is better than the Hy-CI l =6 result.

It is clear from the Table 5 results that the 14 decimal place l =6 Hy-CI result can be improved on with just an l =2 E-Hy-CI basis. Note that

a 16 decimal digit precision E-Hy-CI result has been obtained with just two ξ,ξ0 exponents.

TABLE 4 Comparison of correlated wave function Li+ 1S excited state nonrelativistic energies

State of Li+ Technique Author N Energy (hartree)

2 1S Hy Pekeris [39] 444 �5.0408 7673 10

2 1S ECS Cann and Thakkar [40] 100 �5.0408 7673 13

2 1S Hy-CI Frolov and Ruiz [22] 820 �5.0408 7674 38

2 1S Hy Accad et al. [41] 1078 �5.0408 7674 4

2 1S ECS Thakkar [42] 200 �5.0408 7674 52

3 1S Hy Accad et al. [41] 364 �4.7337 5225 07

3 1S Hy-CI Frolov and Ruiz [22] 820 �4.7337 5581

3 1S ECS Cann and Thakkar [40] 100 �4.7337 5607 78

3 1S ECS Thakkar [42] 200 �4.7337 5613 12

4 1S Hy Accad et al. [41] 364 �4.6297 7505

4 1S Hy Perkins [43] 40 �4.6297 78

4 1S Hy-CI Frolov and Ruiz [22] 820 �4.6297 8349

4 1S ECS Cann and Thakkar [40] 100 �4.6297 8359 73

4 1S ECS Thakkar [42] 200 �4.6297 8363 43

5 1S Hy Accad et al. [41] 364 �4.5824 1415

5 1S Hy-CI Frolov and Ruiz [22] 820 �4.5824 2193

5 1S Hy Perkins [43] 40 �4.5824 24

5 1S ECS Cann and Thakkar [40] 100 �4.5824 2795 27

5 1S ECS Thakkar [42] 200 �4.5824 2799 10

6 1S Hy-CI Frolov and Ruiz [22] 820 �4.5568 7765

6 1S Hy Perkins [43] 46 �4.5569 51

6 1S ECS Cann and Thakkar [40] 100 �4.5569 5317 70

6 1S ECS Thakkar [42] 200 �4.5569 5321 86

Abbreviation: ECS, Exponentially Correlated Slaters.

Note: N is the number of terms in the expansion. All energies are variational.
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5.2 | Li+ 3 1S

The 2 1S state of Li+ demonstrated that both convergence acceleration and an improvement in precision for the same basis without exponential

factors holds for the first excited S state. Here we consider the second excited state of S symmetry, the 3 1S state of Li+. In moving on to higher

and higher excited states of S symmetry, the electron distribution on average is further and further away from the nucleus and more diffuse, so it

is worth examining what effect if any adding an exponential r12 factor has. Table 6 again starts out with the FR [22] 820 term [16s14p13d12f]

wave function, this time with their ξ =1.703409 for the 3 1S state, and extends it to 974 terms [18s15p14d13f]. Optimizing this exponent for

974 terms yielded ξ =1.55 and the 1482 term wave function result with this exponent gives an indication of the limit for a single basis set lmax

=3, s,p,d, f Hy-CI for this state.

Doubling the basis set and optimizing ξ0 takes the (FR) estimated precision from 6 decimal digits to 12 decimal digits. The ξ and ξ0 values

decrease by about the same factor of 1.59 in going from the first to the second excited 1S state, again representative of an electron distribution

further away from the nucleus in an excited state. Optimizing ω12 yields an ω12 that decreases by even more than 1.59, for which we have no

explanation. The results for converting ‘doubled’ basis set Hy-CI wave functions into ‘doubled’ basis set E-Hy-CI wave functions are tabulated in

Table 6 along with an extrapolated result obtained using Equation (18). These results show:

1. Hy-CI s-wave 4 decimal place precision becomes 7 decimal place E-Hy-CI s-wave precision (> Hy-CI p-wave precision),

TABLE 5 Comparison of theoretical E-Hy-CI and Hy-CI energies for the 21S Li+ excited state using a “doubled” basis set of orbitals

Technique Author lmax norbs ξ n0orbs ξ0 ω12 N Energy (hartree)

Hy-CI FR (2010) [22] 3 16a 2.3101 25 820 �5.0408 7674 38

Hy-CI This work 3 18b 2.46 974 �5.0408 7674 5044 9696 1881

Hy-CI This work 3 19c 2.46 1482 �5.0408 7674 5370 5547 1125

E-Hy-CI This work 3 13d 2.46 13 7.77 0.75 2912 �5.0408 7674 5595 4128 6324

E-Hy-CI This work 3 13 2.46 13 7.77 0.50 2912 �5.0408 7674 5595 4287 4604

E-Hy-CI This work 3 13 2.46 13 7.77 0.35 2912 �5.0408 7674 5595 4300 3608

E-Hy-CI This work 3 13 2.46 13 7.77 0.33 2912 �5.0408 7674 5595 4302 5725

E-Hy-CI This work 3 13 2.46 13 7.77 0.30 2912 �5.0408 7674 5595 4300 2471

Hy-CI This work 0 19 2.46 19 7.77 760 �5.0408 2460 4907 4930 4496

E-Hy-CI This work 0 19 2.46 19 7.77 0.75 1520 �5.0408 7673 7965 6733 1416

Hy-CI This work 1 19 2.46 19 7.77 1520 �5.0408 7669 8261 6176 4450

E-Hy-CI This work 1 19 2.46 19 7.77 0.75 3040 �5.0408 7674 5595 4320 3693

Hy-CI This work 2 19 2.46 19 7.77 2280 �5.0408 7674 5538 3484 4326

E-Hy-CI This work 2 19 2.46 19 7.77 0.75 4560 �5.0408 7674 5595 4383 7884

Hy-CI This work 3 18 2.46 18 7.77 2964 �5.0408 7674 5595 3575 7861

E-Hy-CI This work 3 18 2.46 18 7.77 0.33 5928 �5.0408 7674 5595 4386 5314

E-Hy-CI This work 3 18 2.46 18 7.77 0.75 5928 �5.0408 7674 5595 4389 6091

Hy-CI This work 4 15 2.46 15 7.77 3444 �5.0408 7674 5595 4297 3975

E-Hy-CI This work 4 15 2.46 15 7.77 0.75 6888 �5.0408 7674 5595 4391 8347

Hy-CI This work 5 14 2.46 14 7.77 3864 �5.0408 7674 5595 4299 9740

E-Hy-CI This work 5 14 2.46 14 7.77 0.75 7728 �5.0408 7674 5595 4392 7648

Hy-CI This work 6 14 2.46 14 7.77 4284 �5.0408 7674 5595 4301 8911

E-Hy-CI This work 6 14 2.46 14 7.77 0.75 8568 �5.0408 7674 5595 4393 3350

Extrapolated This work 2.46 7.77 0.75 �5.0408 7674 5595 4394(1)

Referencee �5.0408 7674 52

Note: All energies (except extrapolated) are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
a16 here and below represents norbs =16, 14, 13, and 12, respectively for l = 0–3.
b18 here and below represents norbs = 18, 15, 14, and 13, respectively for l = 0–3.
c19 here represents norbs =19, 19, 19, and 18, respectively for l = 0–3.
d13 here represents norbs =13, 13, 13, and 13, respectively for l = 0–3.
eThakkar [42].
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2. Hy-CI p-wave 7 decimal place precision becomes 13 decimal place E-Hy-CI p-wave precision ( > Hy-CI l =5 precision),

3. Hy-CI d-wave 10 decimal place precision becomes 13 decimal place E-Hy-CI d-wave precision ( > Hy-CI l =6 precision),

4. From here on, convergence gets slower, but already at the E-Hy-CI p-wave expansion, the result is better than the Hy-CI l = 5

result.

These results show that the 14 decimal place l =6 Hy-CI result can be improved on with just an l =2 E-Hy-CI basis. Note that a 15 decimal digit

precision E-Hy-CI result (almost as good as the 16 decimal digit 2 1S) has been obtained with just two ξ,ξ0 exponents.

5.3 | Li+ 4 1S

Table 7 gives the results for optimizing ξ, ξ0 and ω12 to 1.0586, 2.103 and 0.125, respectively, as well as the 1482 term result which is intended to

give an indication of the limit for a single basis set lmax =3, s,p,d, f Hy-CI for this state. Table 7 also explores the effect of converting ‘doubled’
basis set Hy-CI wave functions into ‘doubled’ basis set E-Hy-CI wave functions and includes an extrapolated result obtained using Equation (18).

These results show:

1. Hy-CI s-wave 4 decimal place precision becomes 8 decimal place E-Hy-CI s-wave precision ( > Hy-CI p-wave precision),

2. Hy-CI p-wave 8 decimal place precision becomes 11 decimal place E-Hy-CI p-wave precision ( > Hy-CI l =6 precision),

3. Hy-CI d-wave 10 decimal place precision becomes 11 decimal place E-Hy-CI d-wave precision ( > Hy-CI l =6 precision).

4. From here on, Hy-CI convergence gets slower, but already at the E-Hy-CI p-wave expansion, the result is almost as good as the Hy-CI l =6

result, and the E-Hy-CI result continues to become more precise.

These results show that the 10 decimal place l =6 Hy-CI result can be improved on with just an l =1 E-Hy-CI basis. Note that a result of 16 deci-

mal digit precision has been obtained with just two ξ,ξ0 exponents.

TABLE 6 Comparison of theoretical E-Hy-CI and Hy-CI energies for the 31S Li+ excited state using a “doubled” basis set of orbitals

Technique Author lmax norbs ξ n0orbs ξ0 ω12 N Energy (hartree)

Hy-CI FR (2010) [22] 3 16a 1.7034 09 820 �4.7337 5581

Hy-CI This work 3 18b 1.55 974 �4.7337 5612 9039 6601 1607

Hy-CI This work 3 19c 1.55 1482 �4.7337 5613 0146 6871 3462

Hy-CI This work 0 19 1.55 19 4.89 760 �4.7337 4189 7343 8298 2686

E-Hy-CI This work 0 19 1.55 19 4.89 0.1165 1520 �4.7337 5612 4622 9742 7653

Hy-CI This work 1 19 1.55 19 4.89 1520 �4.7337 5612 1061 5465 0694

E-Hy-CI This work 1 19 1.55 19 4.89 0.1165 3040 �4.7337 5613 2647 7113 3880

Hy-CI This work 2 19 1.55 19 4.89 2280 �4.7337 5613 2635 4770 5599

E-Hy-CI This work 2 19 1.55 19 4.89 0.1165 4560 �4.7337 5613 2647 7432 3919

Hy-CI This work 3 18 1.55 18 4.89 2964 �4.7337 5613 2647 6273 6497

E-Hy-CI This work 3 18 1.55 18 4.89 0.1165 5928 �4.7337 5613 2647 7493 9610

Hy-CI This work 4 15 1.55 15 4.89 3444 �4.7337 5613 2647 6438 7317

E-Hy-CI This work 4 15 1.55 15 4.89 0.1165 6888 �4.7337 5613 2647 7533 6627

Hy-CI This work 5 14 1.55 14 4.89 3864 �4.7337 5613 2647 6456 6611

E-Hy-CI This work 5 14 1.55 14 4.89 0.1165 7728 �4.7337 5613 2647 7545 8921

Hy-CI This work 6 14 1.55 14 4.89 4284 �4.7337 5613 2647 6476 7372

E-Hy-CI This work 6 14 1.55 14 4.89 0.1165 8568 �4.7337 5613 2647 7554 9793

Extrapolated This work 1.55 4.89 0.1165 �4.7337 5613 2647 758(3)

Referenced �4.7337 5613 12

Note: All energies (except extrapolated) are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
a16 here represents norbs =16, 14, 13, and 12, respectively for l = 0–3.
b18 here and below represents norbs = 18, 15, 14, and 13, respectively for l = 0–3.
c19 here represents norbs =19, 19, 19, and 18, respectively for l = 0–3.
dThakkar [42].
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5.4 | Li+ 5 1S

Table 8 gives the results for optimizing ξ, ξ0 and ω12 to 0.832, 1.35 and 0.039, respectively, as well as the 1482 term result which is intended to

give an indication of the limit for a single basis set lmax =3, s,p,d, f Hy-CI for this state. Table 8 also explores the effect of converting ‘doubled’
basis set Hy-CI wave functions into ‘doubled’ basis set E-Hy-CI wave functions and includes an extrapolated result obtained using Equation (18).

In the table both the optimized value for ω12, 0.039, and the 4 1S value of 0.125 are included for l =0, 1 and 2 (N = 1520, 3040, and 4560) and in

each case the 4 1S value of 0.125 gives a better energy, so ω12 =0.125 is chosen for 5 and higher 1S states. These results show:

1. Hy-CI s-wave 5 decimal place precision becomes 8 decimal place E-Hy-CI s-wave precision ( > Hy-CI p-wave precision),

2. Hy-CI p-wave 8 decimal place precision becomes 10 decimal place E-Hy-CI p-wave precision ( > Hy-CI l =6 precision),

3. From here on, convergence gets slower, but already at the E-Hy-CI d-wave expansion, the result is almost as good as the Hy-CI l = 6

result.

These results show that the l =6 Hy-CI result can be improved on with just an l =1 E-Hy-CI basis. Note that a result of 11 decimal digit precision

can be obtained with two ξ,ξ0 exponents.

5.5 | Li+ 6 1S

Table 9 starts out with the FR [22] 820 term [16s14p13d12f] wave function with ξ =0.6917 01 and the 974 term [18s15p14d13f] wave function

with 974 term optimized exponent ξ =0.729. Then follows the 1482 term wave function result with this exponent which gives an indication of

the limit for a single basis set lmax =3, s,p,d, f Hy-CI for this state. The rest of the table explores the effect of converting “doubled” basis set Hy-CI

wave functions into “doubled” basis set E-Hy-CI wave functions and includes an extrapolated result obtained using Equation (18). These

results show:

TABLE 7 Comparison of theoretical E-Hy-CI and Hy-CI energies for the 41S Li+ excited state using a “doubled” basis set of orbitals

Technique Author lmax norbs ξ n0orbs ξ0 ω12 N Energy (hartree)

Hy-CI FR (2010) [22] 3 16a 0.9784 34 820 �4.6297 8349

Hy-CI This work 3 18b 1.0586 974 �4.6297 8360 9059 5590 0765

Hy-CI This work 3 19c 1.0586 1482 �4.6297 8362 6796 8672 5058

Hy-CI This work 0 19 1.0586 19 2.103 760 �4.6297 7781 3269 1200 8701

E-Hy-CI This work 0 19 1.0586 19 2.103 0.125 1520 �4.6297 8363 4616 1219 3287

Hy-CI This work 1 19 1.0586 19 2.103 1520 �4.6297 8363 3125 2370 6566

E-Hy-CI This work 1 19 1.0586 19 2.103 0.125 3040 �4.6297 8363 7871 7957 5015

Hy-CI This work 2 19 1.0586 19 2.103 2280 �4.6297 8363 7857 0586 6931

E-Hy-CI This work 2 19 1.0586 19 2.103 0.125 4560 �4.6297 8363 7874 9632 4191

Hy-CI This work 3 18 1.0586 18 2.103 2964 �4.6297 8363 7864 1691 2919

E-Hy-CI This work 3 18 1.0586 18 2.103 0.125 5928 �4.6297 8363 7876 3953 0948

Hy-CI This work 4 15 1.0586 15 2.103 3444 �4.6297 8363 7864 5988 6374

E-Hy-CI This work 4 15 1.0586 15 2.103 0.125 6888 �4.6297 8363 7876 7620 1923

Hy-CI This work 5 14 1.0586 14 2.103 3864 �4.6297 8363 7865 1846 1588

E-Hy-CI This work 5 14 1.0586 14 2.103 0.125 7728 �4.6297 8363 7876 9655 0767

Hy-CI This work 6 14 1.0586 14 2.103 4284 �4.6297 8383 7865 5159 9007

E-Hy-CI This work 6 14 1.0586 14 2.103 0.125 8568 �4.6297 8363 7876 9730 9637

Extrapolated This work 1.0586 2.103 0.125 �4.6297 8363 7876 9734(3)

Referenced �4.6297 8363 43

Note: All energies (except extrapolated) are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
a16 here represents norbs =16, 14, 13, and 12, respectively for l = 0–3.
b18 here and below represents norbs = 18, 15, 14, and 13, respectively for l = 0–3.
c19 here represents norbs =19, 19, 19, and 18, respectively for l = 0–3.
dThakkar [42].
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1. Hy-CI s-wave 5 decimal place precision becomes 6 decimal place E-Hy-CI s-wave precision.

2. Hy-CI p-wave 6 decimal place precision becomes 7 decimal place E-Hy-CI p-wave precision ( > Hy-CI h-wave precision),

3. Hy-CI d-wave 6 decimal place precision becomes 9 decimal place E-Hy-CI d-wave precision ( > Hy-CI l =6 precision),

4. From here on, convergence gets slower, but already at the E-Hy-CI d-wave expansion, the result is better than the Hy-CI l =6 result.

These results show that the 8 decimal place l =6 Hy-CI result can be improved on with just an l =2 E-Hy-CI basis. Note that a results of 10 deci-

mal digit precision can be obtained with just two ξ,ξ0 exponents.

6 | CONCLUSION

Table 10 summarizes our results along with the best previous correlated wave function method calculations employing STOs. The renewed

interest in these methods is coming from the incredible accuracy of experiments these days, which necessitates the use of correlated wave

functions to do as well or better theoretically. Of these methods Hy-CI and E-Hy-CI stand alone because their formalism with at most a single

r
νij
ij e

�ωij rij factor per term (ωij =0 for Hy-CI) leads to solvable integrals for N > 4 electrons and hence does not limit the methods to systems with

N ≤ 4.

TABLE 8 Comparison of theoretical E-Hy-CI and Hy-CI energies for the 51S Li+ excited state using a “doubled” basis set of orbitals

Technique Author lmax norbs ξ n0orbs ξ0 ω12 N Energy (hartree)

Hy-CI FR (2010) [22] 3 16a 0.8910 26 820 �4.5824 2193

Hy-CI This work 3 18b 0.8532 974 �4.5824 2760 0574 4199 1556

Hy-CI This work 3 19c 0.8532 1482 �4.5824 2792 3044 9567 7158

E-Hy-CI This work 3 13d 0.8532 13 1.35 0.125 2912 �4.5824 2798 6509 4044 7702

E-Hy-CI This work 3 13 0.8532 13 1.35 0.039 2912 �4.5824 2798 9025 0683 2748

E-Hy-CI This work 3 13 0.8532 13 1.35 0.010 2912 �4.5824 2798 8844 0602 4140

Hy-CI This work 0 19 0.8532 19 1.35 760 �4.5824 2503 4776 5722 3871

E-Hy-CI This work 0 19 0.8532 19 1.35 0.039 1520 �4.5824 2799 0962 6431 2460

E-Hy-CI This work 0 19 0.8532 19 1.35 0.125 1520 �4.5824 2799 1492 9360 6528

Hy-CI This work 1 19 0.8532 19 1.35 1520 �4.5824 2799 0919 0871 7327

E-Hy-CI This work 1 19 0.8532 19 1.35 0.039 3040 �4.5824 2799 3780 4629 7365

E-Hy-CI This work 1 19 0.8532 19 1.35 0.125 3040 �4.5824 2799 3801 7657 8376

Hy-CI This work 2 19 0.8532 19 1.35 2280 �4.5824 2799 3584 6669 2392

E-Hy-CI This work 2 19 0.8532 19 1.35 0.039 4560 �4.5824 2799 3832 5468 7460

E-Hy-CI This work 2 19 0.8532 19 1.35 0.125 4560 �4.5824 2799 3844 9820 8253

Hy-CI This work 3 18 0.8532 18 1.35 2964 �4.5824 2799 3713 5868 4696

E-Hy-CI This work 3 18 0.8532 18 1.35 0.125 5928 �4.5824 2799 3858 3683 8602

Hy-CI This work 4 15 0.8532 15 1.35 3444 �4.5824 2799 3725 0432 3580

E-Hy-CI This work 4 15 0.8532 15 1.35 0.125 6888 �4.5824 2799 3864 6188 0634

Hy-CI This work 5 14 0.8532 14 1.35 3864 �4.5824 2799 3727 2825 0421

E-Hy-CI This work 5 14 0.8532 14 1.35 0.125 7728 �4.5824 2799 3865 1089 6521

Hy-CI This work 6 14 0.8532 14 1.35 4284 �4.5824 2799 3738 9437 6777

E-Hy-CI This work 6 14 0.8532 14 1.35 0.125 8568 �4.5824 2799 3866 1321 6656

Extrapolated This work 0.8532 1.35 �4.5824 2799 3869(3)

Referencee �4.5824 2799 10

Note: All energies (except extrapolated) are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
a16 here represents norbs =16, 14, 13, and 12, respectively for l = 0–3.
b18 here and below represents norbs = 18, 15, 14, and 13, respectively for l = 0–3.
c19 here represents norbs =19, 19, 19, and 18, respectively for l = 0–3.
d13 here and below represents norbs = 13, 13, 13, and 13, respectively for l = 0–3.
eThakkar [42].
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TABLE 9 Comparison of theoretical E-Hy-CI and Hy-CI energies for the 61S Li+ excited state using a “doubled” basis set of orbitals

Technique Author lmax norbs ξ n0orbs ξ0 ω12 N Energy (hartree)

Hy-CI FR (2010) [22] 3 16a 0.6917 01 820 �4.5568 7765

Hy-CI This work 3 18b 0.729 974 �4.5569 4089 3519 2714 5155

Hy-CI This work 3 19c 0.729 1482 �4.5569 5179 6694 9568 1369

Hy-CI This work 0 19 0.729 19 1.10 760 �4.5569 5109 4698 7315 5977

E-Hy-CI This work 0 19 0.729 19 1.10 0.125 1520 �4.5569 5311 5172 0210 9381

Hy-CI This work 1 19 0.729 19 1.10 1520 �4.5569 5316 2963 8092 8612

E-Hy-CI This work 1 19 0.729 19 1.10 0.125 3040 �4.5569 5321 9255 6118 4070

Hy-CI This work 2 19 0.729 19 1.10 2280 �4.5569 5318 8286 0171 5336

E-Hy-CI This work 2 19 0.729 19 1.10 0.125 4560 �4.5569 5322 3557 4262 9478

Hy-CI This work 3 18 0.729 18 1.10 2964 �4.5569 5321 5600 5527 5954

E-Hy-CI This work 3 18 0.729 18 1.10 0.125 5928 �4.5569 5322 3803 0398 5848

Hy-CI This work 4 15 0.729 15 1.10 3444 �4.5569 5321 7738 1366 5240

E-Hy-CI This work 4 15 0.729 15 1.10 0.125 6888 �4.5569 5322 3847 1581 0275

Hy-CI This work 5 14 0.729 14 1.10 3864 �4.5569 5321 9105 3404 9757

E-Hy-CI This work 5 14 0.729 14 1.10 0.125 7728 �4.5569 5322 3860 6173 3418

Hy-CI This work 6 14 0.729 14 1.10 4284 �4.5569 5322 0363 5865 1121

E-Hy-CI This work 6 14 0.729 14 1.10 0.125 8568 �4.5569 5322 3871 2813 8893

Extrapolated This work 0.729 1.10 0.125 �4.5569 5322 391(4)

Referenced �4.5569 5321 86

Note: All energies (except Extrapolated) are variational; all calculations were done in quadruple-double-with exponent (QDE) precision.
a16 here represents norbs =16, 14, 13, and 12, respectively for l = 0–3.
b18 here represents norbs =18, 15, 14, and 13, respectively for l = 0–3.
c19 here represents norbs =19, 19, 19, and 18, respectively for l = 0–3.
dThakkar [42].

TABLE 10 Comparison of correlated wave function Li+ 1S excited state nonrelativistic energies

State of Li+ Technique Author N Energy (hartree)

2 1S Hy Accad et al. [41] 1078 �5.0408 7674 4

2 1S Hy-CI Frolov and Ruiz [22] 820 �5.0408 7674 38

2 1S ECS Thakkar [42] 200 �5.0408 7674 52

2 1S E-Hy-CI This work 8568 �5.0408 7674 5595 4393

2 1S Extrapolated This work �5.0408 7674 5595 4394(1)

3 1S Hy Accad et al. [41] 364 �4.7337 5225 07

3 1S Hy-CI Frolov and Ruiz [22] 820 �4.7337 5581

3 1S ECS Thakkar [42] 200 �4.7337 5613 12

3 1S E-Hy-CI This work 8568 �4.7337 5613 2647 7555

3 1S Extrapolated This work �4.7337 5613 2647 758(3)

4 1S Hy Perkins [43] 40 �4.6297 78

4 1S Hy-CI Frolov and Ruiz [22] 820 �4.6297 8349

4 1S ECS Thakkar [42] 200 �4.6297 8363 43

4 1S E-Hy-CI This work 8568 �4.6297 8363 7876 9731

4 1S Extrapolated This work �4.6297 8363 7876 9734(3)

5 1S Hy-CI Frolov and Ruiz [22] 820 �4.5824 2193

5 1S Hy Perkins [43] 40 �4.5824 24

5 1S ECS Thakkar [42] 200 �4.5824 2799 10

5 1S E-Hy-CI This work 8568 �4.5824 2799 3866 1322

(Continues)

SIMS ET AL. 13 of 15



Paper I of this series demonstrated that Hy-CI and E-Hy-CI are capable of greater than 20 digit accuracy for the ground state of helium, and

Hy-CI has been utilized to produce high precision results for not only ground states but excited states as well for two-, three-, and four-electron

atoms and ions. Convergence acceleration was also demonstrated in paper I for the ground state of helium by comparing the convergence of the

E-Hy-CI wave function expansion to that of the Hy-CI wave function without exponential factors. In this paper the same analysis has been

extended to excited states of 1S symmetry by examining excited states of the Li+ ion, and it has been shown that an l =6 Hy-CI result can be

improved on with just an l =2 E-Hy-CI basis for most states, (l =3 for the ground state in the worst case and l =1 for the 6 1S state). Ultimately

the E-Hy-CI convergence resembles that of Hy-CI, but as pointed out in paper I it is the very dramatic convergence improvements of s-, p-, d- and

f-wave E-Hy-CI expansions compared to the Hy-CI l-wave expansions that is important, because it offers a way of overcoming the ultimately slow

convergence of “the r12r34” double cusp, analogous to the r12 cusp problem for CI, that arises for N ≥ 4 electron systems. This makes the applica-

tion of the E-Hy-CI method to systems with N>4 worthy of investigation.
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ENDNOTES
1 In paper I of this series [7] this was attributed to Handy [8]. We thank an anonymous referee for pointing out that Bunge had pointed this out 3 years

earlier than Handy.
2 For our previous study, paper I in this series, see Sims et al. [7].
3 In their paper Wang et al. [16] refer to this as extended Hy-CI. The authors of this paper prefer exponentially correlated Hy-CI since there is more than

one way Hy-CI could be extended and exponentially correlated makes clear that the extension is an exponential rij factor.
4 For a review of both Hy-CI and E-Hy-CI, see Ruiz et al. [23].
5 There is a misprint in section 3 of our recent study. Equation 18 there should be the same as Equation 16 above, but is missing the L,M projection

operator.
6 For a good review, see Drake [36], where Drake says that “doubling” the basis set leads to a dramatic improvement in precision and points out that they

are closely related to the “double zeta” basis sets widely used since some of the earliest CI calculations [37].
7 The basis set notation here is the same as in the tables, that is, 16s means 16 s orbitals, 14p means 14 p orbitals, and so forth. Since our STOs run from n

= l + 1 to l + norbs, [16s14p13d12f] could also be written as 1:16s 2:15p 3:15d 4:15f.
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TABLE 10 (Continued)

State of Li+ Technique Author N Energy (hartree)

5 1S Extrapolated This work �4.5824 2799 3869(3)

6 1S Hy-CI Frolov and Ruiz [22] 820 �4.5568 7765

6 1S Hy Perkins [43] 46 �4.5569 51

6 1S ECS Thakkar [42] 200 �4.5569 5321 86

6 1S E-Hy-CI This work 8568 �4.5569 5322 3871 2814

6 1S Extrapolated This work �4.5569 5322 391(4)

Abbreviation: ECS, Exponentially Correlated Slaters.

Note: N is the number of terms in the expansion. All energies (except extrapolated) are variational.
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