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Foreword 

In the early 2000s, the IETF formed the Secure Inter-Domain Routing (SIDR) working group 
which was tasked with developing a security model for the Border Gateway Protocol (BGP) 
with the intent to eliminate or reduce the rate of successful BGP hijacks and other attacks 
against the core routing infrastructure. The result was the development of a two-stage security 
approach, one based on the prefix (IP address range) origination of an autonomous system’s 
(AS) announcement and the other one dealing with the validation of the path such an 
announcement traversed on. The first stage is called the Resource Public Key Infrastructure 
(RPKI) and has been in its deployment stage since early 2013 and the second one is called 
BGPsec and includes a modification to the BGP specification RFC 4721. BGPsec became an 
RFC standard in late 2017. During that time, NIST actively participated in the development of 
the necessary RFCs and developed in parallel a reference implementation that addresses both 
tiers of the developed security model. 

Abstract 

In this paper, we first describe the problem space. Following that, we describe the design and 
implementation of the NIST reference implementation for RPKI-based route origin validation 
(BGP-OV) and BGPsec path validation (BGP-PV) within a BGP router. The system we 
developed is called BGP Secure Routing Extension (BGP-SRx).  

We describe the system design, explain the design choices, describe communications between 
all components, and present the performance measurements obtained during the 
implementation stages. This paper is organized so that it first explains the high-level system 
design with a brief explanation of all components and how they interact. We will explain why 
we chose this design and provide a discussion of its benefits as well as shortcomings. 
Furthermore, we show which open-source components we chose and how we extended them 
for this project.  

The BGP-SRx implementation is a reference implementation for BGP-OV with all its router 
side components as specified in RFC 6811, RFC 6810, and RFC 8210 as well as for BGPsec 
path validation as specified in RFC 8205 and RFC 8608. The implementation allowed early 
identification of issues while the specifications were still under development, hence provided 
important feedback to the development of the different IETF RFCs. 

Key words 

Border Gateway Protocol (BGP) security, BGP origin validation (BGP-OV), BGP path 
validation (BGP-PV), BGPsec, Internet infrastructure security, Resource Public Key 
Infrastructure (RPKI), Routing security, and robustness.  
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Glossary 

 

AFRINIC The Regional Internet Registry for Africa. AFRINIC is responsible for the 
allocation and management of Internet numbers according to their community-
backed policy.   

APNIC The Regional Internet Registry for the Asia Pacific region that allocates and 
registers Internet resources in its region. 

ARIN The American Registry for Internet Numbers for Canada, the United States of 
America, and many Caribbean and North Atlantic Islands. 

AS An Autonomous System specifies a network, mostly an organization that can 
own or announce network addresses to the Internet. 

BGP The Border Gateway Protocol is a protocol designed by the Internet 
Engineering Task Force (IETF) to exchange routing information between 
autonomous systems. 

BGPsec Security extension to the BGP protocol. It allows to digitally sign path 
information that can be independently verified and therefore eliminate the 
possibility to alter path information without notice. 

BGP-PV BGP Path Validation specifies a mechanism described in RFC 8205 that allows 
verifying a path an UPDATE traversed by verifying the validity of the 
signatures over the relevant data. 

BGP-OV BGP Origin Validation specifies a mechanism described in RFC 6811 where a 
BGP router can verify if a particular prefix was allowed to be announced by the 
route's originator. 

BGP-SRx BGP Secure Routing Extension consisting of multiple software modules that 
implement Route Origin Validation as well as BGPsec Path Validation. 

BIO BGPsec Input-Output (BIO) enables the generation and storage of pre-
computed reproducible BGPsec traffic for testing purposes.  

IETF The Internet Engineering Task Force is the premier Internet standards body that 
develops open Internet standards. 

LACNIC The Internet Address Registry for Latin America and the Caribbean, 
responsible for assigning and managing Internet number resources for their 
region. 

RFC A Request For Comments is a formal standards-track document developed in 
working groups within the Internet Engineering Task Force (IETF). 

RIPE NCC Regional Internet Registry for Europe, the Middle East, and parts of Central 
Asia that allocates and registers blocks of Internet number resources to Internet 
service providers (ISPs) and other organizations. 
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ROA A Route Origin Attestation is a cryptographically verifiable attestation that a 
given Internet prefix can be announced by an AS listed within the attestation. 

RPKI The Resource Public Key Infrastructure is a framework aimed to secure the 
Internet’s routing infrastructure, in particular the routing information such as 
the IP address prefix and Originator mapping embedded in the BGP protocol. 
It provides certificates that are used to verify if the originating AS is permitted 
to publish the embedded IP address prefix(es). 

RVC RPKI Validation Cache provides Validated ROA Payload (VRP) and public 
router keys. 

VRP Validated ROA Payload contains {prefix, max length, origin AS} information 
from an X.509 validated ROA. 

 

K Kilo as Measuring Unit 103 = 1 000 

KiB Kibi Byte,  Measuring Unit 210 Bytes = 1 024 Bytes 

MiB Mebi Byte,  Measuring Unit 220 Bytes = 1 048 576 Bytes 

GiB Gibi Byte,  Measuring Unit 230 Bytes = 1 073 741 824 Bytes 
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 Introduction 

The Border Gateway Protocol (BGP), specified in RFC 4271 [7], is often called the glue that 
holds the Internet together. It is used by BGP speaking systems called Autonomous Systems 
(AS) to exchange network reachability information. This information contains the Internet 
Protocol (IP) address range called IP prefix and the path the information traversed from the 
prefix originator to the receiver. The problem with BGP is that it was designed without any 
form of security in mind. Each AS can announce any prefix regardless of if it has reachability 
to the prefix or not. Bad BGP announcements that steal traffic away from the intended 
destination are called prefix hijacks. Often these hijacks are due to operator errors and 
misconfigurations but increasingly these announcements are malicious with the intent to either 
disrupt connectivity, redirect traffic to allow eavesdropping, etc. Because of this and other BGP 
vulnerabilities, the Internet Engineering Task Force (IETF) chartered [8] in 2006 the Secure 
Inter-Domain Routing Working Group (SIDR WG) with the single purpose to reduce 
vulnerabilities in the inter-domain routing system. Two main security principles were 
identified to be addressed within the SIDR WG:  

• Is an Autonomous System authorized to originate an IP prefix? 

• Is the AS path represented in the route the same as the path through which the prefix 
traveled?  

The first one seeks to address prefix hijacking and subprefix hijacking, where an organization 
or hostile actor erroneously announces that a certain prefix or subprefix is reachable through 
their network. The result of such a hijack can range from increased latency to a total loss of 
connectivity. The second principle concerns the path the update traversed. By removing AS 
numbers from the path, the total AS path length can be reduced, and therefore the possibility 
that the modified path may be chosen over another legitimate path is increased. Using this 
technique an attacker can redirect traffic to go through the attacker's network which gives the 
attacker the possibility to inspect the traffic and extract valuable information.  

During the lifetime of the working group, a set of standard documents were developed which 
do address these two vulnerabilities – prefix hijacking and path manipulation. During this time, 
NIST started developing reference implementations of these standards to identify possible 
issues and provide the learnings back to the standards body.  

In this paper, we describe the design and development of the NIST reference implementation 
for Resource Public Key Infrastructure (RPKI) origin validation that addresses the prefix 
origination problem space and BGPsec path validation. BGPsec is specified in RFC 8205 [5] 
and addresses the second part of the problem space. The system NIST developed is called BGP 
Secure Routing Extension (BGP-SRx).  

Furthermore, we describe the system design, explain the design choices, communications 
between all components, and present the performance measurements done during the 
implementation stages. This paper is organized such that it first explains the high-level system 
design with a brief explanation of all components and how they interact. We will explain why 
we chose this design with its benefits as well as shortcomings.  
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Additionally, we show which open-source components we chose and how we extended them 
for this project. The BGP-SRx implementation is a reference implementation for BGP origin 
validation with all its router side components as specified in RFC 6811 [1], RFC 6810 [2], and 
RFC 8210 [4] as well as for BGPsec path validation as specified in RFC 8205 [5], RFC 
8608 [6]. The implementation allowed early identification of issues while the specifications 
were still under development, hence provided important feedback to the development of the 
different IETF RFCs. 

 System Design and Requirements 

After some study of the different BGP router platforms, we decided to base the reference 
implementation on Quagga 0.99.22 [11], an open-source router platform. In parallel, another 
group of researchers participating in the IETF standards development for BGPsec path 
validation (BGP-PV) chose to extend the BIRD Internet routing daemon [12], to independently 
incorporate BGP origin validation (BGP-OV) and BGPsec path validation[13].  

The overall system is split into four main BGP-SRx components: 

These BGP-SRx components are: 

(1) The Quagga based BGP/BGPsec router (QuaggaSRx or QSRx) 

(2) The SRx-Server validation engine (SRx-Server or SRxSnP) 

(3) The SRx Crypto API (SCA) for BGPsec path validation and signing  

(4) A BGP/BGPsec capable traffic generator that allows us to generate large loads of fully 
signed multi-hop BGPsec traffic.  

Additionally, we developed an RPKI Validation Cache (RVC) Test Harness that simulates the 
functions of a real-life RVC. This implementation allows to script test objects that contain 
ROA and BGPsec Key information that are then send to the client using the RPKI to router  
protocol [4].   

In this paper, we concentrate on the four BGP-SRx components, namely, the BGP/BGPsec 
router, the SRx-Server, SRx Crypto API, and the BGPsec Traffic Generator (e.g. BGPsec IO 
or BIO). The additional test harness is briefly discussed in the Appendix. 

The most important design decision for BGP-SRx was to outsource the Resource Public Key 
Infrastructure (RPKI) and BGPsec related processing from the router. This provides us with 
the following set of advantages: 

• Router modifications are reduced to a minimum. 

• Less effort when replacing the underlying router platform. 

• Sharing of route validation results within multiple router instances. 

• The workload of validation and maintaining state is removed from the router. 
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To accomplish this task, we first identified the minimum functional requirements for the router.  

• The router needs to provide a mechanism (configuration, policies) to make use of 
the BGP-OV results as well as BGP-PV results.  

• For BGPsec, the router needs to be able to parse the BGPsec path attribute as 
specified in RFC 8205 to detect syntactical errors. 

 

 
 
Figure 1 – BGP-SRx System Design 
 

As shown in Figure 1, the RPKI Validation Cache (RVC) retrieves the certificates as well as 
BGPsec router keys from the Trust Anchor (TA) using RSYNC [14] or the RPKI Repository 
Delta Protocol (RRDP) as specified in RFC 8182 [15]. The most common TAs consist of the 
five regional registries, ARIN [16], RIPE [17], APNIC [18], LACNIC [19], and 
AFRINIC [20]. Once the RVC receives all RPKI certificates, it validates them and extracts the 
“Validated ROA Payload” (VRP). This payload will be sent to all registered router clients 
using the router to cache protocol (RPKI/RTR Prot.) as specified in RFC 6810 and RFC 8210. 

The SRx-Server communicates with the RPKI validation cache via the router to cache protocol 
as specified in RFC 6810 (version 0) and RFC 8210 (version 1). Version 1 of the protocol is 
required to receive the BGPsec public router keys.  

iBGP

RFC 6810/8210 RPKI
Valida5on

Cache

Trust 
Anchor

Trust 
Anchor

Trust 
Anchor

Autonomous 
System

eBGP

SCA
SCA

SCA

SCA

SRx 
Server

SRx Server Prot.
BGP / BGPsec

RPKI/RTR Prot.
RSYNC

SCA embedded

SCA op<onal



 
 

4 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

The BGP/BGPsec router communicates with the SRx-Server using the proprietary 
SRx-Server-Protocol [21]. To reduce the burden on the router, the SRx-Server provides an 
SRx-Proxy API which functions as a wrapper for bi-directional communication with the router. 
The SRx-Server provides both, BGPsec path validation (BGP-PV) and BGP origin validation 
(BGP-OV). The SRx-Server monitors changes within the RPKI and determines the effect on 
the validation result of prefix origin pairs and BGPsec secure path segments. Once a change in 
validation result is identified, the SRx-Server sends a notification to all routers registered with 
each affected update. 

Furthermore, the system provides the SRxCryptoAPI (SCA) that introduces a high degree of 
flexibility regarding BGPsec cryptography. Since version 5.0, The BGP-SRx framework 
moved all BGPsec path processing into the SCA. The SCA functions as a wrapper for BGPsec 
algorithm implementations as well as a storage for public and private keys1. SCA is embedded 
in both the QuaggaSRx as well as the SRx-Server. SCA allows the handling of private router 
keys for QuaggaSRx locally for path signing and the processing-intensive validation for the 
SRx-Server. This removes the router's burden of handling thousands of expected public router 
keys. The number of public keys can range from one per Autonomous System (AS), of which 
there are currently approximately 70 000, to one key per router with tens of routers per AS 
which would easily exceed a million keys.  

As shown in Figure 2, the SRx Server can run on the router platform, centralized within the 
organization, or on the same platform as the RPKI Validating Cache. 

 
Figure 2 – Deployment options of SRx Server 
 

  

 
1 The SCA provides a simple non-side-channel-attack-safe key storage which can be replaced with any linked custom algorithm plugin. 
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2.1. BGP-SRx Test Framework 
The BGP-SRx framework as shown in Figure 3 provides a set of test utilities such as a simple 
test harness that allows feeding RPKI objects to the router and a highly complex BGP / BGPsec 
traffic generator called ‘BGPsec-IO (BIO)’ that allows generating BGP-4 and BGPsec 
UPDATEs. These UPDATEs will be sent to a BGPsec speaker or passed to an SCA crypto 
module for BGPsec cryptographic performance testing. The test framework includes RPKI 
origin validation signaling as specified in RFC 8097 [3] as well as a reference implementation 
of RFC 8654 [10] with extended message support for BGP. BIO allows to pre-compute 
reproducible BGPsec traffic and stores it for later testing. This is especially useful for live 
BGPsec UPDATE traffic which is sent to routers to test their convergence times. In addition, 
these stored UPDATEs can also be used to feed into the SCA to allow reproducible tests for 
module implementations configured within the SRxCryptoAPI cryptography engine. 

 
Figure 3 – NIST BGP-SRx Software Suite Test Setup 
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 BGP-SRx Specific Validation States 
We found it important to allow to identify situations where UPDATEs are not yet validated, 
or not enough data was available to validate – the latter case could be during synchronization 
with the RVC or if no RVC is available2. RFC 6811 which is used for BGP-OV does provide 
three validation states: Valid (V), Invalid (I), and Not-Found (N) and urges implementers to 
assign Not-Found to updates that were not validated: 

“If validation is not performed on a Route, the implementation SHOULD 
initialize the validation state of such a route to "NotFound"”.  
 
RFC 8205 specifies two validation states: Valid (V) and Not Valid which we will refer to as 
Invalid (I) going forward. To allow identifying the situation where validation is not performed 
or not complete, we deemed it important to add Undefined using the symbol (?) as an additional 
validation state. This additional state implies that no validation was performed [22][23]. One 
possible reason could be that no connection to the validation engine could be established and 
therefore no validation could be performed. Another reason could be that not enough data was 
available to perform a validation, which could happen if the synchronization between SRx-
Server and RVC did not complete yet or the communication between the QuaggaSRx router 
and the SRx-Server could not be established. Therefore, we believe it is important to allow 
acknowledging when no validation is performed with a state of “undefined/unverified” in both 
BGP-PV and BGP-OV validations. 

2.2. Outsourcing Route Origin Validation and BGPsec Path Validation 
As mentioned earlier, the validation for BGP-OV and BGP-PV is implemented by the BGP-
SRx’s SRx-Server. Detaching this validation from the router implementation not only relieves 
the router from performing additional work for the maintenance and validation of routes but 
also allows being more flexible in the selection of the underlying routing platform. This allows 
us to select additional routing platforms and extend them to be BGP-OV and BGP-PV capable.   

Performing RVC lookups and handling failovers and how they affect the validation will 
become a significant issue (especially regarding RPKI maintenance) as the amount of data 
within the RPKI increases. This is even more of an issue regarding BGP-PV, as here RPKI not 
only provides ROA VRPs but also public router keys.  Changes in the inventory of public keys 
through expiration, addition, key rollovers, etc. do have an immediate effect on routes. 
Signatures that previously passed validation might become invalid or vice versa. For each 
update, there is not only one data tuple [prefix, origin] to monitor. In BGP-PV, each path 
segment has to be monitored. With hundreds of thousands of keys, this can become a 
significant load increase on routers that could be dealt with in separate modules. Providing an 
external API that can be configured to use cryptographic plugins, allows to easily exchange 
BGP-PV crypto algorithms without the need of recompiling all the code. Further detailed 
information will be presented in Section 4.5.2 of this document. 

The other important advantage of outsourcing BGP-OV and BGP-PV is monitoring 
modifications within the RPKI. Monitoring changes in BGP-OV are less costly than 
monitoring changes in BGP-PV. The current Routing Information Base (RIB), also called 
routing table, consists of approximately 1.1 million prefix origin pairs (IPv4 and IPv6 
combined)[37][38]. Finding the correct prefix when stored in a trie is quick and with a smart 

 
2 In case no RPKI data is available due to RVC unreachability, no proper validation can be performed. 
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data structure such as the structure used in SRx-Server, validation changes of UPDATEs can 
be easily detected by just maintaining the data structure. BGP-PV though is different. With the 
current average AS path length of about four hops and each hop having its own Secure Path 
segment with each segment having its own signature, the data volume and processing does 
increase dramatically. This means that there can be 1.1 million (prefixes or routes) x 4 
segments which amounts to 4.4 million signed BGPsec path segments (per peer). To map the 
keys to the appropriate path segment requires a key-segment manager. Finally, not all keys can 
be kept in memory as there are just too many of them. For all these reasons it is more than 
feasible to outsource the BGP-PV and its related management. Furthermore, a router 
performing BGP-PV with full deployment would have to perform up to 4.4 million signature 
verifications per peer for a full route exchange. This alone calls for the outsourcing of BGP-PV. 

 Router Implementation 

For the router implementation, we decided to extend the Quagga[11] open source BGP routing 
platform. One major design decision was to keep the required modification of the codebase to 
a bare minimum to allow easier integration into additional platforms. Consequently, we 
decided that BGP-OV should not be performed on the router itself but on an external platform 
which we called SRx-Server. This frees the routers from the tasks of synchronizing with 
RVC’s, and monitoring of prefix origin pairs and BGPsec secure path segments that would be 
affected by modifications within the RPKI. Furthermore, outsourcing the validation for both 
BGP-OV as well as BGP-PV allows a “lazy evaluation” by delaying evaluation when needed 
and therefore lowering the success of DOS attacks that are aimed at the validation engine. 

This leaves the QuaggaSRx router with only a small set of new responsibilities: 

• Add policies that include BGP-OV and BGP-PV results in the route selection process. 
• Add BGPsec path attribute checking for syntactical correctness and error processing 

according to RFC 8205. 
• Add BGPsec path generation according to RFC 8205 including the signing of the path. 
• Use the SRx-Proxy interface for all remaining RPKI / BGPsec related functions. 
• Implement a “lazy evaluation” mechanism. 

 
As shown in Figure 4, upon receiving an UPDATE message, the router extracts the important 
information and sends it to the SRx-Server for validation. The SRx-Server then returns the 
BGP-OV and BGP-PV results to the router. The router then calculates an overall validation 
result and performs route selection. Once a route is selected and prepared to be forwarded to 
the peers, the router will sign the update in case BGPsec is enabled.  
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Figure 4 – Process Flow in QuaggaSRx 
 
Please keep in mind that this is a simplified overview of a more complex algorithm. Going 
forward, when talking about an update we will be referring to the unique triplet [prefix, origin, 
path]. The path contains either the AS_PATH or the BGPsec_PATH attribute. This 
information is used to create a system-wide unique update ID which is used by the router and 
the SRx-Server to identify the update in future communication. To keep the memory usage to 
a minimum we decided to use an unsigned four-byte integer as ID. Furthermore, we also 
decided to perform lazy evaluation, which means the router can assign a pre-defined validation 
value to each update. Then the router initiates the validation request and proceeds with route 
selection. The SRx-Server in the meantime performs the update validation requests in parallel. 
The pre-defined validation value can either be configured or if available be provided within 
the received UPDATE as extended community attribute as specified in RFC 8097. By allowing 
the router to proceed with route selection while the SRx-Server performs the validation, the 
initial blocking of prefix processing due to validation calls will be reduced to a minimum. 

Once the SRx-Server completes the validation and the validation result differs from the router-
provided validation value, the SRx-Server sends a notification to the router containing the new 
corrected validation result (along with the update ID). Only then would the router redo the 
route selection process for the prefix in consideration. 

Even though we envisioned not performing any BGPsec processing in the router other than 
checking for syntactical correctness as requested by RFC 8205, we implemented full BGPsec 
validation and signing processing within the router first. This was a simple decision because 
all BGPsec related validation processing is out-sourced into the SRxCryptoAPI (SCA). The 
only required modification of QuaggaSRx was adding the processing of the BGPsec path 
attribute itself, not the cryptographic processing. This allowed us to perform early BGPsec 
validation tests prior to extending the SRx-Server to perform BGPsec validation. The SCA 
allowed adding BGP-PV without adding the validation complexity and key management to the 
router itself, as the verification of BGPsec UPDATEs, as well as signing request and key 
management functionalities, are provided by the SCA. The only missing portion was the 



 
 

9 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

dynamic retrieval of BGPsec public keys. Once early BGPsec experimentation with router-
based validation was enabled, we extended the SRx-Server to perform BGP-PV as well as key 
retrieval by extending the router to cache protocol implementation from BGP-OV-only RPKI 
management as specified in RFC 6811 to add key handling as specified in RFC 8211. 

3.1. Router and SRx-Server Synchronization 
Once the router connects to the SRx-Server, the SRx Server sends a reset request. This request 
requires the router to send a validation request for each update in the router's RIB-IN table to 
the SRx Server. For each validation request, the router uses either the local update ID or the 
already received SRx Update ID (SUID) in case of a re-request. This assures that the 
SRx-Server will have complete knowledge of all routes including the routes the router received 
prior to connecting to the SRx-Server. This process is also performed if the connection between 
the router and SRx-Server got disrupted to synchronize the state between the router and SRx 
Server. 

3.2. Processing Received BGP / BGPsec UPDATEs 
As explained earlier, QuaggaSRx and the SRx-Server communicate using IDs to identify each 
specific update. As shown in Figure 1, the SRx-Server does not serve a single router. To assure 
unique IDs within the scope of the SRx-Server, the SRx-Server must generate the system-wide 
unique SUID and solve any collision conflicts. It is important to mention that if two router 
instances, both connected to the same SRx-Server, send the exact same update validation 
request, the SRx-Server must generate the exact same SUID. The same is true in case a router 
sends the same validation request twice. To allow proper initial communication between the 
router and the SRx-Server, the router will generate a temporary local ID that uniquely identifies 
the update within the router. QuaggaSRx uses a simple counter which is sufficient because the 
local ID has a very short lifespan. The local ID will be replaced once the SRx-Server responded 
with the system-wide unique SUID. The router sends the initial validation request using the 
locally generated ID. In addition to the local update ID, the router adds the update information 
consisting of the triplet [prefix, origin, path] and the assumed validation result. This can be 
either a pre-configured result or a result learned through the received UPDATE message in 
form of the extended community string as described in RFC 8097.  

Once the validation request is initiated, the router will add the received update into the internal 
process queue. The SRx-Server will generate a receipt and return it immediately upon 
receiving the validation request. Contained in the receipt is the local ID3 and the SRx-Server 
generated SUID together with the validation result. Once the router receives the validation 
receipt it will assign the validation results to the stored update in case they differ from the 
previously stored value.  

More information on the generation of the system-wide unique SUID and the validation receipt 
is described in detail in Section 4.3. 

In case the router does not have any connection with the SRx-Server, it generates the local ID 
and assigns the validation results (that it would have otherwise added to the validation request) 
to the update and proceeds with normal processing. As soon as the router connects to an SRx-

 
3 The SRx-Server interprets the local update ID as request token to map the receipt to the request. 
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Server instance all updates will be sent to the SRx-Server. The SRx-Server then will generate 
new SUIDs and provide them to the router within the validation receipts. 

When performing an operator-initiated update lookup, the type of update ID as shown in 
Listing 1 can be identified by the occurrence of a “+” right before the ID value. Local IDs are 
displayed using the “+” as a prefix. Once a router receives the SRx Server’s update ID the “+” 
is not displayed. In case the update is originated from within the AS no update ID is allocated 
but represented as (--------) and labeled as valid. The field SRxLP specifies the local preference 
modification values as a result of the validation state. These values are used to modify the 
current local preference depending on the configuration. This is only used if local preference 
policies as described in Section 3.5.3 are employed.  

Listing 1 – QSRx Terminal – BGP RIB-IN Table 
 
3.3. Processing Validation Notifications 
QuaggaSRx does use the SRxProxy API which is the remote interface to the SRx-Server that 
is explained in detail in Section 4.2.2 of this document. QuaggaSRx does provide call-back 
functions that will be called by the SRxProxy API once validation results are received. 

Once a validation result is received, QuaggaSRx first examines if the notification is a “receipt” 
to a validation request or a notification for validation state changes. A receipt differs from the 
regular notification by containing not only the SUID but also the router’s internal local ID. 
This mechanism allows the router and the SRx-Server to synchronize their ID space. Once a 
receipt is received, the router queries for the update with the given local ID and replaces the 
local ID with the given SUID. In case the notification was not a receipt, no local ID is provided 
and instead, the router queries the internal tables for the update with the given SUID. 

Once the update is retrieved (both during receipt and regular notification), QuaggaSRx verifies 
each validation result that was provided within the notification. If the final validation result 
(BGP-OV, BGP-PV) differs from the stored result, QuaggaSRx will temporarily store the 
overall validation result, replace the validation result with the newly provided result, and 
recalculate the overall validation result. Only if the overall validation result has changed will 

bgpd# show ip bgp  
BGP table version is 0, local router ID is 10.0.6.50 
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, 
              r RIB-failure, S Stale, R Removed 
Validation:    v - valid, n - notfound, i - invalid, ? - undefined 
SRx Status:    I - route ignored, D - SRx evaluation deactivated 
SRxVal Format: validation result (origin validation, path validation) 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Ident    SRxVal SRxLP Status Network        Next Hop   Metric  LocPrf Weight Path 
*> -------- v(v,v)              10.50.0.0/16   0.0.0.0         0          32768 i 
*> +000001F ?(?,?)              10.60.0.0/16   10.60.0.1       0              0 60 ? 
*  D7A9D0A8 i(i,v)          I   10.60.0.0/24   10.70.0.1       0              0 70 90 ? 
*> 44AB9E12 v(v,v)              10.70.0.0/16   10.70.0.1       0              0 70 ? 
*> 289682FD v(v,v)              10.80.0.0/16   10.80.0.1       0              0 80 ? 
*  328B5F6E i(i,v)          I   10.80.0.0/24   10.70.0.1       0              0 70 90 ? 
*> 9216E8E2 v(v,v)              10.90.0.0/18   10.70.0.1       0              0 70 90 ? 
*> +0000020 ?(?,?)              172.16.2.0/24  10.60.0.1       0              0 60 2 ? 
*> D4128FE7 v(v,v)              172.16.5.0/24  10.70.0.1       0              0 70 90 5 ? 
*  A3267A30 i(i,i)          I   172.16.7.0/24  10.80.0.1       0              0 80 2 ? 
*> 02B273E0 v(v,v)                             10.70.0.1       0              0 70 90 7 ? 
 
Total number of prefixes 9 
bgpd# 
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QuaggaSRx restart the decision process. This prevents unnecessary processing within the 
router. 

3.4. Calculating the Internal Validation Result 
Even though RPKI origin validation and BGPsec path validation are treated separately, the 
QuaggaSRx implementation eventually generates one final state for each BGP update. As a 
clarification to start with, RFC 6811 defines the validation state Invalid where RFC 8205 
declares the validation state Not Valid. Both mean the same, e.g. the validation result ended 
with an Invalid outcome. In the BGP-SRx Framework, we decided to use the notion of Invalid 
rather than Not Valid to allow simplification in the internal handling of the validation states.  

QuaggaSRx assigns to each update two separate validation states, one for BGP-OV (S1) and 
one for BGP-PV (S2). The validation state for S1 can contain any of the values listed in Table 
1 whereas all but “Not Found” can be assigned to S2.  

Validation State Description of validation state Symbol Name 
V Valid The received update is valid  
I Invalid The received update is invalid 
N Not Found No ROA information for the given BGP-4 update available  
? Undefined Not verified yet or not enough data to compute a validation state 

Table 1 – BGP-SRx validation state 
 
Table 2 below illustrates the validation state results calculated within QuaggaSRx in case both 
validation algorithms BGP-OV and BGP-PV are enabled. As shown, the combination of both 
will only result in “Valid”, “Invalid” (Not Valid per RFC 8205), or “Undefined / Unverified”. 

QuaggaSRx 
Overall Result 

BGPsec Path Validation – S2 
Valid Invalid Undefined 
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Valid V I ? 
Not Found I I I 

Invalid I I I 

Undefined ? I ? 
Table 2 – QuaggaSRx validation state calculation table 
 
In case only BGP-OV is enabled, all four states “valid”, “invalid”, “not-found”, and 
“undefined” can be assigned. The operation mode depends strictly on the configured policy 
modes. 

3.5. Validation Policies 
QuaggaSRx operates in two distinct policy modes: 

• origin_validation 
• bgpsec 

 
The first mode “origin_validation” only performs BGP-OV for route validation. In this mode, 
BGP-PV is disabled, and the overall validation can result in “valid”, “invalid”, “not-found”, 
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and “undefined”. In case the second mode “bgpsec” is enabled, the router will perform both, 
BGP-OV and BGP-PV. The overall validation state is computed using the validation state 
displayed in Table 2 and can only result in “valid”, “invalid”, and “undefined”. 

Policies within QuaggaSRx are applied to the overall validation result. QuaggaSRx provides 
three types of policies which can be combined. The below-specified policies are applied in the 
following order as specified. 

• Ignore Policy   (Prior to decision Process) 
• Prefer Policy   (After multi exit discriminator (MED)) 
• Modification Policy (After Prefer Policy) 

 
 Ignore Policy 

Ignore policies are used to ignore received routes. The three ignore policies are “Ignore 
Invalid”, “Ignore Not-Found”, and “Ignore-Undefined”. If at least one of the ignore policies is 
configured and a route update is evaluated and matches such a policy, the ignore flag is set and 
the route will not be further considered for route selection until the flag is cleared. 

 Prefer Policy 
QuaggaSRx provides a single preference policy “Prefer-Valid” which is used to give 
preference of a valid route over any other route. The prefer-valid policy is added in the decision 
process on the second position right after the MED check. This policy has no effect on two 
competing routes that are both marked as valid.  

 Modification Policy 
The modification policy does alter the local preference of a route. QuaggaSRx allows 
configuration of the modification for all validation states separately. Furthermore, the 
modification can be additive or finite. The finite modification overwrites the previous stored 
local preference with the configured one for the particular validation state. The additive 
modification allows increasing or decreasing the already specified local preference. For 
instance, the router is configured to increase routes with the validation state “not-found” by 
10. Now the router compares two routes R1 and R2 with the same validation state “not-found” 
but different local preference LP(R1) = 100 and LP(R2) = 120. The router will recalculate prior 
to the route comparison the local preference from LP(R1) = 100 to LP(R1) = 110, and LP(R2) 
= 120 to LP(R2) = 130 and then compare both local preferences. In case the policy is not 
additive then the router will modify the assigned local preference to the one associated with 
the policy. Using the example from above, and a policy configured to set the local preference 
for “not-found” routes to 10, the local preferences would change from LP(R1) = 100 to LP(R1) 
= 10 and LP(R2) = 120 to LP(R2) = 10. In the latter example both routes would now have the 
same preference values whereas, in the first example with the additive formula, R2’s 
preference would still be valued higher than the one of R1. 

3.6. BGPsec Path Processing 
The implementation of BGPsec required modification in packet processing. BGPsec 
introduces a new BGP attribute and modifies the BGP protocol in various ways. If the 
BGPsec_PATH attribute is provided, no AS_PATH attribute is allowed to be included in the 
UPDATE. Also, the route prefix must be encoded in MP_NLRI regardless of whether IPv4 or 
IPv6 is used and cannot be included as NLRI. BGPsec allows only a single BGPsec_PATH 
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and only one MP_NLRI prefix. The mechanism known as “Prefix Packing” (see Section 6.4.3) 
is not used in BGPsec. 

Once QuaggaSRx receives a BGPsec UPDATE, it performs a syntax check of the 
BGPsec_PATH attribute and generates the corresponding AS_PATH attribute. Depending on 
the configuration, QuaggaSRx either initiates a validation call to SRx-Server or performs a 
local path validation call using the SRxCryptoAPI. This can be configured within the router 
configuration file. In the latter mode, the SRxCryptoAPI must be configured using a local key 
store. More on SCA cryptography and key storage is available in Section 5.  

If the router is configured for remote validation using the SRx-Server, the BGPsec path 
validation will be performed by the SRx-Server as described later in Section 4.5. In this mode, 
the router performs a validation call in the same way as the BGP-OV validation call. Each 
validation call can be sent with a single validation request. In fact, the validation request for 
SRx-Server contains a flag specifying the mode of validation (BGP-OV, BGP-PV, or both). 

Once a route prefix is selected and ready to be sent to the peer, QuaggaSRx uses the SCA 
locally for path signing. For this, the router configures the SCA with the required private key 
used for signing. For the signage, QuaggaSRx passes the received BGPsec_PATH attribute 
and forwarding data to the SCA with the keys Subject Key Identifier (SKI) to specify the key 
to be used. The SCA performs the signature generation. Key management and all cryptography 
related work are part of the SCA. In this implementation, we did choose a simple file-based 
key install rather than the mechanism described in section 8 of RFC 8635 [9]. 

3.7. The Command Line Interface (CLI) 
Quagga-SRx provides a wide array of features added for BGP-OV and BGP-PV. All of them 
can be configured using the BGP configuration script. In addition to all the configuration 
settings, QSRx also provides CLI commands used for debugging and reconfiguration. A 
comprehensive list of all commands is available in Appendix A.1. 

3.8. Future Considerations 
As explained previously, the current implementation allows two modes, BGP-OV only and 
BGP-OV combined with BGP-PV. This resulted out of an early model in BGPsec, where 
BGP-OV and BGPsec were combined. Eventually, this model was obsoleted. For a future 
version, we will consider separating both validations. 

The current implementation of SRx-Server does treat BGP-OV and BGP-PV separately 
though. This allows Quagga-SRx to separately specify policies for BGP-OV and BGP-PV. 
One could envision only manipulating the local preference regarding BGP-OV and ignoring 
updates with BGP-PV Invalid. This granular scripting of policies is not possible in the current 
model. 
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 SRx-Server 

The SRx-Server is the validation engine of the NIST BGP-SRx software suite. It provides the 
service of route origin validation (BGP-OV) and BGPsec path validation (BGP-PV). As shown 
in Figure 5 the SRx-Server is the “middleman” between the router and the RPKI validation 
cache (RVC). Once the SRx-Server is connected to the client, most likely a BGP router, it will 
perform all UPDATE validations requested by the client and start monitoring the UPDATE 
for validation state changes until the client removed the UPDATE from the router. In case 
changes to the updates regarding their validations are detected, the SRx-Server will 
immediately schedule for these changes to be communicated to the client or clients that initially 
send a validation request for each specific update. To facilitate the communication between 
the router and SRx-Server, NIST’s BGP-SRx provides a proxy module called SRx-Proxy, that 
implements the client side of the SRx-Server-Protocol. The Proxy-API hides all complexities 
in dealing with the SRx-Server by functioning as a communication wrapper in between the 
router and the SRx-Server. This SRx-Proxy is implemented as a C library that the router uses 
to request validations as well as register local functions that are called by the SRx-Proxy 
module, once notifications from the SRx-Server are received. 

 

 
Figure 5 – SRx-Server and SRx-Proxy 
 
For RPKI data retrieval, the SRx-Server does connect to the RVC. Once connected, it does 
perform continuous data synchronization using the RPKI to Router Protocol as specified in 
RFC 6810 and configurable using either implementations, RFC 6810 or its updated version 
RFC 8210. Here the protocol choice depends on the capabilities of RVC. RFC 6810 only 
provides ROA information whereas RFC 8210 includes BGPsec key information as well. 

In both directions, RVC and router, the connections to SRx-Server are stateful. 

For BGPsec UPDATE validation, The SRx-Server utilizes the RVC for retrieving BGPsec 
public keys as long as RFC 8210 is the selected communication protocol. For the BGPsec path 
validation, SRx-Server uses the SRxCryptoAPI (see Section 5). The SRxCryptoAPI also 
provides the mechanism for storing the public keys that are required for UPDATE validation. 

As shown in Figure 6, the SRx-Server can entertain multiple routers. Routers can benefit from 
each other by sharing an SRx-Server instance. This assures that each attached router within the 
organization contains the same validation state.  
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Figure 6 – SRx-Server and Routers 
 
Sharing an SRx-Server instance mitigates the problem of validation conflicts due to 
inconsistent RPKI states across the domain [31]. Each validation request is accompanied by a 
validation result the router is using until it receives the final result from SRx-Server4. To be 
able to identify an UPDATE within the scope of the SRx-Server, each update will be assigned 
a unique SRx UPDATE identifier (SUID) that is unique within the SRx-Servers’ domain. This 
assures that a given UPDATE U1 received by router A will get the same SUID as the UPDATE 
U1 when received by router B. This can be the case if both routers A & B are connected to 
routers of the same peering AS. Though this will be highly unlikely for BGPsec UPDATEs 
due to the nature of non-deterministic signatures which results in different SUIDs.  
Independent of the UPDATE itself, SRx-Server generates an internal data structure that allows 
connecting the prefix/origin (PO) pair to the UPDATE validation result (UVR). In case the 
pair is already known, the SRx-Server will return the validation result stored in the internal 
data structure. This assures an SRx-Server-wide synchronization of prefix origin validation 
(BGP-OV) and mitigates the problem that can arise when routers within the same AS 
synchronize independently at different times or even using different validation caches. This 
can result in different views on the global RPKI and therefore result in contradicting validation 
results as explained in detail on slide 10 in [31]. Additionally, using SRx-Server as an 
UPDATE validation engine allows sharing and synchronizing BGP-OV results across 
UPDATEs regardless of whether the prefix origin pair was received via BGP-4 or BGPsec. 

Changes within the PRKI that do not affect the routing will be dampened. Only these validation 
changes are communicated to the routers, for which the router requested validation. For 
instance, SRx-Server received the updates U1 and U2  from router R1 and  U1 from router R2.  
ROA changes are communicated to the SRx-Server that changes the validation result of U2 
but not U1. In this case, SRx-Server only contacts R1 about the validation state change in U2. 
R2 did not request validation for U2 so R2 will not receive any notification. 

 

 

 

 
4 Only if it differs from the original communicated validation result. 
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The SRx-Server’s data structure is designed in such a way that BGP-OV is a byproduct of 
adding UPDATE and ROA data to the Prefix Cache.  

BGP-PV is slightly different. Validation is not a side effect of data management. Here 
validation must be triggered separately. This will happen when an UPDATE validation is 
requested or when key information changes. This happens during key revocations, or if a new 
key is published. The SRx-Server contains a data structure that allows identifying UPDATEs 
that contain the SKIs of keys that changed and start explicitly validation whenever needed. 
BGP-PV can be triggered either by an UPDATE validation request or by an update of the Key 
Cache after RVC synchronization is performed. 

In case the router does not choose to use the SRx-Server for BGP-PV, the router is required to 
have a more complex data structure than the normal data structure used for the RIB. The data 
structure must be able to quickly identify all UPDATEs that are affected by a key change. 
Otherwise, that router would need to check each update in its RIB-IN. In the worst case, that 
can be a lot, with over 864 000 updates in the global routing table and growing. Also, in case 
a peer changes its BGPsec key, the complete table for that peer must be revalidated. For 
changes other than peers, it might be affecting each peer. Again, in the worst case, the number 
of peers can grow up to 864 000 times the number of peers. Once the UPDATE is identified, 
BGP-PV has to be restarted because the validation state could change. In addition, the router 
must perform key management which is memory intensive and not very cost-effective.  

Considering these scenarios, deploying SRx-Server seems to be the most logical solution and 
with only notifying the router of the validation state changes of accepted UPDATEs, the 
maintenance of ongoing validation becomes completely transparent to the router.  
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4.1. The SRx-Server Component Design  
This section will explain the overall internals of the SRx-Server and their overall relation to 
each other. Additional sections are used to explain the details of the different mechanisms 
within the SRx-Server. As outlined in Figure 7 the SRx-Server communicates via TCP. The 
router communicates with the SRx-Server using the SRx-Server-Protocol, an experimental 
protocol design developed particularly for this implementation. The details can be found in 
Appendix A.4. On the RPKI side, the SRx-Server communicates with the RPKI Validation 
Cache (RVC) via the router to cache protocol as specified in RFC 6810 and if router keys for 
BGPsec are expected, usage of  RFC 8210 must be configured.  

 
Figure 7 – SRx-Server internals 
 
The internals of the SRx-Server consist of four handlers (Server Connection Handler, 
Command Handler, RPKI Handler, and BGPsec Handler) as well as three data caches 
(Update Cache, Prefix Cache, and SKI Cache). The handlers are responsible for keeping the 
connections stateful, the validations up to date, and the stored RPKI data maintained. The data 
and validation information are tightly coupled. Once an UPDATE is received for validation, 
the UPDATE itself is stored in the Update Cache and the prefix is stored in the Prefix Cache. 
It is to note that from the SRx-Server’s perspective, each validation request does contain only 
a single prefix per UPDATE. Furthermore, the UPDATEs received are not full BGP 
UPDATEs. They only contain the prefix, AS path list as an array, and all BGPsec relevant data 
required for validation and signing. In case a BGP-4 UPDATE received by the router did 
contain multiple prefixes, a separate request is required for each Prefix/UPDATE combination. 
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Once a validation request is received by the Server Connection Handler, which operates in its 
own thread, the provided update data will be stored in the Update Cache and a Receipt 
Notification will be returned to the caller. This is necessary to establish a system-wide unique 
UPDATE identifier which is used in all follow-up communications. Once the update is stored, 
the Server Connection Handler does schedule the validation request and adds it into the 
Command Queue. The request type (BGP-OV and/or BGP-PV) is specified in the Flags field 
of the validation request (see Appendix A.4). 

Each validation request can contain the following type settings as shown in Listing 2. The 
types are bit coded and can be combined.  

Listing 2 – Validation request type 
 
The Connection Handler performs a preliminary examination of the PDU received and 
identifies an UPDATE validation request –  ORIGIN or PATH. Furthermore, the Connection 
Handler will determine if the UPDATE is already known to the system. This is done by 
generating the SUID as described in detail in Section 4.3 and querying if the UPDATE is 
already stored in the Update Cache. If not, it initiates the initial storing of the UPDATE in the 
Update Cache and a receipt notification to the router with the default validation values 
provided within the request. As long as the SRx-Server does not have its own validation done, 
it will return the default validation state it received during the initial storing in the Update 
Cache. Only during this time, it is possible for SRx-Server to ever return the validation state 
“Undefined”. In case the SRx-Server received a second validation request for the identical 
UPDATE but this time with different default validation values, it will add the previously 
received default values to the Receipt Notification as long as own validated results are not yet 
available. SRx-Server does this to maintain a system-wide synchronized validation state.   

When the SRx-Server stores the update and after it sends the Receipt Notification, it adds the 
validation request into the Command Queue. It shall be noted that during the process of storing 
the UPDATE data in the Update Cache, the Update Cache does scan the UPDATE for BGPsec 
path information and stores all SKIs found in the UPDATE in the SKI Cache, and links the 
Update Cache’s update entry to the SKI Cache’s SKI entry. 

Another thread that runs concurrently is the Command Handler Thread, which fetches 
commands from the Command Queue for new commands to be read and executed. The 
Command Handler itself handles all communication requests of the Server Connection Handler 
but the most important ones are the Verify and Sign commands. If the command is a BGPsec 
path validation (BGP-PV) request, the Command Handler will call the SRxCryptoAPI for 
validation. Once the validation is performed and differs from the validation state stored in the 
Update Cache, the Command Handler will modify the validation result in the Update Cache 

The result type is bit coded. 
            7 6 5 4 3 2 1 0 
           +---------------+ 
           |x|0|0|0|0|0|x|x| 
           +---------------+ 
            |           | | 
            |           | | 
            |           | +------RESULT_TYPE_ORIGIN =   1 
            |           +--------RESULT_TYPE_PATH   =   2 
            +--------------------RECEIPT_REQUEST    = 128 
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which will trigger a validation state change notification to be sent to all clients registered with 
this update. 

In case the Validation Request is a prefix origin validation (BGP-OV), the Update Cache will 
store the Prefix/Origin combination in the Prefix Cache. The process of adding the update also 
performs the BGP-OV which will trigger a modification of the update’s validation state in the 
Update Cache in case the value changed. The same does happen during BGP-PV where a 
validation state change triggers a notification to be sent. 

Both remaining handlers, the RPKI Handler that uses the Prefix Cache as well as the BGPsec 
Handler that uses the SKI Handler, rely on the reference back to the Update Cache. The 
BGPsec Handler though does not use a dedicated thread. It is only used to instantiate and 
remove the SKI cache at program start and termination.  

This leaves the RPKI Handler, which uses the RPKI_RTR_Client as an actively running 
process. This process deals with the session handling with the RVC. It acts upon data received 
by the remote RVC. The difference between validations triggered by the RPKI Handler and 
validations triggered by the Command Handler is that RPKI Handler-generated validation state 
changes are not communicated to the registered clients until the last RPKI modification is 
received and the last validation is performed. Until then, all triggered validation state 
notifications are queued in the RPKI Queue. The main events are adding and removing of 
ROAs and BGPsec public keys. Adding and removing ROAs are changes that are made in the 
Prefix Cache and as mentioned earlier, modifications of the Prefix Cache also immediately 
modify the validation state of all affected updates. These changes are signaled immediately to 
the Update Cache, though during this time notification are suppressed and are stored in the 
RPKI_Queue instead. Key modifications, adding or removing of keys, are performed as they 
are received. The key management is communicated instantly to the SCA and SKI Cache. Then 
the SKI Cache adds to the RPKI Queue the list of attached Updated for BGP-PV for each SKI. 

Once the Synchronization with the RVC is done, indicated by the EndOfData PDU [4] 
received, the RPKI_RTR_Client starts fetching all elements queued in the RPKI_Queue. These 
can be validation state changes to be sent to the registered client or validation requests for the 
SCA. The latter will modify the Update Cache in case of a state change which results in sending 
out a validation state change notification as well. 

It will be possible that a single update was scheduled multiple times for validation during the 
processing. For BGP-OV these do increase briefly the communication between the router and 
SRx-Server. It is important to note though is that for BGP-OV all notifications will contain the 
last known validation state, because during the generation of the validation state notification, 
the state will be read from the Update Cache at that specific time. This means that if a router 
receives a notification 10 times, each time with the same BGP-OV validation state and the 
SRx-Proxy will drop all but the first notifications because the validation state did not change 
in between. It is different for BGP-PV though. If “n” SKIs of a single UPDATE change, the 
validation on the SRx-Server side will be scheduled “n” times, although only a single 
notification will be sent because all “n-1” validations will result in the same validation state, 
hence the validation state does not change, and no notification gets prepared. The reason for 
that is that BGP-PV only starts after all key modifications are processed.  
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4.2. Communication with SRx-Server 
The communication between the SRx-Server and the router is done using the 
SRx-Server-Protocol, a TCP based protocol that allows keeping a stateful connection between 
the SRx-Server and the client/router. A detailed description of the SRx-Server-Protocol can be 
found in Appendix A.4. The client can choose to implement the TCP based communication or 
decide to use the C-based SRx-Proxy implementation, a library that implements the SRx-API. 
This implementation is meant for clients such as QuaggaSRx (QSRx) and hides the 
complexities of the TCP based communication by offering functions for validation and signing 
requests.  

 Connecting to SRx-Server 
The SRx-Server and the router maintain a stateful connection. For maintenance reasons, the 
SRx-Server allows allocating a specific ID to a specific connection, as shown in Listing 3. The 
connection is identified by its IP address. Once a router connects to the SRx-Server, it is not 
expected that the router performs validation requests of all updates it contains. For that reason, 
the SRx-Server allows configuring a synchronization request. In this case, the SRx-Server 
requests a validation request for all UPDATEs the router holds. 

Listing 3 – SRX-Proxy mappings 
  
The router does not only send validation requests. During the connection handshake, the router 
provides the SRx-Server with all peers it intends to send Updates to. The reason is to allow the 
SRx-Server to pre-compute signatures during idle times and then when requested, the SRx-
Server can either provide just the signature or the complete BGPsec_PATH attribute with the 
peer and signature included. For this, a default pCount value is provided to the SRx-Server. 
This functionality is especially interesting for algorithms such as the current BGPsec selected 
ECDSA algorithm as specified in RFC 8608. 

During testing on different systems, we identified issues with TCP traffic flow between SRx-
Proxy and the SRx-Server. We observed the SRx-Proxy freeze during operations, which in 
turn affected the router and caused issues. To prevent this from happening we implemented 
traffic control on the sender and receiver side by allowing to buffer traffic. As shown in Listing 
4, the SRx-Server has the receiver queue enabled by default to allow receiving more data while  
reading data with regular speed from the TCP input buffer. The buffer queue is variable in size 
and therefore only restricted by system memory. This allows the SRx-Server to keep receiving 
validation requests, even if the SRx-Server is under load. 

 

Display proxy mappings: 
======================= 
* Client[0x01](  1): Proxy ID 000.000.000.002 [0x00000002](0000000002) (-------/pre-conf) - #updates=0 
* Client[0x02](  2): Proxy ID 010.000.006.050 [0x0A000632](0167773746) ( active/dynamic ) - #updates=16 
* Client[0x0A]( 10): Proxy ID 010.000.000.001 [0x0A000001](0167772161) (-------/pre-conf) - #updates=0 
* Client[0x19]( 25): Proxy ID 010.001.001.002 [0x0A010102](0167837954) (-------/pre-conf) - #updates=0 
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Listing 4 – SRx-Server configuration settings 
 

 SRx-API and the SRx-Proxy 
The SRx-API provides an interface to the SRx-Server that allows binding the SRx-Proxy 
library, a lightweight C-based implementation that functions as a wrapper to the SRx-Server. 
The SRx-Proxy allows easy SRx-Server integration into the client application. The SRx-Server 
connection can be freely configured from within the client by providing the proper 
configuration functions.  

As shown in Figure 8, the SRx-Proxy shields all communication with the SRx-Server and 
provides three main methods to the client/router: 

• validate 
• sign  
• callback 

 
as well as some maintenance functions. 
 

 
Figure 8 – SRx-Proxy 

Configuration: 
============== 
port.....................: 17900 
loglevel.................: 5 
sync.....................: true 
rpki.host................: localhost 
rpki.port................: 50000 
bgpsec.srxcryptoapi_cfg..: (null) 
console.port.............: 17901 
mode.no-sendque..........: true  (send queue turned off) 
mode.no-receivequeue.....: false (receive queue turned on) 
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The validate function is used for both, BGPsec path validation as well as prefix origin 
validation. The callback function is used by the proxy thread to inform the router thread of the 
received data. The validation call is a blocking call until the receipt is returned containing the 
SUID that is needed for future communication between the SRx-Server and the router to 
identify the updates. The return is rather quick because the SRx-Server treats initial turnaround 
notifications with the highest priority. 

At the current stage of the implementation, QuaggaSRx does not use SRx-Server for signing. 
Therefore, the implementation is not complete. Future plans for the signing include the SRx-
Server being able to pre-sign updates. For this to function, the proxy provides the SRx-Server 
with a list of peers and a default pCount value used for each peer. At this point we decided to 
defer on using SRx-Server as a signer because signature generations are not as computationally 
expensive as validation requests. 

The callback method is used when the SRx-Server sends notification messages to the proxy. 
In this case, the proxy calls the registered callback message and provides the necessary 
message information. This can happen, for instance, when the SRx-Server finishes a validation, 
or a validation result changes due to changes in the RPKI or key expirations. In this case the 
SRx-Server sends a notification to the client, which is received by the proxy. The proxy then 
calls the registered callback method to notify the client/router of the change. The notification 
call will be performed within the proxy thread. 

The proxy also provides functions such as connect, disconnect, and maintenance calls. The 
connect and disconnect functions deal with the connectivity to the SRx-Server. Depending on 
the configuration of the SRs-Server the SRx-Server sends a synchronization request to the 
router after the connection is established. Even though Figure 8 shows this process attached to 
the connect function, the process is performed using a notification call which in return will be 
processed by the callback function. For simplicity, the initial synchronization call in Figure 8 
is a logical placement. During the connection time, the SRx-Server might perform a 
synchronization call. This will happen once the SRx-Server identifies discrepancies within the 
statefulness of the connection. 

 The Telnet Client to SRx-Server 
The SRx-Server provides a telnet socket that allows query of updates as well as triggering of 
cache dumps while operating. The dumps are in XML form and will be printed on the 
command line of the SRx-Server itself. They are not communicated to the telnet console. Also, 
these dumps can be rather large depending on the amount of data stored in the caches.  

The telnet session is not only used to query UPDATE information, it also is used to shut down 
the server or initiate synchronization requests. The latter one helps the operator to re-
synchronize the client/router and the SRx-Server in case the operator believes that the 
statefulness of the connection is compromised.  

Once connected to SRx-Server via telnet, the operator can use the telnet session to verify the 
validation result by selecting the UPDATE’s SUID. First, one finds the UPDATE in question 
from QuaggaSRx.  
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The SUID is the 4-byte hexadecimal value to the left of the UPDATE. As shown in Listing 5 
the SUID for the valid UPDATE is “70BFC549”. 

Listing 5 – QuaggaSRx RIB-IN 
 
Listing 6 shows how the Update Cache data of this UPDATE can be retrieved using the 
command: “show-update id 70BFC549”. 

Listing 6 – SRx-Server Update Cache – Valid Update 
 
In the current configuration, the router does not provide a default validation value. This is 
indicated by “---”. The SRx-Server did both origin validation and BGPsec path validation and 
both validations returned ‘Valid’. For prefix origin validation the SRx-Server displays the 
ROA entry that resulted in the VALID result. 

To see why the second UPDATE for the same prefix was invalid, we query the given SUID, 
in this case “A903E850”. Using the same command “show-update id A903E850”, the 
UPDATE cache shown in Listing 7 reveals the reason for the INVALID outcome. It becomes 
clear that the prefix 10.80.0.0/16, originated by AS70, was rendered invalid due to the ROA 
(10.80.0.0/16 with max length 20 for AS80).  

Here, the origin AS does not match the ROA hence the UPDATE is invalid. 

Listing 7 – SRx-Server Update Cache – Invalid Update   
 
Appendix A.2.2 provides a complete list of all SRx-Server telnet commands and their function.   

*> 70BFC549 v(v,v) +  25,       10.70.0.0/16     10.70.0.1                0     25s      0 70 ? 
*  A903E850 i(i,v)          I   10.80.0.0/16     10.80.0.1                0              0 80 70 ? 
 

[SRx]> show-update id 70BFC549 
--------------------------------- 
UpdateID.........: 0x70BFC549 (1891616073) 
 -Clients........: 0x02 
 -AS.............: 70 
 -Prefix.........: 10.70.0.0/16 
 -ROA Count......: 953094771 
 -Prefix Origin..: VALID 
  * Default......: -- 
  * Source.......: ROUTER 
 -Path...........: VALID 
  * Default......: -- 
  * Source.......: ROUTER 
 -ROA Coverage...: ROAs that render the update VALID... 
                   AS(70), Prefix (10.70.0.0/16-20), ROACount 1 
 

[SRx]> show-update id A903E850 
--------------------------------- 
UpdateID.........: 0xA903E850 (2835605584) 
 -Clients........: 0x02 
 -AS.............: 70 
 -Prefix.........: 10.80.0.0/16 
 -ROA Count......: 4052041 
 -Prefix Origin..: INVALID 
  * Default......: -- 
  * Source.......: ROUTER 
 -Path...........: VALID 
  * Default......: -- 
  * Source.......: ROUTER 
 -ROA Coverage...: ROAs that render the update INVALID... 
                   AS(80), Prefix (10.80.0.0/16-20), ROACount 1 
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4.3. SRx Update ID Generation 
The SRx Update ID (SUID) is essential within the BGP-SRx environment. Each update is 
identified by this uniquely generated ID and all routers/clients connected to the SRx-Server 
will have the exact same SUID for the exact same update. The SRx-Server only uses the SUID 
to communicate validation state changes to the attached routers to reduce traffic. The SUID 
itself is generated using a simple CRC32 algorithm, which is not collision free. This is the 
reason why each SUID must be calculated by the SRx-Server and not by the clients.  

Let us assume for simplicity the SUID algorithm would just simply take the sum of the AS 
numbers in the path and each Router generates the SUID itself. As shown in Figure 9, the three 
updates “1-2-3”, “2-1-3”, and “3-2-1” all would result in the SUID “6”. Therefore, using the 
clients to calculate the SUID would render the SUID useless.  

 

 
Figure 9 – Routers generate SUID 
 
To reduce the data communication between the router and SRx-Server, each router does 
compute a local update ID (LOCID) which must be unique only within the router itself. As 
shown in Figure 10, the router performs the request using the LOCID. The SRx-Server then 
generates an ID unique to the SRx-Server and responds with a receipt containing both the 
LOCID and SUID. 

 

 
Figure 10 – Router and SRx-Server LOC/SUID exchange 
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From this moment going forward, the SRx-Server only communicates with the router using 
the SUID. As shown in Figure 11, the LOCID can be discarded by the router once the router 
received the SUID. The SRx-Server does not store the LOCID of the router. 

 

 
Figure 11 – SRx-Server generates SUID 
 
Regardless of whether BGP-OV or BGP-PV are being used, the SRx-Server needs to generate 
the SUID for each request. Once the SUID is generated the SRx-Server verifies that the ID is 
not previously used by scanning the Update Cache for an update stored with the exact SUID. 
In case an update is found, the SRx-Server must compare the updates if it is the same. In case 
the Update is the same, that means is already stored, a receipt can be generated immediately. 
As explained in Section 4.5.1, the receipt contains not only the LOCID and SUID, it also 
contains the current validation view of the update itself. 

In case the update found with the calculated SUID differs from the currently processed update, 
a SUID collision is detected. To mitigate the collision the SRx-Server simply increases the 
SUID by one. Now with the new SUID, SRx-Server again must verify that no other update is 
using this SUID. This process will be repeated as long as needed until either an unused SUID 
is retrieved, or an update is found that fully matches the update which is currently processed. 

4.4. The Data Caches 
As already mentioned in Section 4.1, the SRx-Server holds three internal caches, the Update 
Cache, the Prefix Cache, and the SKI Cache. Each update can be located through either of the 
caches. The reason for that is that modifications can be received in form of new UPDATEs, 
addition or removal of ROAs, and addition or removal of SKIs. The SKI Cache only holds the 
SKI of each key whereas the key itself is stored in the SRxCryptoAPI. Changes in the RPKI 
can have an impact on the validation state of previously validated updates. The following 
sections explain in more detail each of the caches. 
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 The Update Cache 
The Update Cache stores each BGP/BGPsec UPDATE in a hash table using the SUID as a 
key. This allows a quick location of the update within the update cache. Each UPDATE 
contains the AS path and if available the complete BGPsec path information as shown in Table 
3. Furthermore, each update cache element contains information such as the route origin 
validation and BGPsec path validation values as specified in section 2.1.1. 

Type Name Description 

uint8_t* clients Clients with value 0 are unused 

uint8_t noPossibleClients Maximum number of clients in the list without 
extending 

SRxUpdateID updateID Systemwide unique ID 

UT_hash_hanlde Hh The hash table where this entry is stored in 

utin32_t Asn The Origin AS of this update 

IPPrefix Prefix The IP Prefix 

SRxResult srxResult The result generated by SRx 

SRxDefaultResult  defaultResult The result provided by verification request 

uint32_t roaRefCount The number of ROAs that cover this update 

uint16_t gcFlag Indicates when this entry can be deleted by the 
garbage collector. 

UC_UpdateData pathData This element replaces the blob. 

Table 3 – Update Cache – Cache Element 
 
The UPDATE data itself is stored in the attribute pathData. It contains the BGPsec_PATH 
attribute, NLRI attribute, and the AS_PATH as a 4-byte array for easy path access. The cache 
element contains the data linked to the UPDATE. We will not explain every single attribute, 
but we will elaborate on some that deserve special attention.  

The first attribute clients is a pointer to a dynamic array that stores the client IDs. SRx-Server 
holds a list of clients/routers. This list facilitates a reference on which routers/clients did send 
a validation request for the referenced UPDATE. This is required to keep the router/client 
informed about validation state changes. Once a router/client decides to be removed from the 
‘clients’ list, the router must send an update removal (Section 4.6). Until then the SRx-Server 
will continue to send updates when they occur. 

The attribute updateID is the unique ID of the update itself. The importance and how it is 
generated are explained in detail in section 4.3.  



 
 

27 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

The next is a set of two attributes. The first one is srxResult, the second one is defaultResult. 
Each of these structures stores the origin validation as well as BGPsec path validation. Both 
attributes serve a different purpose and the range of values both can represent are different. 

The attribute defaultResult stores the value that was provided by the initial validation request. 
Here the values can hold their validation results as specified in the respective RFCs for their 
validation and in addition, the value can be the SRx Specific value “undefined”. 

The attribute srxResult can hold the value undefined, but in this case, the value stored in 
defaultResult will be returned to the requester instead regardless of its value. Once SRx-Server 
completed a validation, it stored the result in the variable structure srxResult. This validation 
result always contains values other than “undefined”. From this point going forward, the SRx-
Server will always return the value stored in srxResult. 

Modifying the BGP-OV and/or BGP-PV validation result of an update normally does cause 
the SRx-Server to send a notification to all routers that are affiliated with the update. To prevent 
unnecessary churn of notifications during an RPKI cache synchronization, these notifications 
can be temporarily paused and will resume once the synchronization is done. During such a 
synchronization, multiple ROA changes can cause the validation state of an update to change 
multiple times. During normal operation, this would trigger a notification to the router with 
each modification of the validation state. To send notifications to the router during RPKI 
updates, the SRx-Server waits until the end of the RPKI updates before validation state changes 
are communicated to the router. 

To allow housekeeping and memory consumption, a router should unregister BGP UPDATEs 
once the router removes them from its RIB-IN. If the router does not unregister previously 
validated updates, the router will receive a validation state change notification each time the 
BGP-OV or BGP-PV state changes.  

Once an update is not affiliated anymore with any router client, the garbage collection flag will 
be set. This allows the SRx-Server’s own garbage collector to remove the update. Not 
removing an update right away from the update cache allows the SRx-Server to cache the 
validation result for a little longer in case the update is received again. In this case update’s 
validation state is still maintained and does not need to be re-started when the router receives 
the update again. 

 The SKI Cache 
Originally, the design called for a Key Cache to hold the keys within the SRx-Server. We 
moved away from that model once we started developing the SRxCryptoAPI (SCA) which 
includes a Key Storage (see Section 5.4). SCA allows using third-party key storages that come 
with the algorithm implementation. For the current implementation, the SRx-Server itself does 
not store the keys, it uses the default key storage of SCA. This allows removing the burden of 
secure key storage from the SRx-Server. With this out of the way, SRx-Server still needed to 
have a mechanism to identify changes in keys and the relationship between the keys and the 
UPDATEs. To achieve this, we implemented the SKI Cache. The SKI Cache is a data structure 
that stores SKIs known to the system. SKIs can become known through an UPDATE 
verification request or by receiving a key through the RPKI Validation Cache (RVC). In both 
events, the SKI will be stored. 
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The internal data structure is based on the AS numbers. The SKI itself is bound to an AS 
number and an algorithm ID. Looking at the AS numbers, which are 4-byte unsigned integers, 
we split them as shown in Figure 12 into two numbers, where each is two bytes in size. The 
upper 2 bytes field is called “upper” and the lower 2 bytes field is called “AS2”. At this point 
the majority of AS numbers are located in the same upper bucket and differ only in the AS2 
bucket: 

 0x0000[0000] - 0x0000[FFFF]. 

 
Figure 12 – SKI-Cache ASN splitting 
 
The upper (left) bucket is relatively unused. For each value in the upper bucket, the cache 
reserves an array of 128 KB (64 KB * 2)5, one element for each of the existing AS2 values 
within the bucket. This allows a direct access with O(1) access time. To keep the memory 
usage as minimal as possible but still have fast access as shown in Figure 13, the upper bucket 
uses a single linked list.   

 
Figure 13 – SKI-Cache ASN storage access 
 
Using this initial storage mechanism seems memory intensive but it provides access speed, and 
the SRx-Server can run on a regular system such as a desktop PC with the required memory, 
so benefits are worth the drawbacks. The initial question though is how to quickly find an SKI 
number. This does not help if one only has the SKI number, in this case, the search is very 
expensive. Considering the data that is available, each SKI is bound to an AS number. 
Therefore, looking up the ASN first is relatively fast. Once the proper AS2 number is located, 
the next step is to find the SKI number. Again, the SKI is bound to an algorithm ID therefore 
the next logical the is to attach the algorithm ID in form of a linked list. Currently, there is only 
a single algorithm available but as specified in RFC 8608 some values are reserved for 
experimentation so one can envision at this point the usage of experimental IDs. Underneath 
the algorithm ID then we added the data packet {SKI; ASN; AlgoID} (SAA). Of course, the 
ASN and AlgoID are redundant data but it eases the programming by having all data at hand, 

 
5 KB or K Bytes represent a unit in 1,024 bytes 
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especially if this data structure is handed over between functions. The last important part 
needed is the list of UPDATEs that use this SKI. For that, the SAA packet contains a pointer 
to a linked list of SUIDs.  

Now when an UPDATE is stored in the Update Cache (see Section 4.4.1), the UPDATE is 
scanned for all existing SKIs within the BGPsec_PATH attribute. For each SKI the SKI 
Cache’s data as shown in Figure 14 is scanned for the proper SAA packet and the SUID of the 
update will be added. When an UPDATE is removed (see Section 4.6) this link will be removed 
as well. If a key is received via the RPKI-Client, the Key is stored in the SCA using the SKI 
and the SKI will be stored in the SKI Cache. The SAA element contains some more attributes 
such as a counter to identify how many keys are stored using this SKI (a collision is highly 
unlikely but possible). Once the SAA packet is located and it already exists, each SUID will 
be sent to the RPKI Queue (Figure 7, Section 4.1) for BGPsec path re-evaluation. The same 
happens for any modification within the SKI cache triggered by an RPKI event. 

 
Figure 14 – SKI-Cache complete data structure 
  

 The Prefix Cache 
The prefix cache is used for RPKI origin validation. The prefix cache uses internally a 
“Practical Algorithm to Retrieve Information Coded as Alphanumeric” (Patricia) Trie [25] to 
perform fast IP address prefix matching which is based on a radix tree using a radix of two.  

The node content of the Trie is the prefix with the data structure as shown in Figure 15. The 
boxes with yellow background, pc_Prefix, pc_Update, pc_ASx, and pc_ROA specify the data 
components attached to the prefix.  

The structure “pc_Prefix” contains two attributes and three different lists where two of them 
contain Updates and the third one contains all ASes. The AS list contains all ASes that 
originated the initial UPDATE as well as all ASes provided by ROAs that use that particular 
prefix. The two Update lists are called “Valid” and “Other”. The idea of the two lists is very 
simple. Looking at all validated UPDATEs for a given prefix – here the origin AS might be 
different – only two possible combination cab exists at the same time for UPDATEs that share 
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the same prefix. The combination is either (valid and not-found) or (valid, invalid). Using the 
same RPKI data, no UPDATE can be “invalid” and “not-found” at the same time. 

 
 
Figure 15 – The Prefix Cache 
 
Besides the three lists, the pc_Prefix structure contains the attributes ROA_Coverage and 
State_of_Other. The attribute ROA_Coverage is a counter which gets increased with each ROA 
covering this prefix (including matches). This value helps to determine the validation state of 
“Other”. In case the counter equals 0, the validation value of “Other” must be “not-found”  
otherwise the value of “Other” must be “invalid” 

In case no ROAs are stored in the system, all updates will end up in the “other” list and the 
validation state of this list is labeled “not-found”.  

Figure 15 shows the complete structure of the prefix cache. The Prefix-Cache itself fulfills two 
major functions. It allows to determine the validation state of an update by simply adding the 
update into the prefix cache using the two update lists and it allows to manage ROAs and 
immediately identifies updates that are affected by modifications in the ROA storage. The 
ROA storage is part of the third list of the prefix, the AS list. This list contains all ASes that 
are either originators of the given prefix or listed in ROAs containing the given prefix. The 
structure pc_AS contains two attributes, the update count and an array of lists of ROA entries 
that list this particular AS and prefix combination. The update count must be equal to the sum 
of both update lists, “Valid” and “Other”. 

Within the SRx-Server, each RVC that SRx-Server is connected to has its own identifier 
Val_Cache_ID. Each ROA stored in the Prefix Cache contains the Val_Cache_ID. This allows 
identifying all ROAs attached to the particular RVC in cases such as loss of connectivity and 
a connection to a given RVC the tables must be cleared or an RVC requests a RESET. This 
can happen in case of a validation cache reset; in this case, the Val_Cache_ID is used to identify 
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the affected ROA entries. Each ROA has three counters, the ROA_Count which is the number 
of ROAs that are represented by this entry, Deferred_Count which is used during session resets 
between the SRx-Server and a validation cache, and the Update_Count which indicates how 
many updates are covered by this ROA. 

Flow charts that show the in-depth cache management (storing & lookup) are listed in 
Appendix A.2.4. All flow charts are based on the data structure shown in Figure 15. 

4.5. Processing UPDATE Validation 
Validation requests occur in two different forms. One such request can be triggered by a router 
that sends a validation request of a particular UPDATE. This initial request is a “Router 
Triggered Validation Request”.  

The other validation request is triggered as a result of one or more updates within the RPKI. 
These updates may be due to the addition and removal of ROAs or the addition and removal 
of public BGPsec router keys and are sent to the SRx-Server via the router-to-cache protocol. 
Changes within the RPKI’s ROA registration do affect prefix origin validation whereas 
changes in the RPKI’s BGPsec Key registration do affect the BGPsec path validation.  

These changes within the RPKI do trigger the UPDATE validation by modifying the Prefix 
Cache and SKI Cache respectively. The revalidation will be scheduled in the RPKI Handler’s 
RPKI Queue.  

1) Router Triggered Validation Request 
If an update validation request is received from the router, the Connection Handler within 
the SRx-Server that received the request will immediately generate a SUID (Section 4.3) 
and check if a validation must be performed. This is done by identifying if the UPDATE 
already exists in the Update Cache and if the proper validation flag is set. In case the 
UPDATE did not already exist, or the proper flag is not set, an initial validation is required. 
To do that, the SRx-Server adds a validation request command into the Command Queue. 
The Command Queue is processed by the Command Handler. Even though the 
implementation allows having multiple Command Handlers running in parallel to speed up 
the processing of the Command Queue, the currently used number of Concurrent running 
Command Handlers is restricted to one. Once the Connection Handler added the 
verification command to the Command Handlers Command Queue, the Connection 
Handler immediately starts the receipt generation and sends a receipt to the router. The 
Receipt generation is explained in detail in Section 4.5.1. The Command Handler then will 
fetch the command and trigger the requested validation.  

2) RPKI Triggered Validation Request 
Another trigger relates to changes in the RPKI. Each time ROA information is added or 
removed in either the Prefix Cache or the SKI Cache, a revalidation of updates is triggered. 
This trigger is a function of the respective cache management that identifies updates 
possibly affected by the modification. In this case, the RPKI-Client that manages the SRx-
Server and RVC connection triggers the respective cache management which can result in 
a re-validation request being added into the RPKI Queue.   
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 Generating Receipts for Validation Requests. 
Upon receiving a validation request from the client/router, the SRx-Server must not waste time 
and immediately return the receipt, as the router’s UPDATE processing is blocked until it 
receives the validation request. Hence receipts are high priority messages that cannot be 
queued behind other validation result messages. 

With that in mind, the SRx-Server receives the update information and generates an SUID. In 
case the SRx-Server already has an update stored with this SUID it will verify if the stored 
update is a binary exact match to determine if an SUID collision occurred or not. In case the 
updates match on a binary level, the SRx-Server retrieves the validation result of the already 
stored data and adds them to the validation receipt. In case the updates do not match, the 
SRx-Server increases the SUID by one until either no collision occurred, or the next collision 
is a match. This assures that in case two router clients perform the same request, both will be 
served with the same validation result. 

As illustrated in Figure 16, AS 20 sends an update to its two peering points within AS 30. Both 
peering points, router A (at time t1) and router B (at time t2) receive the update with the same 
AS path and prefix origin information. Each router generates its internal data structure: 

[ Prefix, Origin, {Path}, Local-ID, { BGP-OV, BGP-PV } ] 

 

Figure 16 – Process validation request 
 
Router A is configured to assign “not-found” as the default BGP-OV validation whereas 
router B is erroneously configured to assign “valid” as the default BGP-OV state to each newly 
received update. Router A is slightly ahead of router B and sends a validation request for RPKI 
origin validation to the SRx Server. It uses the internal update counter (local update id), which 
is assumed to be increased to position 713, adds the prefix P, origin 10, and as-path {20 10} 
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together with the configured default validation state of not-found (NF) for origin validation6, 
and omits the default validation state for BGPsec validation. The SRx-Server used the triplet 
[P, O, path] and generated the SUID 819. In the next step, it attempts to find a previously stored 
update with this SUID, cannot find any, and stores the received update data using the SUID as 
the key. After that, the SRx-Server generates a receipt for router A and adds the ID (713) used 
by router A, the newly generated SUID (819), and the provided validation result values from 
router A. Router A now must associate the UPDATE with the provided SUID because from 
now on the SRx-Server will only refer to this UPDATE using the provided SUID. At this point 
router A can delete the locally generated ID. After the SRx-Server initiated the receipt it added 
the update to the internal validation queue. 

In the meantime, at time t2, router B received the same update and prepared its validation 
request by packing prefix P, origin 10, path {20 10}, its own local generated ID 119, and the 
pre-configured route origin validation result valid (V) to the SRx-Server. Again, the SRx-
Server used the necessary update information [P, O, path] and generated the SUID 819. It looks 
up the internal validation table and finds a previously stored update with the same ID. It 
performs a bit-level comparison and determines the update is the exact same one. It first 
verifies the validation result and figures out no validation is performed yet (-,-). Now to assure 
all clients are synchronized regarding validation states, it uses the previously stored, pre-
defined validation value NF and generates the receipt for router B. The receipt contains the 
local ID of router B (119), the SUID (819), and the validation result (NF,-). Router B must use 
this validation result and apply it to the route because the SRx-Server only sends further 
notifications to all its clients once the validation state changes. If the SRx-Server returns from 
the validation process with the correct7 validation result NF, it will store NF in the stored 
update but will not send any notification to the routers. SRx-Server knows it provided NF to 
the routers within the validation request receipt, so no further action is required from the router. 

 The Router Triggered Validation Process 
The moment SRx-Server receives a validation request, the SRx-Server takes the update and 
generates an SUID and looks up if the route already exists. In case the route exists and is 
already validated, the validated result is taken and returned to the router piggybacked in the 
return receipt. In case the update is known but not validated yet, the router will return the 
default values within the stored UPDATE and returns this value back to the router. The reason 
for this is that a validation request for this particular update was already received by the SRx-
Server. In this case, the SRx-Server assures that all assigned routers do have the same 
validation view on all UPDATEs in the system. In case the UPDATE is not already stored, the 
default validation result provided by the router will be selected and returned within the 
validation receipt to the validation requester. In this case, a validation request will be scheduled 
in the Command Queue. 

Once the Command Queue fetches the validation request it will start the requested validation. 
SRx-Server has two distinct validation request methods. The Prefix Origin Validation request 
and the BGPsec Path Validation Request. Both are triggered by adding the given information 
into the corresponding Cache. For Prefix Origin Validation the Prefix/Origin information of 

 
6 BGPsec is omitted in this example for simplification. 
7 Following RFC 6811 
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the UPDATE will be stored in the Prefix Cache (see Section 4.4.1) and for BGPsec path 
validation the SKI information will be stored in the SKI Cache (see Section 4.4.2)  

 RPKI Triggered Validation Request 
These validations are triggered by changes in the RVC. This is a third-party software that 
fetches ROA End Entity (EE) Certificates including Certificate Authority (CA) Certificates 
and validates the RPKI data. This includes the validity of ROAS and all the certificates up to 
the root. Periodically the RVC can send notifications to its clients notifying them to poll for 
updates. The clients, the SRx-Server in this case, can then decide to poll or to wait. In case the 
router waits for too long, the RVC requests a reset to assure the client is up to date with the 
RPKI. During these updates, receiving new ROAs, Keys, or deletion such, the SKI Cache and 
Prefix Cache undergo some churn. In case ROAs get removed and new ones added, each of 
these operations does modify the validation state of updates. Once this happens, the 
modification of the validation state will if trigger a notification to the client. To prevent 
unnecessary churn for routers, validation state change notifications are withheld as long as the 
synchronization with the RVC is in progress. No notifications other than validation receipts 
are sent to the clients/routers. Once the RVC synchronization is done, all notifications will be 
sent. The addition of a ROA can change previous validated UPDATEs from Not-Found to 
Valid or Invalid. Removal of such can change prefix origin validations from Valid to Invalid 
or Not-Found and Invalid to Not-Found.  

In case a single UPDATE changed its validation state n times, n notifications will be scheduled 
but all notifications will use the final validation result. When SRx-Server schedules a 
notification, it does not store the validation state in the schedule. It stores the SUID instead that 
then is used once the notification packet is generated to retrieve the latest known validation 
state from the update stored in the Update Cache. This assures intermediate results during a 
cache update never make it to the router with this, the router might receive the same notification 
multiple times, the decision process itself will be trigger only once at the most. 

4.6. Processing Update Removals 
Removing an UPDATE by a router services two purposes:  

i) reduce unnecessary notification traffic between client and SRx-Server and 

ii) reduce memory and validation processing associated with the UPDATE  

A router that receives an UPDATE and sends it to the SRx-Server for validation, will receive 
notifications for validation state changes of the UPDATE for as long as the router is registered 
with the UPDATE. Once a router withdraws the UPDATE it can send a delete request to the 
SRx-Server. This will remove the tight relation between the router and SRx-Cache. Only 
UPDATEs that have no client attached can be discarded, once the SRx-Server decides to start 
the internal garbage collection to revive previously used memory. 

4.7. Data Synchronization 
Once a server connects to the SRx-Server, the synchronization request triggers the router to 
send requests for all UPDATEs in its RIB-IN to the SRx-Server for validation. This assures 
that not only validation requests are sent once the connection is established and previously 
received UPDATEs are left out. It also helps in case the SRx-Server needed to reboot to re-
gain the validation state. During the synch request, the router should fill the default validation 



 
 

35 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

state with the validation state previously received by the SRx-Server. This will most likely 
assure to keep the churn related to validation state changes low because most if not all 
validation results will be the same. Discrepancies will happen only for cases where the state of 
the RPKI is different. 

Data synchronization between RVC and the router will happen more regularly, especially in 
older RVC cache implementations, but is definitely to be expected if the timeframe between 
two update polls is too big. 

 Router Synchronization and Reset 
When a router starts operating but does not have connectivity to the SRx-Server, it most likely 
will not have any UPDATE validation performed. Once the connection to the SRx-Server is 
established, the SRx-Server will immediately send a synchronization request if it is configured 
to operate in that way. When the SRx-Server receives such a request, it will go through the 
RIB-IN and resend the UPDATEs it learned up to that moment in time. In case the synch reset 
happens as a result of a temporary connectivity loss with the  SRx-Server, the router will have 
some UPDATEs that were previously validated and some that are newer but not validated, the 
router will send all UPDATEs and should add the previous validation result as default values 
into the request. This assures that no validation state changes will be received except the state 
of RPKI changed during the connection loss. The current implementation allows for a router 
to keep the initial SUID and most likely the SRx-Server will generate the same SUID. Having 
said that, it is highly recommended to replace all SUIDs with local IDs in case the synch request 
occurred during normal operation, to account for the case in which the SRx-Server performed 
SUID collision mitigation on the server side. In such a case the collision mitigation will depend 
on the order in which UPDATE validations are received to guarantee a match. In case the local 
ID within the verification request is zero, no Notification receipt will be sent by the 
SRx-Server. 

 RPKI Validation Cache Synchronization and Reset 
The current implementation of the SRx-Server does not provide the RVC synchronization reset 
functionality. This is a section that still needs to be added, though the foundations do exist: 
This functionality would need to freeze the current roa_count and refresh the cache 
information. Now with each ROA added the new counter “referred_count” will be increased 
instead of the roa_count. Once the cache update is completed all ROAs for the given cache_id 
with a deferred_count = 0 will be removed. Using this mechanism allows for a simple and 
quick cache refresh, with a minimum of churn assuming the state of the RPKI did not 
dramatically change.  



 
 

36 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

4.8. Future Considerations 
Currently, SRx-Server provides an implementation for RPKI Prefix Origin and BGPsec Path 
validation, though it still has some shortcomings. Going forward, three sections would be 
useful to finish: 

• Allowing SRx-Server to pre-sign BGPsec UPDATEs. The information required for 
this operation is available. Each client has its peers pre-registered including a preset 
pCount value. Resending the same UPDATE can easily reuse the same signature. That 
would remove the issue of non-deterministic signatures without risking security. 

• Finishing the RPKI reset functionality and allowing the usage of multiple caches.  

• Adding a reference implementation for ASPA path validation [32] which is currently 
discussed at the IETF SIDROPS working group.  

 The SRxCryptoAPI 

The SRxCryptoAPI (SCA) is an interface to BGPsec cryptography. It is a library that functions 
as a wrapper for supported BGPsec cryptographic implementations. At the time of this 
document, BGPsec specifies only one cryptographic algorithm: the ECDSA algorithm [6]. 

SCA allows outsourcing all cryptographic operations as well as key management, so the router 
or any other implementing entity such as the SRx-Server does not need to be burdened with 
the extra cryptographic operations. An algorithm change can be deployed faster if it is kept 
independent from the router.  This also removes the requirement of any cryptographic 
capability by the router itself or the BGPsec implementing validation server such as the 
SRx-Server (Section 4). SCA is implemented as a wrapper API that can be configured to load 
dynamically algorithm implementations as well as key management implementations. For 
router implementations that do not provide any key management, SCA provides a basic non-
secure key storage, though mainly for testing purposes. This allows the router or validation 
engine to perform calls to SCA to store public and private keys without the need of 
implementing its own key storage. Also, it allows developing platform-independent key 
storage for the SCA. 
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5.1. Basic Design 
The basic design of SCA is very simple. The API provides a set of functions that will be linked 
to an API provided by a third party. The linkage of the API to the provided library can be done 
using the configuration script. The API must provide two basic functions, sign and validate. 
Figure 17 elaborates the broader flow chart of a regular BGPsec validation as it is specified in 
RFC 8205 and implemented in the NIST BGP-SRx framework.  

 
Figure 17 – BGPsec processing 
 
Once the router receives a BGPsec UPDATE it first needs to verify the syntactical correctness 
of the UPDATE. After it is deemed syntactically correct, the router must decide whether to 
start validation or defer validation. In case the router decides to start validation, it extracts the 
BGPsec Path Attribute and the MP_NLRI Attribute which contains the prefix from the 
UPDATE and performs a blocking validation call to the SRxCryptoAPI. The signing of an 
update is not described here specifically but it functions the same way. The call is blocked until 
SCA finishes the cryptographic process of validation and returns with the validation result. 

During the implementation and testing, we extended SCA by adding key loading mechanisms 
which resulted eventually in the SCA providing file-based key storage. Also, the 
implementation for parsing the BGPsec Path Attribute was added as an API function call to be 
used by cryptographic implementations.  



 
 

38 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

5.2. Crypto Module Configuration 
The SRxCryptoAPI configuration consists of two main sections. As shown in Listing 8, the 
first section specifies general configuration settings for the wrapper API. The second section 
is an embedded configuration for the crypto module.  

Listing 8 – SCA main configuration 
 
As illustrated by the configuration above, SCA allows multiple module configurations to be 
specified within the same configuration script. The reason for that is to prevent requiring 
multiple configuration files. The main section of the configuration then allows selecting which 
crypto module configuration will be used. By default, and if not programmatically changed by 
the implementing client of SCA, the SCA API will look for the file srxcryptoapi.conf located 
in the folder /etc. This behavior will change if the code is compiled using a different --prefix 
setting. The default setting for prefix is “--prefix=/”.  

There might be situations where one might be able to specify different configurations. This can 
be achieved by programmatically setting the location and name of the configuration file that 
will be used by SCA. 
 

# Name of the crypto module configuration to be used.  
library_conf="bgpsec_openssl"; 
 
# Root folder for the keys  
key_volt = "/var/lib/bgpsec-keys/"; 
 
# Specify the key file extensions for private keys DER encoded and  
# public keys embedded in X509 
key_ext_private="der"; 
key_ext_public="cert"; 
 
# Specify the debugging type which indicates only information that  
# matches the debugging type or are less in its numerical value are  
# displayed.  
# The following debugging types are available: 
#     0: LOG_EMERG   - system is unusable 
#     1: LOG_ALERT   - action must be taken immediately  
#     2: LOG_CRIT    - critical conditions 
#     3: LOG_ERR     - error conditions 
#     4: LOG_WARNING - warning conditions 
#     5: LOG_NOTICE  - normal but significant condition 
#     6: LOG_INFO    - informational (DEFAULT) 
#     7: LOG_DEBUG   - debug-level messages 
#debug-type = 6; 
 
# Default NIST BGP-SRx crypto module configuration 
bgpsec_openssl: { 
  … 
} 
 
# High speed crypto module configuration 
tara_crypt: { 
  … 
} 
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The configuration of the crypto module as shown in Listing 9 specifies the filename of the 
library to be used including an initialization string for the library. Furthermore the 
configuration allows mapping the implemented function names to the function names as 
specified in the SRxCryptoAPI’s header file in case the differ. Even though the API proposes 
the function names to be used, implementers might choose a different naming convention. The 
SCA configuration allows mapping all functions that do not follow the API specifications to 
the chosen implementation. The only hard requirement for mapping is the function signature 
as specified in the API’s header file ‘srcxryptoapi.h’. That means the types and order of 
parameters within the function. This must be followed, otherwise the crypto module cannot be 
used. 

Listing 9 – SCA cryptographic module configuration 
 
Furthermore, an implementation does not need to provide all functions that are specified by 
the API. In this case, the SCA will provide a skeleton implementation to prevent segmentation 
faults in case a function is not implemented. To a certain extent, the skeleton implementations 
do provide no real functionality other than hard-coded result values. This one exception is the 
implemented key storage which provides a file system storage for keys for test and 
demonstration purpose only. 

The configuration setting “init_value” will be handed over to the library the moment the library 
is loaded into memory. This can be any string or NULL. The string value depends on the crypto 
module implementation. It could be the path to a different configuration file or a list of 

bgpsec_openssl: { 
  # The name of the library 
  library_name = "libSRxBGPSecOpenSSL.so"; 
 
  # A String e.g. "PUB:<filename>;PRIV:<filename>" or "NULL"  
  # as initialization parameter. 
  init_value                  = "NULL"; 
  method_init                 = "init"; 
  method_release              = "release"; 
 
  method_freeHashMessage      = "freeHashMessage"; 
  method_freeSignature        = "freeSignature"; 
 
  method_getDebugLevel        = "getDebugLevel"; 
  method_setDebugLevel        = "setDebugLevel"; 
 
  method_isAlgorithmSupported = "isAlgorithmSupported"; 
 
  method_sign                 = "sign"; 
  method_validate             = "validate"; 
 
  method_registerPublicKey    = "registerPublicKey"; 
  method_unregisterPublicKey  = "unregisterPublicKey"; 
 
  method_registerPrivateKey   = "registerPrivateKey"; 
  method_unregisterPrivateKey = "unregisterPrivateKey"; 
 
  method_cleanKeys            = "cleanKeys"; 
  method_cleanPrivateKeys     = "cleanPrivateKeys"; 
}; 
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parameters the library will parse. In case no parameter is provided SCA required this parameter 
to be set to “NULL”.   

To allow proper memory management the API provides functions such as “freeHashMessage” 
or “freeSignature”. This is important if the crypto module was using allocation mechanisms 
that are not aligned with the SRxCryptoAPI. Therefore, it is recommended to use these 
messages for all memory allocations performed by SCA to prevent possible segmentation 
faults. 

5.3. BGPsec Path Processing 
The core API does provide more functionality than just functioning as a wrapper for crypto 
implementations. The SCA API provides a helper function for API implementations. One of 
these helper functions is the capability to process the BGPsec path. SCA allows to parse 
through the BGPsec_PATH attribute as specified in RFC 8205 and create a list of pointers into 
the provided data stream. These pointers allow direct access to secure path segments and more 
important the digest message used within the BGPsec Path Attribute. Therefore, the validating 
cryptographic algorithm does not need to parse the BGPsec Path Attribute but can take 
advantage of the provided functionality. 

5.4. Key Storage 
It is not trivial to provide a generalized key storage. Keys need to be stored in a physically safe 
manner so they cannot leak to the outside, especially when it comes to private keys. For this 
implementation, we decided to ease this requirement. We do not provide a secure file vault, as 
for our purpose for the reference implementation it is enough to base the storage on simple file 
system-based key storage. The keys, both private as well as public, are stored in the same 
directory. The default storage system used a distribution system where the SKI becomes a 
portion of the file structure. The root of the key filesystem-folder is specified using the 
‘key-vault’ setting in the SCA configuration. Within this root, two files are present: one is used 
for the private key-SKI-AS mapping and the other one for the public key-SKI-AS mapping.  

The file structure of the keys as depicted in Listing 10 reflects the SKI for each key. The first 
two left most hexadecimal (hex) numbers of the 20 byte or 40-character wide SKI represent 
the first folder.  

Listing 10 – SCA cryptographic module Key Vault 
 
This assures that max 256 directories are generated within the key vault’s root structure. Then 
within each of these directories, the subdirectories consist of the next 4 hex numbers. For test 

. 
├── 18 
│   └── 494D 
│       ├── AA1B2DFD80636AE943D9DC9FF42C1AF9D9.cert 
│       ├── AA1B2DFD80636AE943D9DC9FF42C1AF9D9.der 
│       └── AA1B2DFD80636AE943D9DC9FF42C1AF9D9.pem 
├── 3A 
│   └── 7C10 
│       ├── 4909B37C7177DF8F29C800C7C8E2B8101E.cert 
│       ├── 4909B37C7177DF8F29C800C7C8E2B8101E.der 
│       └── 4909B37C7177DF8F29C800C7C8E2B8101E.pem 
├── priv-ski-list.txt 
└── ski-list.txt 
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purpose, we do not anticipate a full number of 2!" directories but if this would be the case one 
could also reduce the second folder to only use the next 2 hex values instead, followed by 
another ‘n’ hex values. In this implementation, a 4-hex digit wide naming structure was chosen. 
Beyond that, the next layer consists of all keys, named with the remaining 34 hex numbers.  

The AS – SKI mapping for private and public keys is done using the files priv-ski-list.txt and 
ski-list.txt.  

Both files, priv-ski-list.txt and ski-list.txt as shown in Listing 11 are structured with 
the same format. The first entry is the AS number for the key, followed by “-SKI:”. After that 
follows the SKI hex value which represents a 20-byte value or 40 characters. 

Listing 11  – Content of priv-ski-list.txt / ski-list.txt 
 
The SCA API provides functionality to read and load the keys but a more secure alternative 
would be that the implementing crypto library provided the functionality for key management. 
In a future implementation, one can envision to also provide a second API interface just for 
key management.  

Our analysis of BGPsec validation performance confirmed that cryptographic processing is not 
a bottleneck, but key management is. The main problem is located in key management: Each 
BGPsec UPDATE contains an average of 4 hops and therefore 4 signatures. This means that 
the validating engine must contain a large enough key storage in memory to not permanently 
load keys from disk, which will slow down the processing due to the read and write operations 
being orders of magnitude slower than in memory. Additionally, the operation of locating keys 
within the storage adds to the bottleneck. 

5.5. BGPsec Cryptography Implementation BGPsecOpenSSL 
The SRxCryptoAPI provides an OpenSSL-based crypto implementation for BGPsec. The 
internal cryptographic implementation ECDSA within OpenSSL is not as optimized as it could 
be and validates an average of 4.7 K path segments per second which results in approximately 
1 200 UPDATEs with a length of 4 hops. This will approximately amount to 12 minutes of 
validation time for 850 K UPDATEs with an average length of 4 hops. This does lack high-
speed production grade, though this module is functioning and good enough to run smaller 
tests and serve as an example build.  

2-SKI: 47F23BF1AB2F8A9D26864EBBD8DF2711C74406EC 
5-SKI: 3A7C104909B37C7177DF8F29C800C7C8E2B8101E 
7-SKI: 8BE8CA6579F8274AF28B7C8CF91AB8943AA8A260 
50-SKI: FB5AA52E519D8F49A3FB9D85D495226A3014F627 
60-SKI: FDFEE7854889F25BF6ECB88AFAF39CE0EBC41E08 
70-SKI: C38D869FF91E6307F1E0ABA99F3DA7D35A106E7F 
80-SKI: 18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9 
90-SKI: 63729E346F7D10E3D037BCF365F9D19E074884E6 
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Figure 18 – BGPsecOpenSSL sequential cryptographic module workflow 
 
The current BGPsecOpenSSL implementation (Figure 18) validates each UPDATE and its 
segments sequentially. Here the segments are an abstracted representation of the data and 
signature needed for each validation. This can be further optimized by parallelizing both, the 
processing of UPDATEs as well parallelizing the validation of each UPDATE’s signature 
segments. Besides the cryptographic operation, loading the keys into memory is a very 
expensive operation. Caching certain keys such as the keys of immediate peers and possibly 
their peers would already amount to an estimated 50 % of the keys needed in an average 4 hop 
path.   

Further improvements can be made by stopping the update validation process as soon as an 
invalid segment is detected – though this optimization is not expected to show a measurable 
impact since otherwise it would mean most updates are invalid which in itself would not be a 
good outcome.  

The current tests were done using the BGPsec-IO implementation which allows testing the 
cryptographic validation of the implementation without the overhead of BGP processing.  
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5.6. High-Speed Implementation taraBGPsec™ 
To achieve a production-grade performance, NIST awarded an SBIR cooperative agreement 
70NANB14H289 to Antara Teknik LLC to implement a high-speed implementation module 
[24] for the SRxCryptoAPI.  

 taraBGPsecTM is Antara’s high-performance software library that implements security 
functionality for BGPsec as defined in RFC 8205. taraBGPsec is designed as a dynamical 
plugin library for the SRxCryptoAPI, the open-source reference implementation and research 
platform developed by NIST. taraCRYPT™ is Antara’s efficient cross-platform crypto library 
that provides one of the fastest Elliptical Curve Digital Signature Algorithm implementations. 
It ensures that taraBGPsec performance meets strict Internet routing table convergence 
requirements. 
 
As shown in Figure 19 a typical BGPsec sign operation includes: 1) Gathering and assembly 
of the BGPsec update data to be signed; 2) ECSDA Signature generation over the hash of the 
path data; and 3) asn1 encoding of the generated signature.  

 
Figure 19 – BGPsec sign operation steps 
 
As shown in Figure 20, a  typical BGPsec Path Verification operation includes: 1) Parsing of 
update packets and the assembly of the path segment data; 2) Parsing and decoding of 
signatures for each segment (hop); 2) Fetching required public keys with assured integrity and 
decoding for each hop; 3) ECDSA verification of the signature over the hash of each segment 
data; 4) Assembling the results of running verification on each hop. 
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Figure 20 – BGPsec verification operation steps 
 

The computational complexity of the signature generation and verification operations 
necessitate a high-performance solution. taraBGPsec is designed with advanced thread 
management mechanisms and seamlessly scales across CPU cores with an average core 
utilization of 80 %. While the average number of hops in a typical segment is around four, 
there are a substantial number of segments with one or two hops. Therefore, taraBGPsec uses 
a cognitive framework to dynamically decide on the number of available cores to utilize based 
on the load in order to minimize power consumption while sustaining high performance. Figure 
21 shows a high-level view of the taraBGPsec Operations Parallelization Manager. 

At a macro-level, the Secure Signature and Verification Operations Parallelizing Manager 
(SSVOPM) is responsible for managing and triggering the execution of the network protocol 
requests in a secure and optimized fashion. Therefore, it manages a collection of rule-based 
procedures to ascertain the optimal methods to serve the network protocol requests while 
maintaining data integrity, confidentiality, and availability. Furthermore, it creates and 
dispatches adjustable “Execution Agents,” which contain asynchronous and duty-specific 
“worker” routines, specifically optimized to available compute resources, and creates “Task 
Pools” as staging areas for tasks to be fetched by the Execution Agents. In the current 
implementation of taraBGPsec, the secure signature and verification operations parallelizing 
manager binds itself to a specific computing unit core and then creates and dispatches 
Execution Agents as threads or processes and binds each to the remaining compute cores.  
Upon receiving a sign or verify path request, the SSVOPM validates the request parameters, 
performs Intrusion Detection Mechanisms as applicable, and places task requests into a “Task 
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Pool” with the appropriate priority. The SSVOPM does not have to wait for the execution to 
complete and can issue back-to-back task requests. When an Execution Agent completes a 
task, it places the status and any output data (e.g. signature of a path) into a “Completed Task 
Pool,” and continues with the next task. The secure signature and verification operations 
parallelizing manager is responsible for managing the results in the “Completed Task Pool” 
and fulfilling the original network protocol request.  

 

 
Figure 21 – taraBGPsec Operations Parallelizing Manager 
 
The SSVOPM performs its operations based on a customizable rule-based configuration. This 
configuration mechanism provides flexibility, scalability, and adaptability to future protocol 
changes. Certain rules establish priorities and define the type and performance characteristics 
of network crypto operations. For example, when a path verification request for multiple 
segments is received, the SSVOPM could place that request in the Task Pool as individual 
segment verifications using a certain curve in order to exercise multiple Execution Agents to 
maximize the system throughput. Other rules could define the processes for periodic key 
rollover and emergency key rollover operations. Additionally, configurable Intrusion 
Detection System (IDS) rules provide a flexible mechanism to harden the system against 
known and future attacks. In one embodiment, the secure signature and verification operations 
parallelizing manager uses a reasoning system with forward and backward chaining inference 
engines. 
Execution Agents are configured to embody a finite list of duty-specific worker routines and 
associated priorities based on the network protocol features. In the case of BGPsec, these 
worker routines could be defined as signing and verifying a path with ECDSA P-256, or with 
another signature algorithm.  Furthermore, Execution Agents may also contain asynchronous 
worker routines for lower-level functions such as random number generation, public key 
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integrity check, and pre-calculations. Since the worker routines are specialized to execute 
specific functionality, they can be optimized to a much greater extent than generic functions. 
Depending on the overall protocol requirements and system capabilities, the Execution Agents 
can be populated at initialization or system run-time with an identical list of worker routines 
or contain different sets of optimized worker routines. 
Any available Execution Agent can take and execute the next priority task in the Task Pool, 
ensuring system resource maximization as long as network tasks are available. However, due 
to the sporadic nature of network operations, there could be periods, which could be only a few 
milliseconds to several seconds at a time, where no network tasks are available in the Task 
Pool. The novel asynchronous worker routines embodied in the Execution Agents, 
autonomously use these periods to perform certain pre-calculations, which generate pre-
computed data to be used as inputs by higher-level functions in order to maximize the overall 
system throughput.   
In order to be interoperable and compatible with SRxCryptoAPI, taraBGPsec conforms to a 
strict API structure which is as shown in Table 4. 
 

 
Table 4 – taraBGPsec SRx compatible API 
 
Along with System-Level cognitive parallelization optimizations, taraBGPsec also utilizes 
Algorithmic Level Optimizations such as early termination during signature validation. As 
soon as an invalid segment is detected, signature verification of any remaining segments is 
aborted.  

Since BGP update messages must be cryptographically signed and verified, BGPsec requires 
real-time line-speed cryptographic operations on BGPsec path announcements. Given the large 

Function Visibility Type Description

taraBGPSec_SystemInit External System	Utility
Provides	library	initialization	based	on	configuration	parameters.	Performs	
hardware	capabilities	check,	initializes	the	crypto	subsystem,	runs	self-test	
and	optionally	initializes	and	runs	Execution	Agents	and	batch	loads	keys.

taraBGPSec_SystemRelease External System	Utility Releases	the	crypto	subsystem,	obliterates	confidental	data	structures,	
and	if	present,	stops	and	releases	Execution	Agents

taraBGPsec_RegisterPrivateKey External Key	Management Checks	provided	private	key	for	validity	and	securely	registers	it.	
taraBGPsec_unRegisterPrivateKey External Key	Management If	the	private	key	was	registered,	unregisters	the	key	and	obliterates	any	

memory	used	to	store	it.
taraBGPsec_RegisterPublicKey External Key	Management Checks	the	provided	public	key	for	validity,	pre-computes	the	public	key	

data,	and	registers	it.
taraBGPsec_unRegisterPublicKey External Key	Management If	the	public	key	was	registered,	unregisters	the	key	and	releases	any	

memory	used	to	store	it.
taraBGPsec_LoadKeys Internal Key	Management Provides	batch	registering	of	private	and/or	public	keys	(file	based).
taraBGPsec_genOriginMessage Internal Data	Management Constructs	an	Origin	Update	Message	per	BGPsec	specification.
taraBGPsec_genMessage Internal Data	Management Constructs	an	Update	Message	per	BGPsec	specification
taraBGPsec_Verify External Protocol	Feature Verifies	the	signatures	in	a	received	valid	path	using	approved	algorithms	

(currently	ECDSA	P-256).	Supports	up	to	two	algorithms.	Supports	Early	
Termination	and	Mitigation	of	Denial	of	Service	functionality	as	described	
in	the	BGPsec	specification.

taraBGPsec_Sign External Protocol	Feature Generates	signatures	using	using	approved	algorithms	(currently	ECDSA	P-
256).	Supports	Robutsness	of	Secret	Random	Number	in	ECDSA	as	
described	in	the	BGPsec	specification.

taraBGPsec_initExecAgents Internal Thread	Management Initializes	and	binds	execution	agents	using	configuration	parameters,	
system	capabilities	and	configuration	rules.	Agents	can	be	set	as	
SignAgents,	VerifyAgents,	or	UtilityAgents.

taraBGPsec_runExecAgents Internal Thread	Management Dispatches	initialized	agents.	Agents	are	active	only	when	there	is	work	
available.

taraBGPsec_releaseExecAgents Internal Thread	Management Releases	any	running	execition	agents.
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size of the global Internet BGP routing table and strict response time necessity for re-
convergence following router reboots, this additional requirement causes a major performance 
challenge due to the fact that most currently deployed router control plane hardware does not 
have the processing power to handle these cryptographic-intensive computations.  

As specified in RFC 8608 Section 2.2.1, ECDSA P-256, a curve that has been used extensively 
in critical infrastructure projects, is being used as the Digital Signature Algorithm curve for 
the BGPsec protocol. The performance efficiency of ECDSA P-256 is imperative to meet strict 
Internet routing table convergence requirements. taraBGPsec utilizes the highly efficient P-
256 signature generation and verification functionality of the taraCRYPT library. 

taraCRYPT is a self-contained module for the low-level crypto functions that are needed to 
efficiently and securely implement ECDSA and key management functions. It is designed with 
standard interfaces so that it can be validated using the industry-accepted NIST Algorithmic 
Validation process. taraCRYPT’s ECDSA implementation embodies several novel 
optimizations at algorithmic, group, and field levels.  

There has been considerable research conducted to increase the security and the performance 
of ECDSA algorithms. Side-channel-attack resilience needs to be inherently built into core 
functions where applicable in an optimized fashion, rather than included as an after-thought. 
Performance can be increased via algorithmic or mathematical methods as well as with the 
facilitation of target platform features with low-level implementation techniques. 

At the algorithmic level, the ECDSA sign algorithm requires the generation of (k, k−1), a per-
message secret number, and its inverse modulo n. To properly generate (k, k−1) could take 
around 20 000 cycles or higher in a typical implementation. However, this part of the process 
does not depend on the contents of the message to be signed. In use-cases where it is important 
to reduce the latency of signing a message (e.g. cycles or time taken to return a signature after 
a request to sign a message is issued), (k, k−1) can be pre-computed, per FIPS-186-4 Section 
6.3 [28], using one of many available secure methods.  

At the group level, the scalar multiplication consumes the bulk of the evaluation time for 
signature generation and must be implemented carefully to ensure that it does not inadvertently 
leak information about the secret scalar. For the ECDSA sign operation of prime curves, the 
point used in the multiplication phase is always the base point G, which is a known value and 
can be pre-calculated. This method can be extended for use with multiple known points, such 
as in signature verification for substantial performance gains. 

For ECDSA, performance depends directly on the implementation of the multiple-precision 
arithmetic functions required to support the group-level algorithms.  All field operations are 
performed modulo an associated prime number. Therefore, support for signed integers is not 
necessary, which substantially simplifies the implementation of the field functions.  At the 
minimum, functions are needed for comparison, addition, subtraction, squaring, multiplication, 
modular reduction, and modular inversion. Optimizing these functions inherently increases the 
performance levels. 
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Other BGPsec performance optimization techniques such as caching already computed AS 
path segments and their BGPsec signature validation results have been studied [36]. These 
techniques may be considered in future enhancements of NIST BGPsec implementation.     

5.7. Performance Measurements Using the High-Speed taraBGPsec and taraCRYPT 
Module 

The AS path validation provided by the BGPsec protocol requires each AS in the path to 
cryptographically attest that it intentionally sent the update in question to the subsequent AS 
in the path. The attestation is done by means of adding a digital signature to the update. As 
described in previous sections, Elliptic Curve Digital Signature Algorithm (ECDSA) P-256, a 
prime curve that has been used extensively in critical infrastructure projects, is being used for 
AS path signing and verification in the BGPsec protocol. The performance efficiency of 
ECDSA P-256 is imperative to meet strict Internet routing table convergence requirements. 
Thus, the viability of BGPsec adoption is dependent on the availability of high-performance 
implementations of ECDSA P-256. 
taraCRYPT’s ECDSA implementation embodies several novel optimizations at algorithmic, 
group, and field levels. taraCRYPT has been extensively tested on various Intel x86-64 based 
platforms as well as ARMv8 (AARCH64). To obtain qualitative results, performance analysis 
and evaluation of the proposed optimizations have been performed on a platform with the 3.5 
GHz Intel Xeon E3 1285v4 (Code name Broadwell) CPU with 16 GiB of RAM and CentOS 
7. Additional performance tests have also been completed with the 3.8 GHz Intel Xeon E3 
1270v6 (code name Kabylake) CPU with 16 GiB memory and CentOS 7. Both systems utilized 
Enterprise quality 6Gbps Intel SSD hard drives (model DC S3500 Series 240GB). These 
processor architectures and system components are relevant to the latest routing engine 
processors offered by leading Edge Router providers.  

A set of repeatable performance tests have been run on signature generation and verification 
operations. The performance tests are available to licensed users of the taraCRYPT software. 
Each operation is run 6 000 times and the median cycles are captured to calculate the effective 
rate of operations per second. The message size used is nominal 1024 bytes. All tests are run 
on a single core with both HyperThreading and Turbo turned off. Note that both curve P-256 
and P-384 results are included to show the applicability of the optimizations to higher security 
strength curves. Median cycles, rather than average cycles, are captured since the underlying 
Operating System processes are not deterministic and may skew performance runs. 

Table 5 shows the baseline (prev.) Sign and Verify operation performance (either with 
provided or generated message Hash), as well as the current performance after applying 
optimizations (current).  The processor is a XEON E3-1285 v4 3.5 GHz (Single Core). 
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ECDSA Operations (Ops) prev. P256 
(ops / s) 

current P256 
(ops / s) 

Ratio prev. P384 
(ops / s) 

current P384 
(ops / s) 

Ratio 

Sign Op with provided Hash 46 192 64 696 1.40 19 434 25 588 1.31 

Sign Op including Hash generation 40 076 54 401 1.36 18 163 24 131 1.33 

Verify Op with provided Hash 32 895 46 933 1.43 10 955 17 548 1.60 

Verify Op including Hash generation 29 521 41 219 1.40 10 707 16 886 1.58 

Table 5 – Signing and verification speeds for taraEcCRYPT (single core) 
 
Table 6 compares the original Sign and Verify performance obtained on 3.5GHz Intel Xeon 
E3 1285v4 vs. the current generation 3.8GHz Intel Xeon E3 1270v6 (Single Core) using the 
current implementation. 

ECDSA Ops prev. P256 
(ops / s) 

current P256 
(ops / s) 

Ratio prev. P384 
(ops / s) 

current P384 
(ops / s) 

Ratio 

Sign Op with provided Hash 46 192 73 706 1.60 19 434 28 920 1.49 

Sign Op including Hash generation 40 076 63 036 1.57 18 163 27 532 1.51 

Verify Op with provided Hash 32 895 59 530 1.81 10 955 20 750 1.89 

Verify Op including Hash generation 29 521 49 760 1.69 10 707 19 068 1.78 

Table 6 – Signing and verification speeds for taraEcCRYPT (single core) 
 
Key Generation performance on the gateways/servers may also be considered an important 
characteristic. Table 7 shows the Key Generation Performance for both P-256 and P-384 on 
an Intel XEON E3-1270v6 3.8GHz (Single Core). 

 
ECDSA Ops P256 

(ops / s) 
P384 

(ops / s) 
Key Generation 85 631 32 132 

Table 7 – Key generation speed for taraEcCRYPT (single core) 
 
Routing table convergence time for BGP is a commonly used performance metric for 
measuring BGP router performance. The BGPsec protocol is a security extension for the 
traditional BGP (BGP-4) protocol. Therefore, the overall BGPsec routing table convergence 
time will continue to include a traditional BGP processing component that consists of (1) best 
path selection, (2) peering policies, (3) route filtering, (4) RIB management, etc. Additionally, 
the overall convergence time will include a BGPsec processing component that consists of (1) 
parsing BGPsec updates, (2) data assembly for hashing, (3) fetching public keys, (4) 
verification of signatures, (5) signing updates to peers, etc. The performance of the traditional 
BGP component varies significantly in the real world BGP routers or route servers (e.g. IXPs 
or Internet numerous other operational details that are operator configured). In this study, the 
focus is only on the incremental CPU cost (e.g. processing time) due to the BGPsec component 
that was described above. 
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A BGPsec update typically has multiple signatures (one per hop) and an update is Valid only 
when all its signatures have been successfully verified. So, the BGPsec update processing 
speed for verification is inversely proportional to the AS path length. The maximum AS path 
length seen in updates forwarded by a large global ISP based on updates originated from ASes 
within its customer cone is typically 8 or 9. Based on BGP Update Reports published online 
weekly, the  average AS path length (after compressing AS prepends) is about 4 (3.77) in the 
Internet [39].  

Figure 22 shows the taraBGPsec Path Verification operation performance with P-256 running 
in parallel on a Xeon E3 1285v4 3.5 GHz as a function of #cores.  

 

 
Figure 22 – taraBGPsec Segment signature verification performance over CPU cores 
 
As the results indicate, the sustained multi-core performance of taraBGPsec will minimize the 
additional time required for BGPsec processing and thus maintain an acceptable BGP routing 
table convergence time. 

 Traffic Generation with BGPsec-IO 

BGPsec-IO (BIO) is a BGPsec traffic generator that allows the generation of multi-hop fully 
signed BGPsec UPDATE messages as specified in RFC 8205. As illustrated in Figure 23, the 
BGPsec Path Attribute can either be embedded in a BGPsec UPDATE message to be sent to a 
peering BGPsec capable router, used directly to perform validation calls to test configured 
SRxCryptoAPI crypto module, or stored in a file for later retrieval. BIO uses its own internal 
crypto engine based on OpenSSL using the signing algorithm specified in RFC 8608.  
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Hooks are already in place to allow BIO to facilitate the integration of the SRxCryptoAPI for 
update signing. These hooks are currently not completely implemented, so BIO uses its own 
implementation for UPDATE signing.  
 
To eliminate the computation of multi-hop fully signed BGPsec UPDATEs, BIO allows to pre-
generate traffic and store it as a binary stream for later retrieval or to generate BGP and BGPsec 
UPDATE traffic “on the fly”. This is important when it comes to performance testing of 
BGPsec router implementations. Using pre-generated BGPsec UPDATEs removed the crypto 
and marshaling operations. Therefore, the only slowdown is the I/O speed of loading the data 
from the drive to the memory which can be drastically reduced by using SSD drives or RAM 
drives. 

 
 
Figure 23 – BGPsec-IO functional design  
 
Besides generating fully signed BGPsec UPDATEs, BIO is capable of using both iBGP and 
eBGP configurations. This is important because both types of sessions are handled differently 
within the BGPsec protocol. iBGP sessions are BGP sessions within an AS whereas eBGP 
sessions are BGP sessions between two different ASes. 

In case of missing keys which will lead to unsuccessful signed BGPsec paths, BIO allows to 
specify different fallback solutions: 

(1) Generate a regular BGP-4 UPDATE, 
(2) Generate BGPsec UPDATE with “fake” signature using “fake” SKIs, or 
(3) Ignore the UPDATE generation completely. 

 
The first solution is the same as the operation a BGPsec speaker does when talking to a non 
BGPsec speaker RFC 8205. 
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The second solution allows testing the correctness of BGPsec implementations by allowing the 
operator to pre-script the signature and SKI.  

To allow scripting interesting scenarios of BGP traffic where BGP UPDATEs and BGPsec 
UPDATEs are mixed together, BIO allows specifying updates to be sent as BGP-4 UPDATEs 
only as specified in RFC 4271. 

Furthermore, BIO allows producing Wireshark-like outputs of sent and received BGP 
messages. This includes OPEN, NOTIFICATION, KEEP-ALIVE, and UPDATE messages. 

6.1. BGPsec-IO and Session Handling 
The original intent for BGPsec-IO was to develop a BGPsec capable traffic generator that 
could be used to test QuaggaSRx as well as the simultaneously developed BIRD [13] 
implementation. In addition, the plan was to have a single test engine that not only could 
generate multi-hop signed BGPsec UPDATEs, but also take the role of multiple BGPsec traffic 
generators, each assuming the role of a different AS. For this reason, the BIO configuration 
allows scripting multiple sessions. The implementation to read multiple session configurations, 
as well as the internals, is already put in place, though mostly not activated using define 
statements within the codebase. The reason for that is that these portions in the code are barely 
tested.  

As shown in Figure 24, BIO can be operated in a different way. Instead of operating one single 
BIO instance per platform, multiple instances can be operated on one single platform as well. 
The only requirement to configure a distinct routable IP address for each BIO instance. 

Figure 24 – Single use system  
 
This can be achieved by either adding network interface cards or the simpler form of 
configuring interface aliases. Each physical interface can have multiple aliases bound to it with 
each alias providing its own IP address. BIO does bind itself to the interface that serves as the 
IP address configured in the session configuration (see Appendix A.3.1). Binding to the 
interface is possible because BIO does not listen on port 179, specified as the dedicated port 
for BGP. BGP sessions with BIO will be initiated only by BIO. To reduce unnecessary BGP 
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traffic, the router Implementation Under Test (IUT) should be configured to operate in 
“passive” mode. In this mode, the IUT will not attempt to send an OPEN message to BIO. 
Though this configuration for the UIT is not required. 

6.2. Generation and Handling of BGP / BGPsec UPDATEs 
BGPsec-IO is built to generate fully signed multi-hop BGPsec UPDATEs that can be sent to a 
BGPsec capable router as well as being used to test and evaluate the performance of BGPsec 
cryptographic implementations. One major requirement is to be able to generate updates 
simply from a string that contains the prefix and as-path. As shown in Figure 23 BIO accepts 
four different forms of update specification: 

(1) Via command line passing updates during the program call, 

(2) Via the configuration file – session section and global section, 

(3) From the standard input, when “piped” into the program, and 

(4) From a file containing pre-generated in protocol encoded binary format – as 
UPDATEs and/or PATH_ATTRIBUTEs  

This section will further elaborate on how updates are scripted, generated, and what additional 
features are possible. 

 Scripting of UPDATEs 
Independently of the source of scripted UPDATEs, each update must follow the syntax as 
shown in Listing 12. 

Listing 12 – BGPsec-IO Scripted UPDATE format 
 
The most important information to remember is that BIO does insert its own AS into the 
UPDATE. The only exception here is if BIO originates the UPDATE and sends it to an iBGP 
peer. In this case, BIO does not generate the AS_PATH attribute as specified in RFC 8205 
Section 4.1 or RFC 4271 Section 9.1.2.2 respectively. 

The minimum information the scripted UPDATE must provide is the prefix itself. This is also 
done if the prefix is considered being originated by the AS that BGPsec-IO is configured as. 
The prefix and the path information must be separated by a comma.  

By default, BIO attempts to generate a BGPsec encoded UPDATE. As shown in Listing 13, 
the parameter B4 directs BIO to not generate a BGPsec update but generate a BGP-4 update 
instead. This allows testing a mixture of BGP-4 and BGPsec UPDATEs which most likely will 
be seen in the early stages of BGPsec deployment. It also allows generating BGP-4 only traffic 
for scenarios where BGPsec is not important but the focus is on testing of signaling BGP-OV 
validation results as specified in RFC 8097. This setting was extensively used for the National 
Cybersecurity Center of Excellence (NCCoE) project “Protecting the Integrity of Internet 

“<prefix>[,[B4]?[ <asn>[p<repetition>]]*[ ]*[I|V|N]?]” 
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Routing” published in NIST Special Publication  1800-14A [29]. The absence of the B4 
attribute directs BIO to generate BGPsec UPDATEs 8. 

Listing 13 – Scripting BGP-4 UPDATEs 
 
In BGPsec, UPDATEs with AS number concatenations are scripted differently than in BGP-4. 
As shown in Listing 14, to extend the path length, whereas BGPsec uses a prefix counter called 
pCount to mimic the number of repetitions of the UPDATE. 

Listing 14 – Simplified UPDATE concatenation BGP-4 vs BGPsec 
 
BIO does accept both notations (repetition of the AS number or using the pCount value). The 
notation in BIO is shown in Listing 15. 

Listing 15 – UPDATE concatenation in BIO 
 
Regardless of how it is scripted, BIO will use the AS-number repetition for BGP-4 UPDATEs, 
and will generate the proper pCount value for BGPsec UPDATEs.  

As mentioned in the introduction of this section, BIO implements RFC 8097. This feature must 
be enabled on a “per UPDATE” basis. BIO does not perform BGP-OV, but it allows to specify 
the validation result within the scripted update.  

As shown in Listing 16 the validation result is indicated at the end of the UPDATE’s path 
using  I=invalid, V=valid, or N=not found. Only a single result is permitted per update. 

Listing 16 – Signaling route origin validation result. 
 
Updates can be scripted in multiple areas: 

• the configuration file, 

• as a piped list using STDIN, or 

• or as a command-line parameter.  

 
8 In case BIO is not able to generate a fully signed BGPsec UPDATE due to a missing or faulty key, BIO will resort to the fallback method 
as specified in the configuration. 

  “192.0.2.0/24, B4”, 
  “192.0.2.0/24, B4 65535 65536” 

BGP4:   65536 65536 65536 65536 65536 65536 65537 
BGPsec: 65536 pCount=6 65537 
 
 

Regular Expression: [I|V|N]? 
Usage: “192.0.2.0/24, 65536 I” 

Regular Expression: [ <asn>[p<repetition>]]* 
Without pCount....: 65536 65536 65536 65536 65536 65536 65537 
With pCount.......: 65536p6 65537 
Using Both........: 65536p4 65536 65536 65537 
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If scripted within the configuration file, it can be scripted in two separate sections: the router 
configuration or the global configuration. At this time, only a single router can be configured, 
therefore it does not really make a difference where in the file UPDATEs are scripted. It is 
envisioned that BIO can create multiple BGP / BGPsec sessions to the same router but as 
different peers. Once this feature is activated then the session specified UPDATEs are only 
generated for that specific section, but the global section is applied to all instances.  

In the case of scripting the UPDATEs within the configuration file, UPDATEs are scripted 
inside an array as shown in Listing 17. 

Listing 17 – UPDATEs Scripted within the configuration. 
 
If UPDATEs are passed using the “piping” function (for instance processing an MRT file and 
passing the UPDATEs to the runtime environment) each UPDATE must be provided in its 
own line.  

The final form of scripting UPDATEs in BIO is by using either of the command line options: 

 -u “<prefix, path>” or “--update <prefix, path>” 

A comprehensive list of command line parameters for BIO is listed in Appendix A.3.2. 

 Update Generation and Processing Order 
As mentioned earlier, BGPsec-IO has four different methods of retrieving UPDATE data:  

(1) by command line, 

(2) by scripting,  

(3) by “piping” and  

(4) by loading from file.  

How to pre-generate UPDATEs is explained in detail in Section 6.4.2. It is important to fully 
understand the order in which BIO generates UPDATEs, especially if they are used to generate 
BGP and BGPsec traffic. For this, the guarantee of a deterministic behavior of UPDATE 
processing is essential. The ability to run diagnostics and being able to debug through a 
deterministic message flow is highly important. Experiments might be carefully scripted 
around the order of received UPDATEs. The configuration and operations between BIO and 
BGP/BGPsec speakers are explained in detail in Section 6.1 of this document.   

Update = ( 
  “192.0.2.0/24”, 
  “192.0.3.0/24, 65536 65536 65537”, 
  “192.0.4.0/24, 65536p2 65537”   
); 
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The following list shows the order in which UPDATEs are generated and processed. 

(1) Command line    (first session only) 

(2) Scripted in configuration file  (session specific config) 

(3) Scripted in configuration file   (global config) 

(4) Piped in via STDIO   (first session only) 

(5) Loaded from binary file  (first session only) 

In case a binary file is used to load BGPsec UPDATEs, it is to note that only stored BGPsec 
path attributes are used in the SCA C-based API (CAPI) mode. Stored BGPsec UPDATEs will 
not be parsed to retrieve the BGPsec Path Attribute.  

The internal operations of the UPDATE “Cache” within BIO as shown in Figure 25 is built 
like a First-In-First-Out (FIFO) queue. In fact, to the caller of the UPDATE queue, it appears 
to be just that. The internal queue implementation is much more complicated though, especially 
as we did not want to require loading all UPDATEs into the memory. This could be very 
memory intensive if BIO is meant to send complete BGP tables to a router.  In configurations 
where multiple BIO instances run on the same physical test system as the peering router, it is 
important to keep the memory consumption of BIO moderate to low. The less memory BIO 
consumes, the more memory is available for the router implementation under test (IUT). In 
cases where BIO operates in a “live” mode, that means where an external traffic generator 
generates UPDATEs occasionally without an end in sight, waiting until the UPDATE is 
generated prior to sending them to the IUT would be unreasonable.  

 
Figure 25 – BIO UPDATE stack inner workings. 
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As shown in Figure 25, BIO implements an internal data retrieval process. From the outside, 
this process acts as a FIFO stack API. The data structure is loaded in the following manner: 
First, BIO loads all scripted updates provided via the command line parameter. These are the 
first ones to be retrieved. This allows to easily inject updates in front of scripted scenarios. 
After that, all updates scripted in the session section are configured, followed by all updates in 
the global section. At the time of this document, support for multiple sessions is not fully 
implemented and therefore all existing code for multiple sections is disabled using define 
statements.  

The last section contains global scripted updates. These are the updates that are loaded 
regardless of which session is configured. Only once all these updates are consumed, BIO starts 
polling the standard input. This is when so-called “piped” updates are written. This can be 
accomplished using the provided tool “bio-updates.sh” which is explained in more detail in 
Appendix A.3.3. This tool allows generating many updates, including AS path and writes them 
one by one to standard out (STDOUT), each in its own line. Using the pipe “|” symbol allows 
redirecting the STDOUT of this tool into the standard in (STDIN) of the BGPsec-IO program 
“bgpsecio”. Then, during Step 2 of the flow shown in Figure 25, the data will be retrieved from 
the STDIN once no further scripted updates are available. As soon as all data is read from 
STDIN, pre-generated UPDATEs and BGPsec PATH attributes are loaded and processed. The 
last step will not be performed in GEN mode and only partially in CAPI mode. The modes will 
be explained in detail in Section 6.4 

6.3. The Internal Cryptographic Engine 
The internal Cryptographic Engine within BIO is only used for signature creation and can be 
configured with four different settings: 

• CAPI: This setting uses the SRxCryptoAPI (CAPI) mode. This mode is not fully 
operational for signature generation but is used extensively for signature verification. 

• BIO: This mode specifies the BGPsec-IO internal crypto implementation. This 
implementation was developed autonomously from the BGPsecOpenSSL 
implementation by a different developer, without any code sharing. This was important 
to verify that the crypto algorithm can be developed independently and produce the 
same outcome.  

• BIO-K1 / BIO-K2: Same as BIO with the exception that BIO allows selecting between 
two constant values for ‘k’. 

Listing 18 displays how the signature generation is configured.  

Listing 18 – Configure BIO signature configuration 

signature_generation = "BIO-K1"; 
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Even though the BIO’s configuration engine allows to configure CAPI mode for signature 
generation, BIO currently can only use its own BGPsec-IO’s embedded cryptographic 
implementation. Though the core functionality exists within BIO’s implementation that allows 
using SCA for exact that operation using the CAPI setting for signature creation, this feature 
was put on hold to make room for parts of the implementation deemed more critical. Currently, 
using this functionality produces the message shown in Listing 19. 

Listing 19 – CAPI signature creation error BIO 
 
One of the more pressing required features was finding a solution to generate deterministic 
signatures using ECDSA. In general, ECDSA is non-deterministic. This characteristic of 
ECDSA makes it very difficult for debugging or analyzing an IUT in case it behaves 
unexpectedly. RFC 6979 Section A2.5 [30] provides settings for ECDSA that address exactly 
this issue. It provides two specific values for “k” as shown in Table 8 that are used for the 
algorithm to be deterministic. 

Mode Description / Value 

 

BIO-K1 

Signatures With SHA-256, message = 'sample' 

0xA6, 0xE3, 0xC5, 0x7D, 0xD0, 0x1A, 0xBE, 0x90, 
0x08, 0x65, 0x38, 0x39, 0x83, 0x55, 0xDD, 0x4C, 
0x3B, 0x17, 0xAA, 0x87, 0x33, 0x82, 0xB0, 0xF2, 
0x4D, 0x61, 0x29, 0x49, 0x3D, 0x8A, 0xAD, 0x60 

 

BIO-K2 

Signatures With SHA-256, message = test 

0xD1, 0x6B, 0x6A, 0xE8, 0x27, 0xF1, 0x71, 0x75,  
0xE0, 0x40, 0x87, 0x1A, 0x1C, 0x7E, 0xC3, 0x50, 
0x01, 0x92, 0xC4, 0xC9, 0x26, 0x77, 0x33, 0x6E, 
0xC2, 0x53, 0x7A, 0xCA, 0xEE, 0x00, 0x08, 0xE0 

Table 8 – “k” value from RFC 6979 
 
This very helpful value allows the generation of reproducible and therefore deterministic 
signatures for testing and debugging cryptographic implementations on the client-side 
(BGPsec router) or cryptographic implementation for SCA. Even though this configuration is 
very helpful, it must not be used in production environments because it will allow to identify 
the private key and therefore render the security useless! 

An additional important feature is the capability to specify the behavior in case BIO itself does 
not have a valid private key. This situation can be intentional but, as the nature of 
experimentation often shows, it is sometimes unintentional. Table 9 shows the different 
fallback methods BIO provides in the event of an unsuccessful BGPsec signature creation. 

 

Function "CAPI_createSignature" is not prime time ready!ERROR: 
Registering public key: 
ERROR: 0x10000 
       8 4 2 1 8 4 2 1 
       0 0 0 0 0 0 0 1 
                     | 
                     +--API_STATUS_ERR_NO_DATA 
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Fallback Mode Description 

BGP4 Skip BGPsec generation and generate a regular BGP-4 UPDATE 

DROP Skip all UPDATE generation and drop this update 

FAKE Generate an UPDATE with a predefined SKI as well as a predefined 
signature that can be traced in TCP dumps 

Table 9 – BIO signature generation fallback mode “null_signature_mode” 
 
The first solution “BGP4” was implemented at a time when update scripting did not include 
the specification “B4” to generate BGP-4 UPDATEs. Until the introduction of the parameter 
“B4” during update scripting, the only possible form of generating BGP-4 updates was to use 
an AS in the path that did not provide a private key. There the BGPsec UPDATE generation 
failed and the fallback method was to generate regular BGP UPDATEs. This is unsustainable 
because preparing the generation of BGPsec UPDATEs up to the moment where the fallback 
gets executed, the costs of generating the BGPsec Path Attribute is very high in comparison 
with the generation of a simple AS_PATH attribute. Experimentation of 5 %, 10 %, or 15 % 
BGPsec deployment rate still would mean at least 85 % of UPDATEs generated would 
generate large portions of the BGPsec Path Attribute. For experiments that facilitate “piping” 
and inline BGPsec UPDATE generation, this process adds an avoidable slowdown in 
processing. Still, this setting provides a meaningful solution for debugging. Problems with the 
dataset can easily be found by searching the TCP stream for the existence of BGP-4 UPDATEs 
(assuming no updates are scripted using the B4 flag). 

The second option is to “DROP” the update completely.  

The third option specifies generating a “FAKE” signature. This is an extremely useful feature, 
especially for analyzing the correctness of BGPsec implementations. Both, the SKI as well as 
the Signature are preconfigured within the configuration script as shown in Listing 20.  

Listing 20 – FAKE signature creation 
 
It is very important that the signature must be within the range of 69 to 71 bytes scripted in 
hexadecimal values with 2 values per byte and the value for the SKI must be exact 20 bytes 
scripted in 40 hexadecimal values. 

This allows specifying signatures that must fail on the receiver’s side – and if they do not that 
indicates that the IUT does not use a correct signature verification algorithm. Furthermore, 
being able to freely specify both the SKI as well as the signature itself prevents a hard-coded 

null_signature_mode = "FAKE"; 
fake_signature      = "1BADBEEFDEADFEED" "2BADBEEFDEADFEED" 
                      "3BADBEEFDEADFEED" "4BADBEEFDEADFEED" 
                      "5BADBEEFDEADFEED" "6BADBEEFDEADFEED" 
                      "7BADBEEFDEADFEED" "8BADBEEFDEADFEED" 
                      "ABADBEEFFACE"; 
fake_ski            = "0102030405060708" "090A0B0C0D0E0F10" 
                      "11121314"; 
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detection of intentionally scripted invalid updates. It also allows to easily find the UPDATE in 
TCP traces.  

6.4. BGPsec-IO Operational Modes 
BGPsec-IO operates in three different modes. As shown in Figure 26, the first mode is CAPI,  
used to test cryptographic modules that perform all BGPsec operations and are embedded 
within the SRxCryptoAPI. The second mode is GEN, which generates BGP / BGPsec related 
UPDATE data as found on the wire. The third and last mode, BGP, is the mode in which BIO 
takes the role of a BGP router. 

 
Figure 26 – BGPsec-IO modes 
 
The mode is normally selected within the configuration but can be modified using the 
command line parameter -m followed by the mode itself. The following subsections explain 
each mode in more detail. 

 CAPI Mode 
The CAPI mode is the SRxCryptoAPI performance and correctness tester mode. It can be used 
for functionality tests of the crypto module by providing valid and invalid BGPsec UPDATEs. 
Additionally, it allows measuring the performance of the API by measuring the time that 
elapses from function call to result.  

As shown in Listing 21, BIO generates output for valid and invalid updates. This particular run 
was performed on a Proxmox [35] virtual machine with 12 MiB of RAM and 12 cores using 
the BGPsecOpenSSL implementation. 

Listing 21 – CAPI statistics output 

Statistics Invalid: 
===================== 
  0 updates (0 segments) in 0 ns processed 
  - average time per update:  0 ns 
  - average time per segment: 0 ns 
  - average number of segments per update: 0.00 
 
Statistics Valid: 
===================== 
  100001 updates (500001 segments) in 103893353503 ns processed 
  - average time per update:  1038923 ns 
  - average time per segment: 207786 ns 
  - average number of segments per update: 4.00 
  - segments per second: 4812 
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When measuring performance, BIO does not include the time for UPDATE generation, as BIO 
only measures the time from the start of the validation call to the time the validation call 
returns.  

As shown in Figure 27, BGPsec-IO first loads all the scripted updates. Then it generates the 
BGPsec_PATH and prefix and hands the information over to SCA. The only time that will be 
measured is the time that elapses from making the function call (t1) to the return of the program 
pointer (t2). This call is a direct mapping into the cryptographic implementation. In the case of 
BGPsecOpenSSL, portions of the SCA are used, such as key loading and Path processing. 
Other implementations may or may not use any of these helper functions provided by SCA. 
The recorded time is t = t2 – t1. 

 
 
Figure 27 – CAPI performance measurement 
 
In the case of “piped-in” updates or updates loaded from files, BIO does not pre-load these 
updates. They will be loaded one by one in between each validation call. The condition “repeat 
for each update” is in fact the call to the update stack which is explained in detail in 
Section 6.2.2. 

At this point, BIO does not provide performance tests of SCA signing operations. The 
implementation for this mode is incomplete and not fully tested. 

 GEN-[B|C] Mode 
The GEN mode was designed originally to be able to generate reference data that can be 
archived and reused. At that time, BIO did not provide the BIO-K1 or BIO-K2 modes for 
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generating signatures and therefore the generation of BGPsec data was non-deterministic. The 
simplest solution at that time was to generate the BGPsec data and store it in its binary format 
as specified in the respective RFCs. For this, BIO provided a single GEN mode that stored the 
BGPsec_PATH attribute as specified in RFC 8205. This way, BIO could immediately use this 
data and perform the validation call using the SRxCryptoAPI. More importantly, the 
experimentation immediately became deterministic, as it became possible to generate reference 
data that could be used to test crypto implementations. Experiments can be repeated with the 
exact same input data, which is very important, especially when unexpected results are seen 
which need to be reproducible. This would be almost impossible using a non-deterministic 
behavior.  

Once the BGP mode (see Section 6.4.3) was implemented, it became clear that for testing a 
BGPsec peer, it would be useful to have already the complete BGPsec UPDATE available and 
therefore eliminate the processing time to generate the rest of the UPDATE itself. This 
becomes very important if BIO is used to test implementation performance improvements in 
the peer’s implementation, especially if the bottleneck would be BIO’s UPDATE signing 
(remember that BIO not only signs the same update once, a five-hop update needs to be signed 
five times; longer paths even more often). 

At this point, the mode GEN was split into GEN-C that only generated BGPsec-PATH 
information for CAPI usage, and GEN-B which generates the complete BGPsec UPDATE. 
With GEN-B, BIO can immediately copy the data from the file input stream into the TCP 
output stream. This allows to preconfigure experimentations and store the updates in a file for 
replay. This allows running BIO on platforms that are not very powerful when it comes to 
cryptographic operations. Here the bottleneck is most likely in the IO speeds, which can be 
fixed using SSD or RAM drives.  

In addition to each data entry, BIO stores the public keys needed to verify the signatures. Now 
for replaying data, BIO can use both data types C and B when operating the BGP mode. If the 
binary data only contains the BGPsec_PATH attribute including the Prefix information, BIO 
can generate the remaining missing part to complete the BGPsec UPDATE message. When 
operating in CAPI mode, BIO only uses GEN-C generated data packages. Theoretically, it 
would be possible to just extract the CAP relevant data from the BGPsec UPDATE, but it was 
not implemented.  

 BGP Mode 
The BGP mode allows BGPsec-IO to function as a BGP / BGPsec speaker. In BGP mode, BIO 
provides not just BGPsec functionality: It can be used as a traffic generator as well as a traffic 
collector. It is possible to test the functionality of BGP-OV signaling as specified in RFC 8097 
as well as testing the usage of extended message support for BGP as specified in RFC 8654. 
In fact, BIO is listed as one of the reference implementations during the draft development. 

Performance and compliance testing are not trivial, and BIO attempts to serve as a tool that 
makes this operation easier. For this, one important feature of BIO is to ease the way in which 
experimentation can be scripted and configured. For instance, enabling RFC 8097 we added 
the validation state to the scripted path (see Section 6.2.1).  

As mentioned above, BIO allows scripting updates that can mimic all different kinds of 
scenarios. Valid and invalid BGPsec updates, traffic can be a mixture of BGPsec and BGP-4, 
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updates can exceed the 4 KiB boundary of RFC 4271 by negotiating RFC 8654’s extended 
message support. BIO also differentiates between iBGP and eBGP connections and generates 
the traffic accordingly. This functionality was heavily used during the NIST’s NCCoE 
“Protecting the Integrity of Internet Routing: Border Gateway Protocol (BGP) Route Origin 
Validation” [29] project.   

One aspect feature that was not yet mentioned is BGP-4 prefix packing: This is a feature that 
allows reducing the number of UPDATEs being generated in BGP-4 by bundling prefixes that 
share all attributes and send them all as a list of prefixes within the same UPDATE message. 
This not only reduces the message count and therefore the traffic load, but it also reduces the 
policy processing that is applied to community string values, etc. BIO also allows performing 
prefix packing for BGP-4 if configured. Even though this feature is not something that has an 
impact on BGPsec, for BGP-4 though it is very essential, and because BIO not only can be 
used as a BGPsec traffic generator, it also can be used as a BGP-4 traffic generator. The only 
limitation is that the BGP-4 updates that share the same prefix MUST be scripted in a row. The 
reason for that is that BIO does not contain a RIB. The updates are stored in a FIFO stack-like 
fashion and for BGP-4 only the next UPDATE in the list is examined for the possibility of 
packing. 

6.5. Logging BGP / BGPsec Traffic  
When developing protocol extensions such as BGPsec or community attributes for BGP, being 
capable of analyzing the “data on the wire” is an indispensable tool. One can use TCP dump 
or tools such as Wireshark™ to visualize the data and make it human readable but most of the 
time these tools are either not available or do not provide the proper plug-ins. This is especially 
true for BGPsec. Even if these tools are available, their usage often complicates the experiment 
setup. For this reason, BIO got gradually expanded to allow printing the data sent to the peers. 
The BIO implementation provides a “Printer” framework, where the printer scans the BGP 
UPDATE and displays its content in human-readable form. Portions that are not digested 
properly are displayed using their hexadecimal values instead. Because not the complete set of 
data is interesting to monitor, additional filters as shown in Table 10 were needed that allow to 
specify what data to be print and on which port, the incoming, the outgoing, or both. 

Sending – Traffic Generation Receiving – Traffic Monitoring 

printOnSend = true | false printOnReceive = true | false 
printOnSend = { 
  open         = true | false 
  update       = true | false 
  keepalive    = true | false 
  notification = true | false 
  unknown      = true | false 
} 

printOnReceive = { 
  open         = true | false 
  update       = true | false 
  keepalive    = true | false 
  notification = true | false 
  unknown      = true | false 
} 

Table 10 – BIO – Traffic printer 
 

This additional filter allows specifying either all or a subset of the BGP message types. 
Forward-thinking this implementation also allows filtering for data types that are not yet 
known. These types will be printed most likely as hexadecimal values. 
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Listing 22  – BGP Printer output in long format 
  

UPDATE Message 
  +--marker: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 
  +--length: 256 
  +--type: 2 (UPDATE) 
  +--Unfeasible routes length: 0 
  +--total path attr length: 233 
     +--ORIGIN: INCOMPLETE (4 bytes) 
     |  +--Flags: 0x40 (Well-Known, Transitive, Complete) 
     |  +--Type Code: ORIGIN (1) 
     |  +--Length: 1 byte 
     |  +--Origin: INCOMPLETE (1) 
     +--MULTI_EXIT_DISC (7 bytes) 
     |  +--Flags: 0x80 (Optional, Non-transitive, Complete) 
     |  +--Type Code: MULTI_EXIT_DISC (4) 
     |  +--Length: 4 bytes 
     |  +--data: 00 00 00 00  
     +--MP_REACH_NLRI (16 bytes) 
     |  +--Flags: 0x80 (Optional, Non-transitive, Complete) 
     |  +--Type Code: MP_REACH_NLRI (14) 
     |  +--Length: 13 bytes 
     |  +--Address family: IPv4 (1) 
     |  +--Subsequent address family identifier: Unicast (1) 
     |  +--Next hop network address: (4 bytes) 
     |  |  +--Next hop: 10.80.0.1 
     |  +--Subnetwork points of attachment: 0 
     |  +--Network layer reachability information: (4 bytes) 
     |     +--172.16.7.0/24 
     |     +--MP Reach NLRI prefix length: 24 
     |     +--MP Reach NLRI IPv4 prefix: 172.16.7.0 
     +--BGPSEC Path Attribute (206 bytes) 
        +--Flags: 0x90 (Optional, Non-transitive, Complete, Extended Length) 
        +--Type Code: BGPSEC Path Attribute (33) 
        +--Length: 202 bytes 
        +--Secure Path (14 bytes) 
        |  +--Length: 14 bytes 
        |  +--Secure Path Segment: (6 bytes) 
        |  |  +--pCount: 1 
        |  |  +--Flags: 0 
        |  |  +--AS number: 80 (0.80) 
        |  +--Secure Path Segment: (6 bytes) 
        |     +--pCount: 1 
        |     +--Flags: 0 
        |     +--AS number: 7 (0.7) 
        +--Signature Block (188 bytes) 
           +--Length: 188 bytes 
           +--Algo ID: 1 
           +--Signature Segment: (92 bytes) 
           |  +--SKI: 18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9 
           |  +--Length: 70 bytes 
           |  +--Signature: 30 44 02 20 6A 99 26 70   E6 56 6E 42 5A 12 5B BC  
           |                C2 C6 E8 5B E2 AE D7 A0   0B 94 AF 42 57 F1 7B 38  
           |                85 3B 48 FA 02 20 65 D8   A1 68 63 35 50 F3 88 51  
           |                A9 23 76 CB 18 86 E5 9E   54 65 1B A6 93 87 FE 85  
           |                D7 9C 33 BB 9E 9E  
           +--Signature Segment: (93 bytes) 
              +--SKI: 8BE8CA6579F8274AF28B7C8CF91AB8943AA8A260 
              +--Length: 71 bytes 
              +--Signature: 30 45 02 20 33 85 12 07   F9 B2 94 7D 42 13 6D F2  
                            92 3D 56 8A D5 FD 03 78   0E E6 30 46 B8 69 94 D8  
                            7B 6E 3C E3 02 21 00 D1   AD 14 B4 E7 2C 9E 22 E3  
                            8E 5B 49 CB 97 E0 E6 A6   25 9F 26 B7 84 09 F7 04  
                            A0 C4 3C 72 84 4F 96 
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As shown in Listing 22 the output of the traffic printer is oriented on the output provided by 
widely used tools such as Wireshark.  The default output for BGP/BGPsec UPDATE messages 
is rather large and should only be used for debugging purposes. BIO not only provides the 
large, detailed output, but it also provides a denser version that can be activated using the 
configuration parameter printSimple. By default, this parameter is set to false. Once set to true, 
the output of the “simple” mode will be much denser. 

As shown in Listing 23 each message appears in a single line. The prefixes “>” and “<” indicate 
if the message was received (“<”) or sent (“>”). The above output was generated with the 
setting printOnSend=true; and printOnReceive=true;. 

Listing 23  – BGP Printer output in short format 
 
This allows to easily generate scripts that parse over the output for post-processing. Because a 
BGP UPDATE does not require a specific order in which its attributes are generated, BIO does 
provide indicators on what type of attribute is printed. 

A post-processor can filter the data according to the given label. Table 11 focuses only on 
BGP / BGPsec UPDATE messages and displays the labels used for each path attribute. Using 
this functionality allows to easily attach some monitor to the output of BIO. As shown, BIO 
does not perform UPDATE validation of received UPDATEs but adding this functionality 
would not be very difficult. 

Label Description 

+PFX Announcement of the IP prefix that follows: 

-PFX Prefix Withdrawal 

BGP BGPsec_PATH attribute with the PATH as AS list (BGPsec UPDATE) 

ASP The AS_PATH attribute as AS list (BGP-4 UPDATE) 

ECA Extended Community String. The value is written as a hexadecimal String. 

Table 11 – BIO – Traffic printer simple codes for BGP/BGPsec UPDATE messages 
 
With this capability, BIO can be used as both a traffic generator as well as a traffic monitor.  

 

  

> OPEN 
< OPEN 
> KEEPALIVE 
< KEEPALIVE 
< KEEPALIVE 
> +PFX: 10.80.0.0/16, BSP: 80 70 
> ASP: 80 60, +PFX: 10.80.4.0/24 
> +PFX: 172.16.7.0/24, BSP: 80 7 
> +PFX: 172.16.7.0/24, BSP: 80 2 
< +PFX: 10.50.0.0/16, ECA: 43C8000000000000, BSP: 50 
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6.6. Future Considerations 
BGPsec-IO can easily be extended with many more features. The capability of inserting 
UPDATEs during runtime and the extraction of information using the traffic printer can be 
used to connect it with SDN-based software modules and more. Additionally, with the 
capability to store UPDATEs using the GEN-B functionality, one could envision storing 
received raw UPDATEs into a file to be played back later. Even though this capability is 
currently not activated, all necessary modules are implemented, they just need to be connected 
in the right form. 

Going forward though it would be important to finish the integration of CAPI to allow proper 
testing and performance evaluation of SCA signature generation. With this feature finished, 
SCA can be used to test algorithm implementations other than ECDSA. 

One more important part of BIO which is not implemented yet but can be a great tool is the 
integration of the RPKI Cache Test Harness developed with the SRx-Server. Integrating this 
tool into BIO will allow scripting traffic tests where BIO can provide the public keys to the 
IUT via the RPKI to Router Protocol as specified in RFC 8210. 

 Additional Implementations Using the SRxCryptoAPI and SRx-Proxy-API 

This section deals with additional work performed in which we researched embedding the 
developed APIs in different technologies. Most of the processing of prefix origin validation 
and BGPsec path validation is done either in the SRxCryptoAPI or the SRx-Server. The 
QuaggaSRx implementation mainly uses both to perform the validation portion and uses the 
result values for policy processing. The reason for this design choice was to allow a fast 
transition into other implementations. This modular design allows another chosen router 
platform to also use these API-based modules by accessing their features. With this in mind, 
routers that want to perform BGPsec must still be able to perform basic handling of the 
BGPsec_PATH attribute (syntax parsing and constructing/extending the BGPsec_PATH 
attribute), although they do not need to worry about retrieving PRKI information or any 
prefix/origin and path validation. Cryptographic processing, key management, as well as RPKI 
management, and validation processing are provided by the NIST BGP–SRx Framework. 

7.1. Design and Build ExaBGP-SRx 
ExaBGP-SRx is based on ExaBGP, a highly flexible BGP speaker that allows controlling BGP 
announcements programmatically. It supports IPv4, IPv6, L2VPN, L3VPN, and FlowSpec to 
name a few. Similar to BGPsec-IO, the underlying ExaBGP is not a routing engine. It allows 
generating routing traffic received via STDIN or through Representative State Transfer 
(REST) API. In addition, ExaBGP-SRx also allows processing the routing information it 
receives from its peers by dissecting them into messages in plain text or JSON format. These 
can be further processed by other applications. As shown in Figure 28, ExaBGP-SRx uses 
ExaBGP as core and extends the protocol processing “Attribute Class” by adding the 
BGPsec_PATH attribute as well as the protocol handling mechanics.  

ExaBGP-SRx got extended by additional processing for MP_NLRI processing regarding IPv4. 
BGPsec UPDATEs require the IPv4 prefix to be encoded using the MP_NLRI attribute.  
Furthermore, ExaBGP-SRx requires basic BGPsec_PATH attribute processing for the error 
detection as required by RFC 8205. Next to the required processing of the modified BGP 
UPDATE, BGPsec negotiation is required during the session establishment. This extension 
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was applied to the generation of the BGP OPEN message. ExaBGP-SRx uses SCA to enable 
BGPsec path validation and signing. 

 
Figure 28 – ExaBGP-SRx BGPsec design 
 
As previously mentioned, ExaBGP-SRx is a Python-based implementation and the NIST 
BGP-SRx implementation is C-based. For implementations such as ExaBGP-SRx that are 
written in Python, wrappers are available to be able to integrate these libraries into Python. To 
accomplish the integration of the C-based libraries, Python provides a module called ‘ctypes’. 
This module allows the embedding of C-based APIs by creating a data and function wrapper 
between Python and C. Using this wrapper, ExaBGP-SRx can call functions within the linked 
C-based SRxCryptoAPI library. Using these mechanics, ExaBGP-SRx is able to access   
SRxCryptoAPI and its embedded BGPsecOpenSSL cryptographic validation/signing module. 

 
 Parsing BGP-4 / BGPsec UPDATE Messages Using ExaBGP-SRx 

Even though ExaBGP-SRx does not have the feature of RIB processing, it will be able to parse 
the received BGP and BGPsec messages OPEN, UPDATE, and KEEP-ALIVE. It will process 
them and write the information gathered into designated log files or STDOUT. This 
information can then be used by a monitoring agent. As shown in Figure 29, router R3 receives 
a BGPsec UPDATE from router R2 and forwards it to the ExaBGP-SRx peer. The ExaBGP-
SRx peer then will process the UPDATEs and store them into log files. In this case, ExaBGP-
SRx does perform BGPsec path validation for all BGPsec UPDATEs by using SRxCryptoAPI. 
Now, the operator of router R3 can use the output of ExaBGP-SRx to compile policy filters 
which can be imported into R3. This also could be done automatically by any monitoring agent. 
At this point, there is no other option on sending the validated UPDATEs back from 
ExaBGP-SRx to R3. 
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Figure 29 – Parsing BGP message on ExaBGP-SRx 
 

 ExaBGP-SRx as BGPsec Traffic Generator 
The topology shown in Figure 30 uses three QuaggaSRx routers and one ExaBGP-SRx node. 
The ExaBGP-SRx node is peering with both, AS 60002 as well as AS 60004, and the peering 
sessions have negotiated BGPsec. Both routers will also peer with AS 60003.  

 

Figure 30 – ExaBGP-SRx simple BGPsec route selection test 
 
ExaBGP-SRx will generate two separate UPDATEs, a longer one for AS 60002 and a shorter 
one for AS 60004. The shorter Update will fail validation whereas the longer path will pass 
validation.  

Node 1

Node 2

Node 3

ExaBGP-SRx

AS 60002 AS 60004

AS 60003

200.20.0.0/16 with as-path [100 200 300]
+ BGPsecSignatures[INVALID]

200.20.0.0/16 with as-path [400 500 600 700]
+ BGPsecSignatures[VALID]
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Examining the RIB-IN of AS 60003 displayed in Listing 24, it is clear that AS 60003 
performed both BGP-OV and BGP-PV and the longer path did pass the validation whereas the 
shorter path did not. This shows that ExaBGP-SRx is capable of generating proper multi-hop 
BGPsec UPDATEs.  

 
Listing 24  – RIB-IN table of AS 60003 
 
7.2. Design and Build GoBGP-SRx 
GoBGP-SRx is an additional router implementation that uses the NIST BGP-SRx software 
suite. It is based on the GoBGP BGP-4 router implementation [33] that already provides the 
functionality of prefix origin validation. This includes the capability to connect to RVCs using 
the router to cache protocol specified in RFC 6810. To create GoBGP-SRx we extended the 
core GoBGP implementation by adding BGPsec path processing as specified in RFC 8205. 
For BGPsec path validation we integrated the SRxCryptoAPI. This was made possible by using 
the “cgo” module that allows integration of native C libraries (such as the SRxCryptoAPI 
library for BGPsec path validation) into Go language constructs.  

As mentioned above, GoBGP-SRx is based on the open source GoBGP implementation. The 
core GoBGP implementation is split into two parts: The client implementation which is used 
to configure and query the router, and the server implementation, which provides the routing 
engine. The client and server are communicating using the gRPC protocol [34]. This allows 
the client and server implementation to be implemented in different programming languages 
as long as they support gRPC. 

 GoBGP-SRx Using SRxCryptoAPI 
The BGPsec integration of GoBGP-SRx is shown in Figure 31. Once the server receives a 
client request, the ‘BgpServer’ module wakes up to process the request. In order to handle 
BGPsec processing, we added the ‘bgpsecManager’ to the server implementation. This new 
module uses the ‘bgpConfig’ module to access user-specific BGPsec configurations such as 
SKI, key info, etc. For BGPsec path signature generation and path validation, the server 
employs the “cgo” module to import the C-based SRxCryptoAPI.  
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Figure 31 – GoBGP-SRx server design using SRxCryptoAPI 
 
Figure 32 shows the process flow connecting the GoBGP-SRx client and SRxCryptoAPI. The 
server module goBGPd controls the BGPsec peering session with router R1 (AS1) and uses 
“cgo” calls to facilitate the native C library calls for the signature generation as well as BGPsec 
path validation. Once the validation is performed and the results are returned, the goBGPd 
daemon determines the proper path selection depending on the validation outcome. In addition, 
the client, GoBGP can be controlled using CLI as well as an optional web-based client.  

 
Figure 32 – GoBGP importing C shared library, SRxCryptoAPI, for BGPsec signing and validation 
 
7.3. Interoperability Testing ExaBGP-SRx, GoBGP-SRx, and QuaggaSRx 
The interoperability tests use three BGPsec router implementations. Each of the three 
implementations is installed each on its own virtual machine as shown in Figure 33. AS 65011 
using ExaBGP-SRx is generating a three-hop fully signed BGPsec UPDATE and sends it to 
its BGPsec enabled peer AS 65005. AS 65005, also running BGPsec but with GoBGP-SRx 
installed is validating the BGPsec UPDATE. GoBGP-SRx is also signing the UPDATE and 
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sending it to AS 65023. AS 65023 runs QuaggaSRx with BGPsec enabled. QuaggaSRx will 
validate the BGPsec UPDATE upon receiving and apply the validation result to the UPDATE. 

 
 
Figure 33 – Experiment setup of interoperability among ExaBGP-SRx, GoBGP-SRx, and QuaggaSRx 
 
As shown in Listing 25, after validating the received BGPsec UPDATE, the validation result 
returns valid. This testing successfully demonstrates the interoperability between all three 
BGPsec capable routers.  

 
Listing 25  – BGPsec validation result inside QuaggaSRx 
 
7.4. Extending QuaggaSRx Using gRPC 
As described earlier in Section 3.1, the communication between QuaggaSRx and SRx-Server 
is TCP-based. gRPC is a different technology with a focus on high performance: It is an open-
source version of Google’s internal framework Stubby [34]. A client-server model using gRPC 
is able to gain high performance, full-duplex streaming, and transparent communication across 
languages and platforms. In this section, we describe the design of a gRPC based 
communication between the SRx-Server and QuaggaSRx using a gRPC based Proxy 
communicating with the SRx-Server. 

 Designing the SRx-gRPC-Proxy for QuaggaSRx and SRx-Server 
Being able to support the gRPC framework, the SRx-Proxy needs to be replaced with a gRPC 
capable Proxy, hence the SRx-GRPC Proxy as shown in Figure 34. On the SRx-Server side, a 
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gRPC Server Service module needs to be added. A gRPC service library is required for both 
additions.  

 
Figure 34 – SRx-Proxy and SRx-gRPC-Proxy implementation design 
 
Using this design, the SRx-gRPC-Proxy required a C wrapper because gRPC does not support 
C integration yet. The same is required to the SRx-Server side. Once these two interfaces were 
generated, The QuaggaSRx implementation was able to use the SRx-gRPC-Proxy as if it was 
an SRx-Proxy, the gRPC technology complete hidden from QuaggaSRx as is the TCP 
communication using the SRx-Proxy. 

For the implementation of the gRPC communication, we chose to use the Go language due to 
its feature-rich networking support and natural integration into the GoBGP-SRx router. The 
gRPC Communication module is shown in detail in Figure 35. A simple but effective design 
was to modify the current SRx-Proxy and exchange the underlying TCP communication with 
a gRPC driver that performs the C to Go translation. The Go implementation then performs 
the gRPC communication. On the SRx-Server side, the same happened just in reverse. The 
gRPC Server Driver receives the requests and forwards the appropriate function calls into the 
SRx-Server using the Go to C translation modules. 

Figure 35 – Layers of gRPC-enabled SRx suite 

gRPC framework (protobuf v3) 

gRPC support language platform (Go, C++, python, Java, etc.) 

SRx Server 

C-shared lib 

Interface Library Call  

gRPC Server Driver gRPC Client Driver 

Interface Library Call  

SRx Proxy 

Client App(Quagga) 

Application 
Layer 

gRPC 
Layer 
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The gRPC layer is the path in which a serialized traffic is exchanged using the gRPC protocol 
buffer which is explained in detail in [34].  

Library calls for connection between C-based SRx-Server (or SRxProxy) and gRPC-based 
server (or client) driver also include gRPC service functions (mostly callback functions and 
concurrent threads). 

 Integration into QuaggaSRx  
Integration into QuaggaSRx is fairly simple: QuaggaSRx by default requires the SRx-Proxy 
libraries. These can be replaced with the SRx-gRPC-Proxy libraries which then will seamlessly 
replace the TCP connection between QuaggaSRx and the gRPC Framework to communicate 
with the gRPC enabled SRx-Server implementation. Figure 36 shows the communication flow 
between QuaggaSRx and the SRx-Server. 

 
Figure 36 – QuaggaSRx using SRx-gRPC-Proxy 
 
Once Quagga receives a BGPsec update packet from a peering neighbor, it initiates a validation 
request with the SRx-gRPC-Proxy module as it would using the SRx-Proxy module. The 
validation request then gets sent to the gRPC-enabled SRx-Server. The gRPC enabled SRx-
Server then receives the validation request and proceeds as normal. The only difference is that 
with the gRPC enabled SRx-Server the chosen communication is gRPC. 

7.5. ExaBGP-SRx and GoBGP-SRx Future Consideration 
As described above, both implementations, ExaBGP-SRx and GoBGP-SRx are currently using 
direct access to SRxCryptoAPI through wrapper modules that allow embedding C-based 
libraries. In this section, we want to present three possible scenarios on how the use of the SRx-
Server could be facilitated. 

 Access SRx-Server Using ExaBGP-SRx-Proxy Module 
One possibility of using the NIST BGP-SRx suite is to use a Python-based SRx-Proxy as 
shown in Figure 37. This can be easily accomplished by embedding the current SRx-Proxy 
API library into a wrapper in the same way the current implementation uses the 
SRxCryptoAPI. The SRx-Proxy API too is a C-based library. This will be somewhat more 
complicated though because this API requires also the registration of a C-based callback 
function. Another option would be to implement a Python-based proxy that uses the 
SRx-Server-Protocol and therefore completely avoiding the SRx-Proxy API itself. 

Additionally, ExaBGP-SRx will need to build a short RIB-IN cache to allow the SRx-server 
time to process the validation requests. 
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Figure 37 – Access SRx-Server with ExaBGP-SRx Python-Proxy 
 

 GoBGP-SRx Using Go-Proxy 
In addition to the SRxCryptoAPI integration that allows the GoBGP-SRx router instance to 
perform BGPsec path validation, the next step is to also integrate the SRx-Server into 
GoBGP-SRx. Figure 38 shows an integration using a Go implementation of the SRx-Proxy 
implementation that utilizes TCP communications as specified in the SRx-Server-Protocol. 
This would not need any C-wrapper libraries, as it would use the Go-provided TCP 
implementation.  

 
Figure 38 – GoBGP using Go-Proxy using TCP communication 
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 GoBGP-SRx Using gRPC to SRx-Server 
 
The final implementation showcased here is the usage of the gRPC Client as shown in Figure 
39. This is already developed and embedded in the SRx-gRPC-Proxy implementation. The 
Interface Description Language (IDL) is defined, and the SRx-Server side is implemented. The 
last missing piece is the GoBGP-SRx integration which is not hard to accomplish. 

 

 
 
Figure 39 – GoBGP inter-operation using gRPC framework to gRPC enabled SRx Server for BGPsec signing 
and validation 
 

 Performance Measurements and Comparisons 

Performance measurement in BGPsec has two aspects to it. The first thing that comes to mind 
is the processing time required by cryptographic operations. Signing and validating BGP 
UPDATEs is considered costly and worrisome to operators. The questions that arise are what 
the processing overhead is like, and how long will it take for the routing table to converge. 
Furthermore, many routing platforms that are still deployed do not provide the required 
cryptographic implementation. Using BGPsec-IO (see Section 6), the measurement of 
performance of cryptographic implementations is fairly simple: just measure the time needed 
by the cryptography module to perform BGPsec update validations. This is a crude form, but 
it provides an idea of the performance differences between different implementations. To 
facilitate this, the SRxCryptoAPI, as introduced in Section 5, provides an API that allows 
exchanging cryptographic implementations through configuration rather than compilation. 
This allows to easily compare multiple implementations using the same input parameters. 

The other concern is the BGPsec UPDATE format, which allows only one prefix per 
UPDATE. In contrast, in BGP-4, many prefixes are announced in a single UPDATE message 
by employing prefix packing. Prefix packing means that multiple prefixes that share the same 
path attributes can be packed into one single UPDATE.  The reason prefix packing is not 
possible in BGPsec is because signatures span over the AS path and the prefix. If the signature 
were to span over multiple prefixes and the AS path, then packing, unpacking, and repacking 
prefixes along the path would be infeasible.  
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This does have an impact when it comes to regular BGP-4 UPDATE processing. Many factors 
come into play and policy processing is regarded as a very costly operation. Without prefix 
packing, processing requirements will increase. Prefix packing also reduces the traffic between 
two routers, especially during a table transfer. According to the NIST RPKI Deployment 
Monitor [26] from June 2021, the global routed Internet consists of approximately 1.1 million 
unique prefix origin pairs. Depending on the average number of prefixes per update, the 
number of UPDATEs required to be sent will be reduced inversely proportionately. 
Considering that one of the demanding operations in routing is policy processing, packing 
prefixes makes a significant difference in BGP-4 workload. With multiple prefixes being 
packed into a single UPDATE, the policy engine only needs to run once for each UPDATE. 
Depending on the complexity of the policy itself, parsing through a large number of policy 
elements each time an UPDATE is received can be very costly. Now with BGPsec having the 
prefix packing feature removed, the impact on the convergence time will be noticed. Maybe 
future additions to RFC 8205 would allow similar mechanics for UPDATEs but this is out of 
scope for this publication.  

In the following sections, we compare the performance of the cryptographic portion of BGPsec 
path validation. We will compare the performance across all SRx implementations (Quagga, 
GoBGP, etc.) presented in this technical note. 

8.1. Performance Testing Using Quagga and QuaggaSRx 
The experimentation setup uses two “off the shelf” desktop computers called BGPSEC-1 and 
BGPSEC-2. Both systems are equipped with an Intel XEON X5 3.5 GHz processor, and 16 
GiB of RAM. BGPSEC-1 functions as a traffic generator using BGPsec-IO to generate multi-
hop fully signed BGPsec UPDATE messages. BGPSEC-2 is configured with QuaggaSRx and 
functions as a measurement platform. Measurement hooks were installed into the router 
implementation to allow setting measurement pointers. For this experiment, the SCA is 
configured to use the BGPsecOpenSSL crypto module, which is explained in detail in Section 
5.5. Additionally, QuaggaSRx is configured to perform BGP-PV directly on the router 
platform as soon as the UPDATE arrives. The SRx-Server implementation is only used for 
BGP-OV. All required public keys are pre-loaded into the SRxCryptoAPI and available 
directly for the BGPsecOpenSSL crypto module. 

As mentioned earlier, hooks were temporarily embedded into the QuaggaSRx router 
implementation to allow setting measurement points as shown in Figure 40. The intent was to 
measure the time it takes from receiving the first UPDATE until the last received UPDATE is 
fully processed and fully validated by the SCA. These two measurements are carried out: (1) 
the period of receiving BGPsec updates and (2) the processing time of BGPsec path validation 
from the first update arrival at the QuaggaSRx to the completion of the validation process for 
the last update. 
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Figure 40 – Flow chart for time intervals on receive, validation and total elapsed time 
 
As depicted in Figure 41, we also repeated the same experiment with the stock Quagga 
implementation using BGP-4 UPDATEs to see the difference in processing performance 
between BGP-4 UPDATE processing and BGPsec UPDATE processing. We increased the 
number of prefixes gradually from 1K to 10K and up to 100K UPDATEs.  

 
Figure 41 – Performance comparison between stock version of Quagga and QuaggaSRx for BGPsec PV 
 
The processing time for the stock version of Quagga (the blue-colored bars in Figure 41) 
linearly increased with the number of updates received. That is not the case for BGPsec 
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QuaggaSRx. For the case of Quagga for 100 K UPDATEs, the elapsed time is still under one 
second, while the corresponding number for BGPsec Quagga SRx is slightly over 137 s.  

Studying BGPsec Quagga SRx processing time data as shown in Figure 41 in further detail, 
the processing time from 1K and 10K UPDATEs linearly increased in the same ratio as the 
increase in the number of prefixes. But for the increase from 10K to 100K UPDATEs, the time 
increased approximately 20 times. BGPsec processing time in QuaggaSRx increases 
nonlinearly with the number of UPDATEs.  

To verify if the BGPsec UPDATE signature validation itself has anything to do with the 
increase of the processing time, we stress-tested the BGPsecOpenSSL validation processing 
using BGPsec-IO in CAPI mode. This test, shown in Figure 42, was performed on a different 
system with a XEON X5660 2.8 GHz and 16 GiB of RAM. We wanted to see is if the 
BGPsecOpenSSL implementation changes the signature validation speed over time. The 
measurement only applies to the time from the signature validation call until SCA returns with 
the validation result. 

 
Figure 42 – Average time of 4 hop BGPsec UPDATE validation using BGPsecOpenSSL 
 
As shown during this test, the average processing time stays roughly the same, somewhere 
between 1 180 to 1 200 UPDATEs per second, which is not a bad number in itself considering 
the unoptimized and non-parallelized implementation of the signature validation. Therefore, 
the cryptographic execution (signature validation) seems not to be the reason for the jump 
observed in Figure 41.  

This leaves the only explanation that the increasing amount of memory must have an impact 
on the processing. One major difference between BGPsec and BGP is that in BGPsec, 
UPDATEs cannot be stored in an optimized form as they can in BGP-4. Even if in BGP-4 
prefix packing is disabled, the router itself identifies the updates’ attributes shared and 
therefore stores the attributes only once for multiple prefixes that share them. In BGPsec, this 
is not the case since the signatures, which cover the prefix and path, are unique for each path 
and are an integral part of the path itself. Therefore n prefixes received via BGPsec require n 
paths stored in the routing table which cannot be optimized. Other previous tests during the 
development showed performance loss within QuaggaSRx starting at about 70K unique 
UPDATEs. 
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8.2. Performance Testing Using Inline Validation vs. Lazy Evaluation 
It is important to recognize the BGPsec performance might be enhanced by reducing the 
BGPsec UPDATE processing burden from the router implementation to a 3rd party server, such 
as the SRx-Server. Figure 43 shows the overall measurements between the path validation 
processing on the router side (inline) and the processing with lazy evaluation enabled using the 
SRx-Server. Lazy evaluation describes the process of assigning a pre-set validation state to the 
UPDATE and then sending the UPDATE for validation to the SRx-Server. Once the validation 
request is sent out, the router uses the pre-set validation state and performs the route selection. 
Once the SRx-Server calculates the validation, it reports back to the router and in case the 
reported validation state differs from the validation state used during route selection, the router 
will restart the route selection for the route in consideration. Using this method, the router does 
not need to extensively parse the UPDATE. More importantly, the validation can be done on 
a separate system, and therefore both the SRx-Server as well as the router do not interfere with 
each other by competing for computing resources or memory.  

  

 

 

Figure 43 – Comparison of BGPsec path validation between a normal path validation and lazy evaluation 

Normal PV Lazy Eval
Recv & Parse 732.61 356.58
Path Val 772.49 401.81
Total 780.55 432.90

0
200
400
600
800

1,000

El
ap

se
d 

Ti
m

e 
(m

s)

Processing 1k Updates with 
BGPSecOpenSSL lib

Recv & Parse Path Val Total

Normal PV Lazy Eval
Recv & Parse 7,052.53 3,396.03
Path Val 7,092.62 3,915.39
Total 7,092.93 3,945.36

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000

El
ap

se
d 

Ti
m

e 
(m

s)

Processing 10k Updates with 
BGPSecOpenSSL lib

Recv & Parse Path Val Total

Normal
PV

Lazy
Eval

Recv & Parse 74,767.59 41,427.45
Path Val 168,050.04 41,426.86
Total 168,050.25 130,691.12

0
50,000

100,000
150,000
200,000

El
ap

se
d 

Ti
m

e 
(m

s)

Processing 100k Updates 
with BGPSecOpenSSL lib

Recv & Parse Path Val Total



 
 

80 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

 
As shown in Figure 43,  lazy evaluation using SRx-Server has a better performance in each 
case. All times are averages. Receive & parse (blue) is performed in parallel to path validation 
(red). The total value (green) contains both. Lazy evaluation does cut the processing roughly 
in half. The outlier here again is the processing of 100K UPDATEs. Though looking closer it 
becomes evident that the overall processing has a significant component other than receive & 
parse and path validation. Especially the Lazy Evaluation mode shows clearly that the path 
validation (signature verifications) is not the issue here. The main issue is related to the 
internals in QuaggaSRx, most likely the internal handling of the UPDATE tables. Clearly with 
BGPsec, the router cannot achieve the memory savings as it can in BGP-4 by the using AS 
path sharing mechanism. In BGPsec, even if the AS path is the same, the path attributes 
(BGPsec_PATH) in the UPDATEs differ due to the signatures (which cover the prefix and 
path). Therefore, it is important to examine the use of hash tables and optimize the code in this 
direction.  

8.3. Performance Analysis between Open Source BGP-4 Implementations 
The performance of a router is measured by the convergence of BGP UPDATES. The metric 
can be defined in two ways:  

(1) Total convergence time: The time from the initiation of the BGP connection to the 
moment when the processing of all received UPDATEs is complete.  

(2) Table convergence time: The time from receiving the first UPDATE to the time when 
the last UPDATE is fully processed.  

The first one is the initial convergence time; the second one can be considered the convergence 
time when processing a table refresh. 

For this experimentation, we look at five different open source BGP routing platforms and 
compare them just using BGP-4 UPDATEs. As test subjects we chose the following 
implementations: 

• Quagga v.1.0.2 • BIRD v 1.6 • ExaBGP v 3.4.19 

• FRR v 2.0.0 • GoBGP v.1.13  

Peers are started in its separate containers and each peer is sending BGP-4 traffic to the router 
implementation under test (IUT) which runs in a container as well. The container technology 
used is Docker. The peers are each  running an instance of ExaBGP, sending 100 UPDATEs 
to the respective IUT. The IUT’s used are Quagga, BIRD, goBGP, and FRR. 

For the testing, we vary the number of peers for each run as follows: 10, 20, 30, 40, 60, 80, and 
100 peers. As shown in Figure 44 the x-axis represents the number of parallel peering sessions 
and the Y-axis represents the time taken for initial convergence in seconds. Looking at the 
plots in Figure 44, it appears that about 30 seconds are used for the session negotiations and 
setup and from thereon the time increase is almost linear (especially for Quagga and BIRD). 
Also, all 4 implementations seem to perform roughly in the same ballpark in terms of the initial 
convergence.  
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Figure 44 – Total convergence time comparison among BGP open-source implementations 
 
Looking only at convergence time without including the session establishment time (in other 
words, the time from receiving the first UPDATE to when the last UPDATE is processed), the 
data plots in Figure 45 look different compared to the results shown above for initial 
convergence. Looking at these plots, we see an unexpected behavior in the case of goBGP 
implementation starting with 40 concurrent sessions and up, namely, the convergence time 
shoots up although it still stays in the range of multiple seconds.  

 
Figure 45 – Table convergence time among BGP open-source implementations 
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8.4. Comparison of GoBGP-SRx, QuaggaSRx, and gRPC Enabled QuaggaSRx 
For the performance evaluation of BGPsec path validation, we employed two virtual machines 
using Intel XEON E5-2699 V3 2.5 GHz and 8 GiB of RAM. ExaBGP-SRx was used as a 
traffic generator and the receiver used QuaggaSRx, gRPC enabled QuaggaSRx, and the 
GoBGP-SRx implementations. The experimentation applied loads of 1K, 10K, and 100K 
BGPsec encoded UPDATEs for all three router implementations and an additional case of 
500K BGPsec encoded UPDATEs for the GoBGP-SRx implementation.  

The measurements start with the first BGPsec UPDATE received and stop after the router 
finished processing the last received BGPsec UPDATE. As shown in Figure 46, the GoBGP-
SRx implementation performed the best. This experimentation suggests that the reason for the 
performance decay observed in the QuaggaSRx, as well as the gRPC-enabled QuaggaSRx 
implementations, is not the BGPsec path validation. If this would be the case, we also would 
observe the same degradation with GoBGP-SRx. This points to inefficient memory handling 
of the BGPsec UPDATE data within both flavors of the QuaggaSRx implementation. 

 
Figure 46 – BGPsec validation performance comparison 
 
A second interesting observation is that during the first two tests the raw TCP socket 
implementation did show better performance than the gRPC enabled implementation. The 
100 K results might be skewed by other issues within the QuaggaSRx’s internal management. 
It would be interesting to repeat the experimentation first in an increment of 10 K UPDATEs 
followed by an increment of 5 K UPDATEs to identify the transition point of BGPsec 
UPDATE at which QuaggaSRx shows the performance degradation.  
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 SRxCryptoAPI’s Validation Time among BGPsec Implementations 
To evaluate the performance of cryptographic calculation with the SRxCryptoAPI library, we 
started an additional experiment analyzing the cryptography library’s processing portions out 
of the entire processing time. Figure 47 compares the cost of cryptographic processing against 
BGPsec update processing in the QuaggaSRx and GoBGP-SRx implementations. Here we 
used a single BGPsec UPDATE in multiple runs and took the average to compare between 
both router platforms. The graph depicts the overall processing (red) next to time used only for 
the cryptographic processing (blue). Looking at the overall UPDATE processing time between 
GoBGP-SRx (817 microseconds) and QuaggaSRx (1 047 micro-seconds) the implementation 
of GoBGP-SRx only uses 78% of the processing time QuaggaSRx uses. Looking closer into 
the results depicted in Figure 47, both implementations – with a neglectable difference of 8 
micro-seconds – use almost the same time for the cryptographic operation. What stands out is 
that QuaggaSRx does have a higher cost in non-cryptographic related UPDATE processing 
than GoBGP-SRx. 

 
Figure 47 – Cryptographic processing cost vs. BGPsec UPDATE processing using GoBGP-SRx & QuaggaSRx 
 

 BGPsec Validation Processing Using Multiple Docker Based Peers 
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increased even though the total load was in the 1 K to 10 K range; the delay had shot up sharply 
for GoBGP as the number of peers increased. We decided to perform the same test (e.g. varying 
the number of peers) using QuaggaSRx, gRPC enabled QuaggaSRx, and GoBGP-SRx to see 
if the same behavior can be observed. We used the same configuration as previously described 
using Docker Containers, except this time we used ExaBGP-SRx instead of ExaBGP as a 
traffic generator. 

Each peer announces 100 UPDATEs. The only changing variable is the number of peering 
sessions. As shown in Figure 48, as the number of peers increased, QuaggaSRx and gRPC-
enabled QuaggaSRx did not change in the total processing time (e.g. the duration from the 1st 
update received to the last update processing completed). However, GoBGP-SRx processing 
time slowly increased up to 40 peers and after that, it increased far more rapidly from 40 to 
100 peers. This is similar to what was seen in Figure 45 for BGP-4 comparing Quagga vs. 
GoBGP. This means that if the same amount of load (5 K to 10 K UPDATEs) comes from 
multiple peers (rather than one peer), then QuaggaSRx and gRPC-enabled Quagga SRx 
perform significantly better than GoBGP-SRx.  

 
Figure 48 – BGPsec performance comparison among QuaggaSRx, GoBGP-SRx, and gRPC enabled 
QuaggaSRx 
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 Deployment 

This NIST BGP-SRx project started back in 2008 / 2009 when BGP Origin Validation and 
BGPsec Path Validation were still in their infancy. It became clear that BGP-OV requires 
BGP-PV to complete securing route announcements. The flaws in BGP-OV, the main one 
being that an attacker can forge the origin by pre-pending it to the path and therefore result in 
an BGP-OV being marked as a “valid” route, can only be undeniable detected by a mechanism 
that allows attesting the path the route took from originator to destination. For this BGPsec is 
required because it allows verifying each segment of the path the UPDATE traversed in. It also 
was clear that the infrastructure that is to be created will be complex and that there is a need 
for reference implementations, that allows testing the design of all the different mechanisms 
in parallel to the design to identify flaws, bottlenecks as well as performance improvements 
right during the design. That was the time when NIST decided to start the NIST BGP Secure 
Routing Extension, now known as NIST BGP-SRx.  

Almost 12 years later, many RFCs were developed, the RPKI is actively being deployed, 
almost 300 000 (29%) global prefixes are validated as “valid” with almost 23% of all 
announced Address Spaces in /24 blocks (as of June 2021) participating in the global RPKI 
[26].  

BGPsec was specified as RFC 8205 but since then sadly not much implementation has been 
done. While we are still working in wrapping up missing specifications such as BGPsec path 
validation signaling [27] which is, at the time of writing this document, an active IETF 
SIDROPS working group document, other specifications might be needed to facilitate the 
deployment of BGPsec.  

This work demonstrated that it is very much possible to implement BGPsec. The regular 
hardware can accomplish easily the task of segment verification of routes and the way RFC 
8205 is written allows temporary pausing validation until the router is able to handle the 
processing. As we describe in Section 10, deployment for BGPsec requires innovation. 
Implementations such as taraBGPsec and SRx-Server show that it is possible. An SRx-Server 
or similar implementation deployed in the cloud or centralized on-premise, and to be shared 
by multiple routers within the enclave can easily solve the overhead produced by BGPsec.  

 Final Thoughts and Future Plans 

A project of this size always can have features added or implementations optimized. This 
reference implementation did help significantly in developing the necessary IETF standard 
RFCs. In particular, the BGPsec Protocol Specification was considerably influenced by 
performance issues identified within the reference implementation. For instance, the order of 
fields within the Secure Path section of the draft that became RFC 8205 was modified due to 
programmatic difficulties identified within this reference implementation.  

For future work, especially in BGPsec, it seems evident that the chosen design of out-sourcing 
is the right path to go. Thus it is a logical next step to bring the SRx-Server-Protocol developed 
for this implementation to the IETF and propose it as a standard. Once this protocol is 
standardized, it will allow other community members to step up and possibly implement 
production-ready high-performance BGPsec validation servers. Also, the router vendors would 
not have to implement the complete BGPsec validation and could use this protocol to outsource 
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this task, similar to how the router-to-cache protocol (RFCs 6810 and 8210) does today by 
allowing to outsource the acquisition and validation of RPKI certificates. 

Another thought is to standardize the SRxCryptoAPI that allows the modularization of BGPsec 
cryptography and opens the market further to vendors of high-performance cryptographic 
implementation independent of router or validation developers. 

Additionally, we can see that proposing the SRx-Server-Protocol as a standard draft within the 
IETF could foster innovation in outsourcing BGPsec path validation. This project demonstrates 
that outsourcing BGPsec path validation is possible and reduced the burden of BGPsec 
processing from the router. Standardization of this protocol might kickstart other implementers 
to be innovative in this area. Old routers that do not have the capability of any cryptographic 
function can use this protocol to open a simple TCP session to an external validator. Vendors 
only need to implement the protocol and let others do the validation. It is similar to RPKI origin 
validation where validation caches perform the validation of certificates and compile a simple 
list that the router can use to match prefix and origin without ever performing any 
cryptographic function. 

Regarding this reference implementation, we identified multiple areas of improvement / 
modification. 

• Complete separation of BGP-OV and BGP-PV within QSRx. 

Currently, the final validation is calculated by combining BGP-OV and BGP-PV 
validation results (see Table 2). Adding policies that consider each validation result 
BGP-OV and BGP-PV separately instead of combined as it is done today, provides 
more freedom in scripting policies. 

• Adding information on why the validation state of an UPDATE changed. 

RPKI V-to-I: Some ROA must have disappeared to render it invalid. The interesting 
portion is to identify if only a matching ROA disappeared or along with the 
disappearance, a new matching ROA also appeared that rendered the value invalid 
rather than not-found? 

• Adding information to validation states such as “invalid but covered” would signal to 
the router to examine the FIB for less specific covering prefixes. 

• Use BGPsec validation on parallel BGP peering sessions. 

An AS that mainly operates BGP-4 could spin up a parallel BGPsec session using a 
separate router. All routers could connect to the SRx-Server which is capable of 
BGPsec validation. Then with each received BGP-4 UPDATE, the router could send a 
verification request to the SRx-Server to query if a BGPsec update exists with the 
“same” AS-PATH and if yes then what is the BGPsec path’s validation result. 
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 Here “same” AS-PATH detection algorithm could be implemented in different flavors: 

o Consecutive:  
“same consecutive list of unique AS numbers” which would render  
“A A B C D D E” same as “A B C D E” ignoring concatenations. 

o Exact: 
“A A B C D D E” same as “A A B C D D E” but not the same as “A B C D” 

• Adding the signaling of BGPsec validation state to iBGP sessions. (The IETF 
SIDROPS working group currently has an active working group document in progress 
on this topic.) 

• Adding the RPKI Cache Test harness as a component to BIO. 

  



 
 

88 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

Acknowledgments 

The authors are grateful to Antonio Izquierdo Manzanares for his review and comments. 

Acronyms 

Selected acronyms and abbreviations used in this paper are defined below. 

AFRINIC African Network Information Center 
APNIC Asia Pacific Network Information Center 
ARIN  American Registry for Internet Numbers 
BGP  Border Gateway Protocol 
BGPsec BGP security extension 
BIO  BGPsec-IO traffic generator 
BGP-PV BGPsec Path Validation 
eBGP  External BGP 
ECDSA Elliptic Curve Digital Signature Algorithm 
iBGP  Internal BGP 
IDS  Intrusion Detection System 
IETF  Internet Engineering Task Force 
IUT  Implementation Under Test 
LACNIC Latin America and Caribbean Network Information Center 
NCCoE National Cybersecurity Center of Excellence 
RFC  Request for Comments 
RIB  Routing Information Base 
RIPE  Réseaux IP Européens 
RIPE NCC RIPE Network Coordination Center 
ROA  Route Origin Attestation 
BGP-OV BGP Origin Validation 
RPKI  Resource Public Key Infrastructure 
RVC  RPKI Validation Cache 
SCA  SRxCryptoAPI 
SRx  Secure Routing Extension 
SSVOPM Signature and Verification Operations Parallelizing Manager 
SUID  SRx update ID (Unique within the scope of SRx-Server) 
TA  Trust Anchor 
VRP  Validated ROA Payload 
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Appendix A: Supplemental Materials 

A.1: QuaggaSRx Configuration Settings 
This appendix provides the comprehensive list of configuration settings added to the Quagga 
implementation during the integration of BGP-OV and BGP-PV. All added commands start 
with the keyword srx followed by the command and its parameters.  

When entering the commands using the CLI, the following command sequence is used to enter 
the configuration section for each separate router instance.  

 
A.1.1 QuaggaSRx Configuration Settings 
Turn on/off additional SRx display information for default show commands. 

 

The SRx proxy id MUST be set prior to using the connect command. The SRx-Server uses the 
proxy ID to link updates to routers. This is can be either scripted as an IPv4 address or plain 
4-byte integer decimal value. It is recommended to use the router-id as a proxy-id. 

 

Configure the address of the server and its port without connecting. 

 
Connect the BGP server instance to the SRx-Server at the given location. The preferred method 
to connect is using “srx set-server” to configure the SRx-Server connection and calling “srx 
connect” without any parameters. The Quagga command “show/write running-config” 
displays the preferred sequence.  

 
Disconnect the BGP server instance from the SRx server. For this command, the “keep-
window” setting is used. 

 
Specify the time in seconds the SRx is requested to hold information after it is deleted! This 
allows a router reboot without losing the validation result information within SRx. 

enable 
configure terminal 
router bgp <asn> 
 

[no] srx display 

srx-proxy-id <id> 

srx set-server <host> <0..65535> 

srx set-server <host> <0..65535> 

srx disconnect 

srx keep-window 
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With QuaggaSRx 0.3.1 communicating origin validation results to peers via extended 
community as specified in RFC 8097 was introduced. The given integer value in the range of 
0-255 is used to identify this extended community value number. This number should be 200 
as specified in RFC 8097 but at the time of implementation the number was not yet assigned, 
and the implementation allowed to configure a value. By default, this enables communication 
in send and receive mode for all iBGP peers. In addition to the draft specification, QuaggaSRx 
allows extending the community into eBGP by adding the parameter ‘include_ebgp’. To turn 
off eBGP reconfigure the router using ‘ibgp_only’ 

 
Disable RFC 8097 for signaling origin validation results. 

 
RFC 8654 allows increasing the regular BGP update message size from 4K to 64K. The 
following command enables (or disables by using “no”) this feature. The optional parameter 
“liberal” allows a more liberal approach as specified in earlier versions of the specification 
when it was in draft mode. 

 
The liberal mode means that even if the capability is not negotiated within the peers, 
QuaggaSRx will accept large UPDATE messages and not treat them as malformed UPDATEs. 

A.1.2 QuaggaSRx BGP-OV and BGP-PV Configuration Settings 
To enable or disable the policy processing within the decision process as well as activating or 
deactivating the ignore flag due to ignore-XXX policies, the evaluation must be enabled. In 
addition to enabling the evaluation of validation results, this command specifies the mode the 
evaluation is performed in. The mode origin_only indicates that only route origin validation 
results are used for calculating the UPDATEs validation result. The mode bgpsec indicates that 
both the route origin validation and the BGPsec path validation result will be used to determine 
the UPDATEs final validation result. 

To disable the evaluation use “no srx evaluation”.  

 
Mode: origin_only (default) 

With this setting, only origin validation is evaluated. Path validation results will still be 
requested and notifications from SRx will be processed for maintaining the correct data 
associated with each update, but the results of path validation will not be included in the 
evaluation of validation results.  

  

srx extcommunity <0-255> ( ibgp_only | include_ebgp ) 

no srx extcommunity <0-255> ( ibgp_only | include_ebgp ) 

[no] srx capability extended [liberal] 

[no] srx evaluation (origin_only | bgpsec [distributed]) 
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The following results are possible with origin_only validation processing: 

valid A ROA exists that covers the announced prefix and origin. 

notfound No ROA exists for the announced prefix or a less specific of it. 

invalid A ROA exists that covers the announced prefix or a less specific prefix, but 
the origin AS does not match. 

undefined Validation is not yet performed. 

QuaggaSRx introduces a fourth validation result type called “undefined”. This result type 
allows distinguishing between an actual validation result and the status when no connection 
from the QuaggaSRx router to SRx-Server exists, or not enough information is available to 
make the final decision on the validation result for the update. As soon as QuaggaSRx can 
determine the outcome of the validation, then the validation result is set to the specific 
validation state. 

Mode: bgpsec [distributed]  

This evaluation mode activates origin validation and path validation. QuaggaSRx uses the 
validation results of origin validation and path validation to compute the final BGPSEC 
validation result (valid|invalid|undefined). Even though SRx-Server reports prefix-origin 
validation and path validation independently as soon as they are available. Note that the SRx-
Server path validation refers only to the validation of the path signatures, NOT including the 
origin validation. QuaggaSRx merges the independent results of origin and path validation into 
one final BGPSEC validation.  

Option: distributed 

The option distributed specifies the location where the BGPsec path validation will take place. 
If provided, the BGPsec path validation will be done by SRx-Server, if omitted, the BGPsec 
path validation will be performed locally within the router itself. In the latter case, all keys 
must be pre-installed in the router. To use the validation cache for retrieving the router keys 
(public keys), the validation must be performed by the SRx-Server. 

The final validation result is explained in detail in Table 2 of Section 3.4. 

A.1.3 QuaggaSRx Policy Configuration  
QuaggaSRx allows configuring the default value for BGP-OV and BGP-PV. These values are 
used unless validation results are received via extended community string as specified in  RFC 
8097 or until the final validation result is computed. The following two commands allow 
specifying the default values for BGP-OV and BGP-PV. 

 

[no] srx set-origin-value ( valid | notfound | invalid | undefined ) 
[no] srx set-path-value ( valid | invalid | undefined ) 
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Policy processing is discussed in detail in Section 3.5. Here we only list the configuration 
settings for completeness. 

 

A.1.4 Configure a BGPsec Peering Session 
BGPsec requires some more configuration to perform as expected. For that, QuaggaSRx allows 
two modes to do just that.  

1. Perform all BGPsec operations within the router itself, or 
2. Use SRx-Server to perform BGPsec operations. 

For internal operation, QuaggaSRx uses the SRxCryptoAPI, which must be configured 
properly (see Section 5.2). QuaggaSRx also uses SCA as storage for the private key. 

QuaggaSRx allows to store two keys but will only use a single key at a time. To specify each 
key the following configuration command will be used. 

 
With version 0.4.2 QuaggaSRx allows having 2 separate private keys installed. In addition, 
each key can be assigned its separate algorithm suite identifier. The key SKI is the hexadecimal 
representation of the 20-octet long SKI (40 hexadecimal ASCII characters) that specifies the 
private key. The private key will be loaded using the SRxCryptoAPI. 

The following command specifies, which of the two BGPsec key configurations is activated. 

 

BGPsec will be configured on a per-peer basis. The following command allows specifying the 
correct peer/neighbor configuration. 

 
Currently, QuaggaSRx provides BGPsec configuration for IPv4 only! 

 

  

 
[no] srx policy (ignore-notfound | ignore-invalid | ignore-undefined) 
[no] srx policy local-preference (valid | notfound | invalid) <value> 
                                 [add | subtract] 
[no] srx policy prefer-valid 
 
 
 
 
  

srx bgpsec ski (0 | 1) (1..255) (key-ski) 

srx key (0 | 1) active 

neighbor A.B.C.D bgpsec (send | receive | both) 
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A.1.5 CLI Display Commands 
For the display, QuaggaSRx seamlessly integrates validation information into the standard 
“show [ip] bgp” commands. The additional information must be enabled or disabled within 
using the “srx display” command as described in Appendix A.1.1. 

There are two separate display sections. The first one is embedded within the regular Quagga 
display. Available are commands such as “show ip bgp” or the more detailed version of it, 
“show ip bgp a.b.c.d/e”, where a.b.c.d/e represents a BGP prefix. The latter provides 
additional outputs such as validation results, update ID, or additional BGPsec path 
information – just to name a few.  

Command: show ip bgp 

 
Command: show ip bgp 10.80.0.0/16 

 

bgpd# show ip bgp  
BGP table version is 0, local router ID is 10.0.6.50 
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, 
              r RIB-failure, S Stale, R Removed 
Validation:    v - valid, n - notfound, i - invalid, ? - undefined 
SRx Status:    I - route ignored, D - SRx evaluation deactivated 
SRxVal Format: validation result (origin validation, path validation) 
Origin codes: i - IGP, e - EGP, ? - incomplete 
 
   Ident    SRxVal SRxLP Status Network        Next Hop   Metric  LocPrf Weight Path 
*> 289682FD v(v,v)              10.80.0.0/16   10.80.0.1       0              0 80 ? 
*  328B5F6E i(i,v)          I   10.80.0.0/24   10.70.0.1       0              0 70 90 ? 
 

bgpd# show ip bgp 10.80.0.0/16 
BGP routing table entry for 10.80.0.0/16 
Paths: (1 available, best #1, table Default-IP-Routing-Table) 
  Advertised to non peer-group peers: 
  10.0.6.60 10.0.6.70 
  80 
    SRx Information: 
      Update ID: 0xA9945EA7 
      Validation: 
        prefix-origin: valid 
        path:   valid 
        bgpsec: valid  (combination of prefix-origin and path validation) 
      PathType: BGPSEC-Path ( 1 signature blocks, each with 1 path segments) 
        signature block #1: algorithm suite id 1 
        path segment 1: as=80; pcount=1 
          signature segment [1]: block 1, ski=18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9 
    10.80.0.1 from 10.0.6.80 (10.80.0.1) 
      Origin incomplete, metric 0, localpref 100, valid, external, best 
      Last update: Tue Sep  8 21:06:56 2020 
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The second display section is used to display the srx configuration. This command is located 
in the router’s configuration section. The configuration section can be reached using the 
command combination: 

 

Once in the router configuration the Quagga using the command ‘show srx-config’ will display 
the current srx configuration settings. 

 

A.2: SRx Server and Tools 
The SRx-Server codebase also provides a rich set of test harness tools. These tools were 
originally developed to test the client or server-side of network connectivity. This Appendix 
will list the configurations for all, the SRx-Server as well as the SRx-Server-Tools. 

A.2.1: SRx Server Configuration 
The SRx-Server configuration is located on the file systems /etc folder. The following list 
shows the complete configuration file.   
 
verbose  = true; 
loglevel = 5; 
#log     = "/var/log/srx_server.log"; 
 
sync    = true; 
port    = 17900; 
 
 

bgpd(config-router)# show srx-config  
SRx-Server configuration settings: 
  srx-server.....: 127.0.0.1 
  port...........: 17900 
  proxy-id.......: 0x0A000632 (10.0.6.50 - 167773746) 
  keep-window....: 900 
  connected......: true 
BGPSEC configuration settings: 
  active key.....: 0 
  Private key 0 - active 
  - algorith-id..: 1 
  - ski..........: FB5AA52E519D8F49A3FB9D85D495226A3014F627 
  - DER-loaded...: yes 
  Private key 1 - inactive 
  - algorith-id..: 0 
  - ski..........: 0000000000000000000000000000000000000000 
  - DER-loaded...: no 
SRx Router Configuration settings: 
  evaluation.....: bgpsec (prefix-origin and path processing) using srx-server 
  default value..: (origin)   ? = undefined 
  default value..: ( path )   ? = undefined 
  policy.........: ignore-invalid 
                   prefer-valid 
  ext community..: 200 
  incl-eBGP......: true 
bgpd(config-router)# 

bgpd> enable 
bgpd# configure terminal 
bgpd(config)# router bgp <asn> 
bgpd(config-router) 
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console: { 
  port = 17901; 
  password = "x"; 
}; 
 
rpki: { 
  host = "localhost"; 
  # Default port (RFC6810) is 323 but needs root privilege on the server 
  # side 
  #port = 50001; 
  port = 323; 
  # supports 2 versions: 0 => RFC6810, 1 => RFC8210 
  router_protocol = 1; 
}; 
 
bgpsec: { 
  # Allows to set a configuration file for path validation 
  #srxcryptoapi_cfg = "<configuration file>"; 
 
  # Synchronize the logging settings of SCA with the logging settings of  
  # SRx-Server. If set to false the SCA configuration takes precedence 
  sync_logging = true; 
}; 
 
mode: { 
  no-sendqueue = true; 
  no-receivequeue = false; 
}; 
 
mapping: { 
#The configuration allows 255 pre-configurations. client_0 is invalid 
  client_1  = "2"; 
  client_10 = "10.0.0.1"; 
  client_25 = "10.1.1.2"; 
}; 
 
A.2.2: SRx-Server Telnet Commands 
Once logged into the SRx-Server telnet session, the command help produces the output shown 
below. The telnet session does not provide up and down arrow history and no command 
completion.  

Available commands are: 
======================================================= 
 close, quit, exit     Close this console! 
 shutdown <password>   Shutdown the SRx Server! 
 log-level [number]    Set/display the log level of the server. 
                       3=ERROR, 5=NOTICE, 6=INFO, 7=DEBUG 
 rtr-sync [proxyID]    Send synchronization request to 
                       the provided proxy or all. 
 show-version          Display the full version number of the SRx-server. 
 show-srxconfig        Display the configuration of the srx server 
 show-update <cmd>     Display update data according to 
                       the command string. 
      cmd:= id <id>    Show the update with the ID (hex). 
 show-proxies          Display the list of proxies. 
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 num-updates           Display the number of updates stored in update 
                       cache! 
 num-prefixes          Display the number of prefixes stored 
                       in the prefix cache! 
 num-proxies           Display the number of proxies attached 
 command-queue         Displays the content of the command queue. 
 dump-pcache           Dump the prefix cache to command line 
                       of SRx! 
 dump-ucache           Dump the update cache to command line 
                       of SRx! 
 !! [<parameter>]      Repeat last command with optional new 
                       parameter if specified, otherwise 
                       old parameter! 
 
 
A.2.3: RPKI_RTR_SVR – The RPKI Validation Cache Test Harness 
The development of SRx-Server required to also develop test tools for proper protocol 
implementation. This is especially important for the RPKI side of the implementation. At the 
time the initial implementation started not many, if any, RPKI validation caches were around. 
The RPKI Prefix Origin Validation was still in its design stage, but to be able to implement a 
reference implementation in parallel to the protocol specification it became clear very early in 
the development that proper test tools are needed. The test tool required needed to abstract the 
full complexity of RPKI. The RPKI and its inner workings were not important for the SRx-
Server development. However, the outcome of the RPKI Validation was. And for that, we 
needed a tool that allowed generating RPKI traffic as specified in the router to cache protocol, 
which became RFC 6810 for ROA information distribution and the later replacement RFC 
8210 that added BGPsec key distribution. The outcome was the RPKI-RTR Cache Test 
Harness. This tool grew over time to an RPKI traffic generator that allows using a scripting 
language to automate RPKI traffic. 

The following sections show screen captures of the software, which implements RFC 6810 as 
well as RFC 8210 and allows testing the protocol mechanics as well as sending ROA or key 
announcements and withdrawals and starting prewritten scripts.  

The RPKI-RTR Cache Test Harness implements the protocols RFC 6810 and RFC 8210 and 
was successfully tested with CISCO and Juniper commercial router implementations.  

The following command line parameters are provided: 

Syntax: rpkirtr_svr [options] [port [script]] 
  options: 
    -f <script>  A script that has to be executed as soon as 
                 the server is started. 
    -D <level>   Set the logging level ERROR(3) to DEBUG(7) 
 
  For backward compatibility, a script also can be added after a 
  port is specified.! - For future usage, use -f <script> to  
  specify a script! 
  If No port is specified the default port 323 is used. 
 
RPKI Cache Test Harness Version 0.5.1.1 
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Below is the list of CLI commands that can be used. All these commands can be used in a 
script file that can be executed from within the CLI or passed to the Test Harness using the 
parameter -f <script>. 

$ rpkirtr_svr 50000 
Start RPKI Cache Test Harness using port 50000 
RPKI Cache Test Harness Version 0.5.1.1 
>> help 
RPKI Cache Test Harness Version 0.5.1.1 
 
Display Commands: 
----------------- 
  - verbose 
                 Turns verbose output on or off 
  - cache 
                 Lists the current cache's content 
  - version 
                 Displays the version of this tool! 
  - sessionID 
                 Display the current session id 
  - help [command] 
                 Display this screen or detailed help for the 
                 given command! 
  - credits 
                 Display credits information! 
 
Cache Commands: 
----------------- 
  - keyLoc <location> 
                 The key volt location. 
  - empty 
                 Empties the cache 
  - sessionID <number> 
                 Generates a new session id. 
  - append <filename> 
                 Appends a prefix file's content to the cache 
  - add <prefix> <maxlen> <as> 
                 Manually add a whitelist entry 
  - addNow <prefix> <maxlen> <as> 
                 Manually add a whitelist entry without any  
                 delay! 
  - addKey <as> <cert file> 
                 Manually add a RPKI Router Certificate 
  - remove <index> [end-index] 
                 Remove one or more cache entries 
  - removeNow <index> [end-index] 
                 Remove one or more cache entries without any 
                 delay! 
  - error <code> <pdu|-> <message|-> 
                 Issues an error report. The pdu contains all 
                 real fields comma separated. 
  - notify 
                 Send a SERIAL NOTIFY to all clients. 
  - reset 
                 Send a CACHE RESET to all clients. 
  - echo [text] 
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                 Print the given text on the console window. 
  - waitFor <client-IP> 
                 Wait until the client with the given IP connects. 
                 This function times out after 60 seconds. 
  - pause [prompt] 
                 Wait until any key is pressed. This is mainly 
                 for scripting scenarios. If no prompt is used, 
                 the default prompt will be applied! 
 
Program Commands: 
----------------- 
  - quit, exit, \q 
                 Quits the loop and terminates the server. 
                 This command is allowed within scripts but only 
                 as the very last command otherwise, it will be 
                 ignored! 
  - clients 
                 Lists all clients 
  - run <filename> 
                 Executes a file line-by-line 
  - sleep <seconds> 
                 Pauses execution 
 
 
>> 
 
In addition, the CLI allows code completion. This is achieved by pressing the TAB key. The 
first example below demonstrate TAB without any other input. This shows all supported 
commands. 

>>  
*          addNow     credits    exit       pause      reset      verbose     
add        append     echo       help       quit       run        version     
addKey     cache      empty      keyLoc     remove     sessionID  waitFor     
addKeyNow  clients    error      notify     removeNow  sleep       
 

The second example demonstrated code completion. 

>> a 
add        addKey     addKeyNow  addNow     append      
 
The CLI allows to switch the TAB command from code completion to file browser by 
pressing “*”. This is helpful for starting scripts or specifying the keyLoc position 

>> RPKI/raw-keys-ski/ 
18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9.cert  
8E232FCCAB9905C3D4802E27CC0576E6BFFDED64.cert 
18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9.der   
8E232FCCAB9905C3D4802E27CC0576E6BFFDED64.der 
18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9.pem   
8E232FCCAB9905C3D4802E27CC0576E6BFFDED64.pem 
>> 
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The below script shows the content of an example that pre-fills the Cache Test Harness with 
ROA and BGPsec key entries. A script also can have interactive and automated components. 
These components are sleep <seconds>, waitFor <clientIP>, and pause [prompt]. The 
command waitFor allows to wait for a client to connect, but it will time out and continue 
operation after 60 seconds. The pause command allows for interactive input. This is useful in 
cases where we are interested in having the capability to stop in between to analyze the router 
implementation.  

 

A.2.4: Prefix Cache Algorithmic Flow Charts 
This appendix contains the list of flow charts for the internal workings of the SRx-Server Prefix 
Cache. The data structure allows optimized search and validation/revalidation. The flow charts 
are drawn so that the “smiley” on top is the start. A “blue smiley” represents a main function 
start, a “yellow-greenish smiley” represents a subroutine. Diamonds represent conditions and 
rectangles represent an action. Rectangles encapsulating other structs do represent loops. 
Rectangles with yellow-greenish background represent a “Goto” link to another flow chart. 
Yellow-greenish circles with the wording “Return” represent the return to the Goto that was 
called to link to this subroutine. Green circles with “Done” represent the end of the function.  

Flow Chart 1 describes the request for an Update that is not yet validated. This Flow Chart 
(FC) will use two subroutines (SR) depending on the existence of the Prefix in the Update or 
if it exists, if it is already covered by a ROA. 

echo Set keyLoc to /.raw-keys/ski 
keyLoc ./raw-keys-ski 
echo Load public keys... 
addKey 2 47F23BF1AB2F8A9D26864EBBD8DF2711C74406EC.cert 
addKey 5 3A7C104909B37C7177DF8F29C800C7C8E2B8101E.cert 
addKey 7 8BE8CA6579F8274AF28B7C8CF91AB8943AA8A260.cert 
addKey 50 FB5AA52E519D8F49A3FB9D85D495226A3014F627.cert 
addKey 60 FDFEE7854889F25BF6ECB88AFAF39CE0EBC41E08.cert 
addKey 70 C38D869FF91E6307F1E0ABA99F3DA7D35A106E7F.cert 
addKey 80 18494DAA1B2DFD80636AE943D9DC9FF42C1AF9D9.cert 
addKey 90 63729E346F7D10E3D037BCF365F9D19E074884E6.cert 
echo done. 
echo Load ROA's... 
add 10.60.0.0/16 20 60 
add 10.70.0.0/16 20 70 
add 10.80.0.0/16 20 80 
add 10.90.0.0/16 20 90 
add 172.16.2.0/24 24 2 
add 172.16.5.0/24 24 5 
add 172.16.7.0/24 24 7 
echo done. 
echo Show cache content: 
cache 
echo 
echo Send notification to clients to speed things up 
notify 
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Flow Chart 1 – Initial request validation 
 

Flow Chart 2 is the SR called during the initial Validation Request once it was identified that 
the Prefix of the given Update is not known yet.  
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Flow Chart 2 – Request validation – SR: Perform validation for new prefix 
 
Once the process depicted in Flow Chart 2 added the prefix to the Prefix Cache and 
initialized the attributes the SR Validation for known prefixes is called. Once the SR 
validation returns, this SR will return to its caller as well. 
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Flow Chart 3 shows the SR that is called for validation requests for known prefixes.  

 
Flow Chart 3 – Request validation – SR: Perform validation for known prefix 
 
This SR determines the final validation state of the prefix. Once this is done, the subroutine 
returns to the caller. 
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Flow Chart 4 describes the mechanism of adding ROAs to the Prefix Cache. Similarly, to 
Update validations, the first step is to identify if the prefix exists. Once the prefix is added, the 
subroutine for validation is called to assure all affected updates will be re-validated. 

 
Flow Chart 4 – Add ROA to Prefix Cache 
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Flow Chart 5 depicts the recursive SR for checking if the prefix P is covered by a ROA installed 
in the less specific Prefix P’ or its lesser specific prefix P” until the lesser specific prefix P” is 
not covered. 

 
Flow Chart 5 – Add ROA – SR: Check ROA coverage 
 
This method walks up the prefix tree until the first prefix is found that is not covered anymore 
or the root is reached. 
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Flow Chart 6 displays the SR verifying updates for a given Prefix and ROA. This flow 
describes how the updates are identified going towards the more specific prefixes. 

 
Flow Chart 6 – Add ROA – SR: Verify Updates for P using R 
 
Each Update’s ROA Match counter that is matched by the ROA prefix and Max length does 
get the match counter increased. This helps later to identify if an update during removal of a 
ROA will be moved into the Other list. 
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Flow Chart 7 describes the action of removing a ROA from the Prefix Cache.  

 
Flow Chart 7 – Delete ROA  
 
This function not only removed the ROA but also cleans the Prefix Cache. It checks if the AS 
used by this ROA still is attached to other ASes or updates, if not, the AS gets removed as 
well. 
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Flow Chart 8 describes the process of re-validations. It is called by Delete ROA described in 
Flow Chart 7. One very important fact to remember is that if one of the validation states of 
“State_of_Other” is INVALID, all State_of_Other values for child prefixes (more specific 
prefixes) must be INVALID as well. 

 

Flow Chart 8 – Delete ROA – SR: Revalidate Updates 
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A.3: BGPsec-IO Configuration Examples and Tools 
BGPsec-IO provides the functionality to completely generate a configuration file by using the 
command bgpsecio -C <filename> that is completely self-explanatory. The reason for that is 
rooted in the complexity and feature richness of BIO, which allows its user to immediately see 
all available options. 

Next to the configuration file (which will be specified using the parameter -f <filename>), 
BIO provides a rich set of command-line parameters. With the exception of UPDATEs, all 
command line parameters are applied after the configuration file is loaded. UPDATEs 
specified using the command line are the first ones added. 

A.3.1: BGPsec-IO Configuration File 
The following listing represents the auto-generated configuration file of bgpsec-io. 
 
#BGPSEC-IO Configuration file. Auto generated by bgpsecio V0.2.1.1 
 
ski_file    = "/var/lib/key-volt/ski-list.txt"; 
ski_key_loc = "/var/lib/key-volt/"; 
 
preload_eckey = false; 
 
# Choose from the following types "BGP", "CAPI", "GEN-B", and "GEN-C" 
mode = "BGP"; 
 
# Maximum combined number of updates to process. Script 0 for MAX INT 
max = 0; 
 
# Allow to force the usage of the flag for extended length being set.  
only_extended_length = true; 
 
# bin = "<binary input file>"; 
# out = "<binary output file>"; 
# Append data to the out file. 
appendOut = "false"; 
 
# Allow to specify a configuration file for srx-crypto-api, if this is not 
# specified, the default srx-crypto-api configuration (determined by the  
# API) will be used. 
#capi_cfg = "<configuration file>"; 
 
# Multiple sessions possible (at a later time) 
session = ( 
  { 
    asn        = 64; 
    bgp_ident  = "10.0.1.64"; 
    hold_timer = 180; 
 
    # Allows to specify specific session IP. 
    # If not specified, the bgp_ident value is used! 
    #local_addr = "10.0.1.64"; 
 
     
    # Allows to specify next hop address. If not, 
    # specified the bgp identifier is used instead! 
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    #next_hop_ipv4 = "10.0.1.64"; 
    # Required for sending IPv6 updates. 
    #next_hop_ipv6 = "0:0:0:0:0:ffff:a00:140"; 
 
    peer_asn   = 32; 
    peer_ip    = "10.0.1.32"; 
    peer_port  = 179; 
 
    # Run forever or until the peer shuts down. 
    disconnect = 0; 
 
    # Enable BGP convergence measurement framework. 
    convergence = false; 
 
    # Allow to enable/disable extended message capability. 
    ext_msg_cap = true; 
    # Allow to enable/disable liberal behavior when  
    # receiving extended message capability. 
    ext_msg_liberal = true; 
    # Overwrite draft / RFC specification and force. 
    # sending extended message regardless if negotiated or not. 
    #ext_msg_force = true; 
 
    # Configure BGP capabilities. 
    #cap_as4 = true; 
 
    # Configure BGPSEC capabilities. 
    bgpsec_v4_snd = true; 
    bgpsec_v4_rcv = true; 
    bgpsec_v6_snd = true; 
    bgpsec_v6_rcv = true; 
 
    # Updates for this session only 
    # (path prefix B4 specifies BGP-4 only update!) 
    # <prefix>[,[[B4]? <asn>[p<repitition>]]*[ ]*[I|V|N]?] 
    update = (  "10.0.0.0/24" 
              , "10.1.0.0/24, B4 10 20p3 30" 
              , "10.0.1.0/24, 10 20p3 30" 
              , "10.0.2.0/24, 10 20 40 50" 
              , "10.0.3.0/24, 10 20 60 70V" 
             ); 
 
    # Enable/Disable adding global updates to this session. 
    incl_global_updates = true; 
 
    # Allow prefix packing for BGP-4 scripted updates wherever possible. 
    prefixPacking = false; 
 
    algo_id = 1; 
 
    # Choose from the following signature modes (CAPI|BIO|BIO-K1|BIO-K2) 
    signature_generation = "BIO"; 
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    #In case the signature generation does fail, the 
    #following settings are possible (DROP| FAKE| BGP4) 
    null_signature_mode = "FAKE"; 
    fake_signature      = "1BADBEEFDEADFEED" "2BADBEEFDEADFEED" 
                          "3BADBEEFDEADFEED" "4BADBEEFDEADFEED" 
                          "5BADBEEFDEADFEED" "6BADBEEFDEADFEED" 
                          "7BADBEEFDEADFEED" "8BADBEEFDEADFEED" 
                          "ABADBEEFFACE"; 
    fake_ski            = "0102030405060708" "090A0B0C0D0E0F10" 
                          "11121314"; 
 
    # Allow printout of send and received BGP/BGPsec traffic. 
    printOnSend    = false; 
    # Or more detailed as a filter 
    #printOnSend = { 
    #  open         = true; 
    #  update       = true; 
    #  keepalive    = true; 
    #  notification = true; 
    #  unknown      = true; 
    #}; 
 
    printOnReceive    = false; 
    # Or more detailed as a filter 
    #printOnReceive = { 
    #  open         = true; 
    #  update       = true; 
    #  keepalive    = true; 
    #  notification = true; 
    #  unknown      = true; 
    #}; 
 
    #printSimple     = false; 
 
    printPollLoop  = false; 
 
    # For CAPI Mode. 
    printOnInvalid = false; 
 
  } 
# Currently multi sessions are not supported, that is 
# the reason the following section is commented out! 
#  ,{ 
      # Here script another session 
      # Minimum configuration 
      # asn = 64; 
      # bgp_ident = 10.0.1.64; 
      # peer_asn = 32; 
      # peer_ip = 10.0.1.32; 
#  } 
 
); 
 
# global updates for all sessions 
# <prefix>[,[B4]?[ <asn>[p<repetition>]]*[ ]*[I|V|N]?] 
update = (  
         ); 
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A.3.2: BGPsec-IO Command Line Parameters 
The following listing presents all available parameters that are available to this time. The latest 
list can be generated by calling bgpsecio -? 

Syntax: bgpsecio [parameters] 
This program allows receiving updates via pipe stream, one update per 
line. 
 
 Parameters: 
 =========== 
  -?, -h, -H, --help 
          This screen! 
  -V, --version 
          Display the version number. 
  -f <config>, --config <config> 
          config: The configuration file. 
  -y <config>, --capi_cfg <config> 
          config: An alternative SRxCryptoAPI configuration file. 
  -u <prefix, path>, --update <prefix, path> 
          prefix: Prefix to be announced. 
          path: The list of AS numbers (right most is origin). 
                The path can contain pCount values using <asn>p<value> 
                  to create p repetitions of asn. 
                In case the path contains the value 'I', 'V', or 'N' 
                  an extended community string will be added with 
                  the RPKI validation state I:invalid, V:valid, or 
                  N:not-found (no difference between iBGP or eBGP 
                To define BGP-4 only path, start path with B4 for BGP-4! 
  -s <filename>, --ski_file <filename> 
          Name of the SKI file generated by qsrx-publish 
  -l <directory>, --ski_key_loc <directory> 
          Specify the location where the keys and certificates are 
          located. 
  -m <type>, --mode <type> 
          Enable the operational mode: 
          type BGP: run BGP player 
          type CAPI: run as SRxCryptoAPI tester. 
          type GEN: Generate the binary data. 
  -a <asn>, --asn <asn> 
          Specify the own AS number. 
  -i <IPv4>, --bgp_ident <IPv4> 
          The BGP identifier of the BGP daemon. 
  -t <time>, --hold_timer <time> 
          The hold timer in seconds (0 or >=3). 
  -A <asn>, --peer_asn <asn> 
          The peer as number. 
  -I <IPv4>, --peer_ip <IPv4> 
          The IP address of the peer. 
  -P <port>, --peer_port <port> 
          The port number of the peer. 
  -M, --no_mpnlri 
          DEPRECATED. 
          Disable MPNLRI encoding for IPv4 addresses. 
          If disabled prefixes are encoded as NLRI only. 
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  -e, --no_ext_msg_cap 
          Disable the usage of messages larger than 4096 bytes. 
          This includes the capability exchange.(Default enabled) 
  -L, --no_ext_msg_liberal 
          Reject extended messages if not properly negotiated. 
  --ext_msg_force 
          Force sending extended messages regardless if capability 
          is negotiated. Allows debugging the peer. 
  -d <time>, --disconnect <time> 
          The minimum time in seconds the session stays up after 
          the last update was sent. The real disconnect time is 
          somewhere between <time> and <holdTime> / 3. 
          A time of 0 "zero" disables the automatic disconnect. 
  -T, --convergence 
          Enable BGP convergence statistics to be displayed for 
          updates received. 
  -E, --no_preload_eckey 
          Disable pre-computation of EC_KEY structure during 
          loading of the private and public keys. 
  -b <filename>, --bin <filename> 
          The filename containing the binary input data. Here  
          only the first configured session will be used. 
  -o <filename>, --out <filename> 
          The filename where to write the output to - Here only 
          the first configured session will be used. 
          Requires GEN mode!! 
  -O, --appendOut 
          If specified, the generated data will be appended to 
          given outfile. In case the outfile does not exist, a 
          new one will be generated. 
          Requires GEN mode!! 
  -U, --max 
          Allows to restrict the number of updates generated. 
  -C <filename> 
          Generate a configuration file. The configuration file 
          uses the given setup (parameters, configuration file) 
          or generates a sample file if no configuration is 
          specified. 
  -n <interface> 
          Use the interface to determine the local IP address. 
          This setting is only used in combination with the 
          creation of a configuration file. 
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 Configuration file only parameters: 
 =================================== 
  incl_global_updates 
          Enable/Disable adding global updates to this session. 
          Default: true 
  cap_as4 
          Enable/Disable the usage of 4-byte ASN. 
          Default: true (enable) 
  bgpsec_v4_rcv 
          Specify if bgpsec-io can receive IPv4 BGPSEC traffic. 
          Default: true 
  bgpsec_v4_snd 
          Specify if bgpsec-io can send IPv4 BGPSEC traffic. 
          Default: true 
  bgpsec_v6_rcv 
          Specify if bgpsec-io can receive IPv6 BGPSEC traffic. 
          Default: true 
  bgpsec_v6_snd 
          Specify if bgpsec-io can send IPv6 BGPSEC traffic. 
          Default: false 
  local_addr 
          Specify the IP address used for this session. In case 
          no local IP is specified the BGP identifier is 
          used. 
  signature_generation 
          Specify the signature generation mode: 
          mode CAPI: Use CAPI to sign the updates. 
          mode BIO: Use internal signature algorithm (default). 
          mode BIO-K1: Same as BIO except it uses a static k. 
          mode BIO-K2: Same as BIO except it uses a static k. 
          The signature modes BIO-K1 and BIO-K2 both use a k  
          which is specified in RFC6979 Section A.2.5 
          BIO-K1 uses k for SHA256 and msg=sample. 
            k=A6E3C57DD01ABE90086538398355DD4C3B17AA873382B0F24D6129493D8AAD60 
          BIO-K2 uses k for SHA256 and msg=test. 
            k=D16B6AE827F17175E040871A1C7EC3500192C4C92677336EC2537ACAEE0008E0 
  only_extended_length 
          Force usage of extended length also for BGPSEC 
          path attributes with a length of less than 255 bytes. 
  null_signature_mode 
          Specify what to do in case no signature can be 
          generated. Example: no key information is found. 
          Valid values are (DROP|FAKE|BGP4). 
  fake_signature 
          This string contains the fake signature in hex format. 
          The signature must not be longer than 255 bytes. 
          (2 HEX characters equals one byte!). 
  fake_ski 
          This string contains the fake ski for not found keys. 
          The SKI MUST consist of 20 bytes. 
          (2 HEX characters equals one byte!). 
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  printOnSend, printOnReceive 
          Each BGP update packet send/received will be printed on 
          standard output in Wireshark form. 
          Use this setting for debug only!! 
          Both settings can be used in two different forms: 
          (1) Set =true|false to this for all message types. 
          (2) Use as sub configuration to fine-tune each message. 
              Using this form sets all message types to false and 
              they must be individually set to true. 
              = { msg-type = true|false; ... };  
              Valid message types are: 
              open 
                      Printing of bgp OPEN messages. 
              update 
                      Printing of bgp UPDATE messages. 
              keepalive 
                      Printing of bgp KEEPALIVE messages. 
              notification 
                      Printing of bgp NOTIFICATION messages. 
              unknown 
                      Printing of future bgp messages. 
  printSimple 
          Print BGP messages in simple format (true) of in 
          Wireshark format (false). 
  printPollLoop 
          Print information each time the poll loop runs. 
  printOnInvalid 
          Print status information on validation result invalid. 
          This setting only affects the CAPI mode. 
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A.3.3: BGPsec-IO Tools 
The following list shows the tools that are provided with BGPsec-IO. These tools are Linux 
shell scripts that help to generate and retrieve data. 

• bio-traffic.sh 
This script shows how to generate large numbers of UPDATEs. It can generate two 
different types of traffic data: 

o For the configuration file as configuration UPDATE list. This can be easily 
used by removing the global Update section from the configuration file and then 
redirecting the output of this tool into the configuration file. 
Example: sh bio-traffic.sh >> bgpsecio.conf 

o Generating a stream that can be “piped” to BGPsec-IO via the command-line 
interface. Each Update in its own line. 

It allows specifying the AS path to be used as well as provides a minimal amount of 
configuration setting for the prefixes that will be generated. 

The tool provides the following command line parameters: 

 

• get-from-quagga.sh 

This tool allows to connect to QuaggaSRx via telnet, execute the given command and 
exit the telnet session. It is useful to automate experimentation and verify the RIB-IN 
on the QuaggaSRx end. 

• mrt_to_bio.sh 

This script formats the output or bgpdump9, an external tool used to convert MRT files 
to ASCII files. The formatted string is compatible to be “piped” into BGPsec-IO.  

 
9 https://github.com/RIPE-NCC/bgpdump 

bio-traffic.sh [-b <#> <val> ] [-p <pfxlen>] [-s2 <step>]  
               [s3 <step>] [-P <path>] [-c ] [-l]  
 
  Parameters: 
    -b <#> <val>: Specify the byte portion of the start prefix 
    -p <pfx-len>: Specify the prefix length (default: 24) 
    -s2 <step>  : Specify the increment of byte 2 
    -s3 <step>  : Specify the increment of byte 3 
    -P <path>   : Path = <as#> <as1> <as2> ... path to be added 
    -c          : Max number of updates 
    -l          : List mode, one update per line. 
    -?, ?, -h   : This screen. 
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A.4: SRx Server Protocol 
This appendix includes the protocol used to communicate between the SRx-Proxy and the SRx-
Server. This protocol is currently in its 2nd iteration. 

srx-server-protocol-2.1                                      O. Borchert 
NIST-BGP SRx 5.1                                                  K. Lee 
                                                           P. Gleichmann 
                                                                    NIST 
Experimental                                                   Sept 2020 
 
             Secure Router Extension (SRx) Server Protocol 
                          srx-server-protocol 
 
Abstract 
 
   This document facilitates the off-loading of RPKI-based security 
   operations such as Route Origin Validation (ROV) and BGPsec path 
   validation (BPV) onto external systems such as the NIST developed 
   Secure Routing Extension (SRx) Server. It describes the communication 
   between the SRx Server and its proxy thin client integrated, within a 
   BGP router or Policy module. The SRx Server provides an interface to 
   the RPKI/ROA Validation Cache using the RPKI to Router protocol 
   [RFC8610] as well as a BGPsec path validation engine. 
 
Status of This Memo 
 
   This document specifies a protocol design for the NIST internal 
   reference implementation for ROA processing [RRFC6811] and BGPSEC 
   processing [RFC8205] on the router side. This document describes an 
   experimental protocol which is NOT an Internet standard. Comments and 
   suggestions are welcome and to be send to the author of this 
   document. 
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1.  Requirements language 
 
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 
   "OPTIONAL" in this document are to be interpreted as described in 
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all 
   capitals, as shown here. 
 
2.  Introduction 
 
   This document describes the communication between SRx and its proxy. 
   This protocol is of interest to those who decide to implement their 
   own proxy module and therefore choose to communicate directly with 
   the server. 
 
   The srx-server-protocol is a TCP based, not encrypted protocol that 
   is intended to be used within a trusted and secure environment, hence 
   it is not needed to add an extra layer of security that would only 
   increase the data volume. If security is desired, it can be tunneled 
   through using ssh. 
 
   The SRx server itself does not provide BGPSEC validation in the sense 
   of a combined origin and path validation. SRx provides both 
   validation types independent from one another and therefore the 
   validation requests within this protocol are NOT requests for ROA 
   validation and BGPSEC validation, the requests and result 
   notifications are focused on each component, origin validation and 
   path validation. The consumer can decide on how to interpret / 
   combine the results according to the implementation chosen. 
 
 
3.  Glossary 
 
   SRx:   
         Secure Routing Extension, a framework that allows to out-source 
         the processing of route origin validation and path validation 
         as well as path signing. 
 
   Proxy: 
         The thin client of SRx embedded in the router, policy module or 
         other software that will use the SRx. In case the router 
         chooses to implement the proxy itself, it will take on the role 
         of the proxy. 
 
   Router: 
         A BGP router that uses the SRx to receive validation 
         information about updates. 
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   Policy Module: 
         A software that generates BGP routing policies that are feed 
         into the BGP router. This policy module might use the SRx to 
         generate/modify policies. In such case the router does not need 
         to use SRx. 
 
   Validation Cache: 
         The validation cache is responsible for performing ROA/RPKI 
         validation. Changes in the validation cache are signaled to the 
         SRx using [RFC8210]  
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4.   Protocol Data Units (PDU) 
 
4.1. Session Packets 
 
   This chapter deals with the session handshake and session tear down. 
 
4.1.1 Hello 
 
   The proxy connects to the client and negotiates a session. The 
   negotiation is done by sending a hello packet to the SRx server. The 
   server will answer with a Hello Response packet that contains the 
   connection status and proxy identifier. The packet MUST contain at 
   least one "Peer AS". This information allows the SRx to precalculate 
   signatures while in IDLE mode. The precalculation will only be 
   performed for updates received, not for updates that are originated 
   by the proxy AS. The default prepend count of the own AS number is 
   "1". The "Sign Request" packet allows to specify a different prepend 
   count. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |  Proxy   | 
   |  Type    |      Version        |   ID     | 
   |   0      |         2           |          | 
   |-------------------------------------------| 
   |                                           | 
   |              Length=Variable              | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |        Autonomous System Number (AS)      | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |               Number Peers                | 
   |                                           | 
   |-------------------------------------------| 
   ~                                           ~ 
   |-------------------------------------------| 
   |                                           | 
   |     Peer AS (Autonomous System Number)    | 
   |                                           | 
   +-------------------------------------------+ 
 
   Each connection between a proxy and SRx MUST have a unique 
   identifier. Each proxy can have only one AS number. The router 
   implementation MUST NOT share one proxy instance with multiple 
   internal router instances. Each router instance MUST have its own 
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   proxy. 
 
   The SRx answers to the hello packet either with a "Hello Response" 
   message or with an error packet. In case the provided proxy 
   identifier has the value "0" zero, SRx will generate one and return 
   it back using the Hello Response message. Otherwise the SRx returns 
   the provided proxy identifier. 
 
 
4.1.2 Hello Response 
 
   The Hello Response packet finalizes the handshake. The proxy MUST use 
   the proxy identifier provided within this packet. This value should 
   be the same as the provided one using the Hello packet except the 
   initial value was set to "0" zero. In this case the SRx generated the 
   identifier. In case of a conflict the server assigns a new value. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |   Proxy  | 
   |  Type    |      Version        |    ID    | 
   |   1      |         2           |          | 
   |-------------------------------------------| 
   |                                           | 
   |                Length=12                  | 
   |                                           | 
   +-------------------------------------------+ 
 
4.1.3 Goodbye PDU 
 
   The Goodbye message is sent to orderly disconnect the session between 
   SRx and proxy.  This packet is used by both, SRx as well as its 
   proxy. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |          | 
   |  Type    |     Keep Window     |   zero   | 
   |   2      |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |                Length=8                   | 
   |                                           | 
   +-------------------------------------------+ 
 
   The field Keep Window is a request for both sides to not remove data 
   associated to this session. This value is in seconds and is a request 
   only. 
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4.2 Origin and Path Validation Request Communication  
 
   SRx provides two different services. The first one is the validation 
   of updates received, the second one is the signing of BGP updates 
   selected by the router and send out to its peers. 
 
   (1) Origin and Path Validation: 
 
       The Verify Request will be performed using two packet types, one 
       for IPv4 prefixes and the other for IPv6 packages. The Verify 
       Request messages are used to request the verification of an 
       update. 
 
       Within each request the proxy provides SRx with a predefined 
       validation result (Sections 5.7 & 5.8) to allow SRx to return a 
       preliminary result as soon as SRx generated a unique ID for this 
       update. This ID is the communication interface between SRx, the 
       proxy and the router / Policy module. 
 
       The validation packets are used for both request types,  Origin 
       validation request as well as Path validation request. Both 
       requests can be either combined into one single packet or send as 
       two separate requests. Eventually all requests for the same 
       update will result in the same update identifier. 
 
       Updates that are originated by the router do not need to be 
       verified. Nevertheless, these updates need an update ID to be 
       able to use the SRx signing mechanism. In this case the update 
       MUST be processed using a validation request with the exception 
       that none of the "Validation Type" bits is set. This will prevent 
       the update from being further processed in regard to validation. 
       This is considered the "Safe Only" mode.                          
 
   (2) Path Signing: 
 
       The path signing request starts the signing operation within SRx. 
       SRx is able to precompute signatures for updates that underwent 
       BGPSEC validation. Updates that are originated by the router can 
       not be precomputed due to the fact that one element the signature 
       does cover is the origination time stamp. This will be taken in 
       the moment of sending. All other updates can be precomputed by 
       SRx during idle times. 
 
       If the precomputation of update signatures is performed it is up 
       to the SRx implementation to decide if by default the own AS is 
       used once or multiple times. It is recommended though to 
       precompute without any traffic engineering. The signing request 
       can make these requests on an individual base using the 
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       "Prepared Counter" field of the request package. 
 
   SRx only monitors verification results only for updates for which it 
   received at least once a validation request. This means in case a 
   validation request was made for origin validation but not path 
   validation, the monitoring is performed for origin validation only. 
   In case an additional request for the same updates is received but 
   this time for path validation, SRx will start adding path validation 
   to the monitor. In this case it will monitor both validations. 
 
   This allows to just store updates by submitting a validation request 
   but leaving the field "Flags" empty. This allows the proxy to receive 
   an update id that can be used for later signature requests. 
   (Important for self-originated updates!) 
 
   Validation requests normally result in validation receipts. This is 
   necessary to allow the SRx to return the generated update ID. 
   Therefore, the proxy needs to wait for the receipt after each update 
   request. This might create an unnecessary processing delay on the 
   routers side, especially in situations where the update id is already 
   known. In such situations, receipts can be omitted. The SRx then will 
   only send a notification in case a change in validation result 
   occurred. In case the proxy omits all receipts, the proxy has to 
   generate the "update ID" on its own. In this case the proxy MUST 
   assure to use the identical algorithm for generating the ID as the 
   SRx otherwise they will not properly communicate to each other. 
 
   In case the validation request uses the receipt flag, the request 
   token allows the proxy to match the request to the notification. 
   Notifications use this flag to assign the receipt to its validation 
   request. 
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4.2.1 Verify Request IPv4 
 
   The following PDU describes the verification request packet for IPv4 
   Prefix / Update validation. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |          |  Origin  |  Path    | 
   |  Type    |  Flags   |  Result  |  Result  | 
   |   3      |          |  Source  |  Source  | 
   |-------------------------------------------| 
   |              Length=Variable              | 
   |-------------------------------------------| 
   |  Origin  |  Path    |          |  Prefix  | 
   |  Default |  Default |   zero   |  Length  | 
   |  Result  |  Result  |          |  (0..32) | 
   |-------------------------------------------| 
   |               Request Token               | 
   |-------------------------------------------| 
   |            IPv4 Prefix Address            | 
   |-------------------------------------------| 
   |        Origin AS (Autonomous System)      | 
   |-------------------------------------------| 
   |        Length Path Validation Data        | 
   |-------------------------------------------| 
   |                     |     BGPsec_PATH     | 
   |   Number of Hops    |   Attribute Length  | 
   |                     |                     | 
   |-------------------------------------------| 
   |                     |           |         | 
   |         AFI         |   SAFI    | Length  | 
   |                     |           |         | 
   |-------------------------------------------| 
   |--           IP Prefix Address           --| 
   |--               16 bytes                --| 
   |--                                       --| 
   |-------------------------------------------| 
   |                  Local AS                 | 
   |-------------------------------------------| 
   ~                AS Path List               ~ 
   |-------------------------------------------| 
   ~            BGPsec_PATH Attribute          ~ 
   +-------------------------------------------+ 
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4.2.2 Verify Request IPv6 
 
   The following PDU describes the verification request packet for IPv6 
   Prefix / Update validation. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |          |  Origin  |  Path    | 
   |  Type    |  Flags   |  Result  |  Result  | 
   |   4      |          |  Source  |  Source  | 
   |-------------------------------------------| 
   |                                           | 
   |              Length=Variable              | 
   |                                           | 
   |-------------------------------------------| 
   |  Origin  |  Path    |          |  Prefix  | 
   |  Default |  Default |   zero   |  Length  | 
   |  Result  |  Result  |          | (0..128) | 
   |-------------------------------------------| 
   |               Request Token               | 
   |-------------------------------------------| 
   |--         IPv6 Prefix Address           --| 
   |--               16 bytes                --| 
   |--                                       --| 
   |-------------------------------------------| 
   |        Origin AS (Autonomous System)      | 
   |-------------------------------------------| 
   |        Length Path Validation Data        | 
   |-------------------------------------------| 
   |                     |     BGPsec_PATH     | 
   |   Number of Hops    |   Attribute Length  | 
   |                     |                     | 
   |-------------------------------------------| 
   |                     |           |         | 
   |         AFI         |   SAFI    | Length  | 
   |                     |           |         | 
   |-------------------------------------------| 
   |--           IP Prefix Address           --| 
   |--               16 bytes                --| 
   |--                                       --| 
   |-------------------------------------------| 
   |                  Local AS                 | 
   |-------------------------------------------| 
   ~                AS Path List               ~ 
   |-------------------------------------------| 
   ~            BGPsec_PATH Attribute          ~ 
   +-------------------------------------------+ 
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4.2.3 Sign Request 
 
   This PDU is used to sign the as path and its attributes. This request 
   needs only to reference the peer AS the update will be send to. SRx 
   is capable of precomputing default signatures; signatures with no 
   additional content other than already provided during initial 
   validation request. The field "Prepend Counter" allows traffic 
   engineering in form of path-length within the signature generation. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |  Block   | 
   |  Type    |     ALGORITHM       |  Type    | 
   |   5      |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |                 Length=20                 | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |             Update Identifier             | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |              Prepend Counter              | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |     Peer AS (Autonomous System Number)    | 
   |                                           | 
   +-------------------------------------------+ 
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4.3.  SRx to Proxy Result Notification" 
 
   The PDU's described here are used by SRx to communicate the requested 
   result as well as changes within the results to the proxy and 
   therefore, to the router or policy module. Notifications can occur 
   due to multiple events: 
 
   (1) Origin / Path Validation: 
 
       Each request for validation will result instantaneously in a 
       result notification. For this kind of notification, the "Receipt" 
       flag  is set. This result does not only return a 
       "preliminary/final" result, it also returns the unique update ID 
       that is used for all future communication regarding this 
       particular update. 
 
       Repeated validation requests of the exact same update MUST result 
       in the same update ID. 
 
   (2) Signature Request: 
 
       Different to the validation request, the signature request will 
       result in a signature validation. The router must decide if it 
       only sends updates fully signed or if it allows sending unsigned 
       packages followed by resending the update again once the 
       signature is fully computed. 
 
   (3) Validation Changes of ROA's or Signature keys: 
 
       SRx monitors the state of updates in such as it received 
       information about ROA expiration, revocations, key expiration 
       etc. These events can change the validation result of a prior 
       processed update. In case a validation state of an update 
       changes, SRx MUST send a notification message to the proxy. This 
       notification messages MUST NOT have the "Receipt" flag set. 
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4.3.1 Verify Notification 
 
   This packet is used by SRx to communicate the validation result to 
   the proxy. The results communicated using this packed must reflect 
   the validation result of SRx as soon as possible. This means that as 
   soon as SRx results are available these results MUST be used, the 
   results provided during the last request are ignored. 
 
   The "Receipt" flag specifies if this notification MUST be handles as 
   validation receipt or validation result notification. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |  Result  |  Origin  |  Path    | 
   |  Type    |  Type    |  Result  |  Result  | 
   |   6      |          |          |          | 
   |-------------------------------------------| 
   |                                           | 
   |                 Length=16                 | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |               Request Token               | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |              Update Identifier            | 
   |                                           | 
   +-------------------------------------------+ 
 
   The "Request Token" field will only be used in case this notification 
   is flagged as "Receipt". This token will help the proxy side to match 
   the receipt to the request. 
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4.3.2 Signature Notification 
 
   This packet is used by SRx to communicate the BGPSEC portion of the 
   update back to the proxy. Depending on the sign request type the data 
   returned contains either only the latest signature block or all 
   signature blocks. This allows the user of the proxy (e.g. router) to 
   either strip all BGPSEC information from the update and keep the 
   memory consumption low or  keep the data traffic to a minimum by only 
   transmitting the new  signature block. In both cases SRx keeps all 
   BGPSEC related data cached. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |          | 
   |  Type    |       reserved      |   zero   | 
   |   7      |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |               Length=Variable             | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |              Update Identifier            | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |        Length Path Validation Data        | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   ~             PATH SIGNATURE DATA           ~ 
   |                                           | 
   +-------------------------------------------+ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Borchert, et al.      Prototype - Work in Progress             [Page 15] 
	  



 
 

133 

This publication is available free of charge from
: https://doi.org /10.6028/N

IST.TN
.2060 

 

NIST        Secure Routing Extension (SRx) - Server Protocol   Sept 2020 
 
 
4.4 SRx Maintenance and Error Handling 
 
   PDU's specified in this section define maintenance packets. They are  
   used to allow synchronization, failure notification, housekeeping, 
   and peer configuration. SRx can implement the functions anticipated 
   behind these messages but does not need to do so. Both, SRx as well as 
   the proxy MUST accept packages of this type according to the 
   communication schematics. 
 
4.4.1 Delete Update 
 
   This packet is used to inform the SRx that the specified update 
   is not available anymore in the router. SRx itself does not need to 
   react on this but it will allow SRx to free up resources. 
 
   Furthermore, the proxy makes sure it will NOT receive any further 
   notifications related to this update. The "Keep Window" field allows 
   to inform SRx that the update might be requested again within the 
   "Keep Window" time. SRx is not obligated to follow this request.  
   This field is purely a performance setting. 
 
     0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |          | 
   |  Type    |     Keep Window     |   zero   | 
   |   8      |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |                 Length=12                 | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |              Update Identifier            | 
   |                                           | 
   +-------------------------------------------+ 
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4.4.2 Peer Change 
 
   This packet is used by proxy to indicate a change in the peer 
   configuration. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |  Change  | 
   |  Type    |       reserved      |   type   | 
   |   9      |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |                  Length=12                | 
   |                                           | 
   |-------------------------------------------| 
   |                                           | 
   |                  Peer AS                  | 
   |                                           | 
   +-------------------------------------------+ 
 
4.4.3 Synchronization Request 
 
   This packet is used if SRx assumes that the connection with the proxy 
   is out of sync. This could be due to a session restart or other 
   problems. It is IMPORTANT that the proxy performs a synchronization 
   once the server requested one to assure that SRx has a complete view 
   on the data of proxy. The synchronization is performed by sending a 
   validation request for each update located within the RIB in of the 
   BGP router. Due to the fact that this could be a very expensive 
   operation the SRx implementation should be conservative in the usage 
   of this request. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |          | 
   |  Type    |       reserved      |   zero   | 
   |   10     |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |                  Length=8                 | 
   |                                           | 
   +-------------------------------------------+ 
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4.4.4 Error Packet 
 
   This packet is used by SRx in case an error occurred. All errors are 
   considered fatal and are followed by a goodbye if possible. 
 
   0          8          16         24        31 
   +-------------------------------------------+ 
   |  PDU     |                     |          | 
   |  Type    |  Error Code         |   zero   | 
   |   11     |                     |          | 
   |-------------------------------------------| 
   |                                           | 
   |                 Length=8                  | 
   |                                           | 
   +-------------------------------------------+ 
 
 
5.  PDU Data Fields 
 
   This section describes the data fields used within each PDU. 
 
5.1.  Proxy Identifier (Proxy ID) 
 
   The Proxy Identifier is a unique 4 byte value that allows the SRx to 
   map internal values to the proxy itself. A preferred value is the 
   IPv4 address of the proxy. 
 
   During the handshake the identifier is allowed to have the initial 
   value of "0" zero provided by the proxy. In this case the SRx will 
   generate a SRx wide unique identifier for this proxy. Each identifier 
   can only be mapped to one proxy at a time. In case the proxy provides 
   an identifier during handshake and this identifier is currently 
   mapped to an existing session an error will be produced and the 
   handshake fails. 
 
5.2.  Number Peer AS 
 
   The number of BGP peers the proxies user (most likely the BGP router) 
   has. In case the value of this number is odd, the last two bytes of 
   the packet MUST be filled with "0" zero. The number of peers MUST be 
   greater or equals to "1" one. 
 
5.3.  Peer AS (Autonomous System) 
 
   Contains the AS number of a peer. This is used to allows SRx to 
   precompute signatures for the moment when the proxy requests a path 
   signature for a particular selected path. This operation can be 
   performed by SRx during idle times. 
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5.4.  Change Type 
 
   The change type is used to indicate if the specified peer as is 
   removed or added to router configuration. Adding a peer is done by 
   setting the value to "1" one, removing is done by setting the value 
   to "0" zero.  
 
5.5.  Flags 
 
   The flags field is bit coded and informs the SRx server what to do. 
 
            7 6 5 4 3 2 1 0 
           +---------------+ 
           |x|0|0|0|0|0|x|x| 
           +---------------+ 
            |           | |  
            |           | |  
            |           | +------VERIFY_PREFIX_ORIGIN =   1 
            |           +--------VERIFY_PATH          =   2 
            +--------------------REQUEST_RECEIPT      = 128 
 
   In case none of the bits is set the update will only be stored. This 
   is needed for updates originated by the router that uses the proxy 
   but do not need any validation applied to.  
 
   VERIFY_PREFIX_ORIGIN (1) 
 
      Request Prefix Origin validation. With this flag set the SRx will 
      perform an origin validation. In case the SRx already performed 
      this validation it is expected to return its result. No new 
      validation needs to be performed. Changes in validation status due 
      to expired or revoked ROA's will be triggered by the validation 
      cache.                   
 
   VERIFY_PATH (2) 
 
      Requests for patch validation. With this flag set the SRx will 
      perform a path validation on the passed update. This setting also 
      indicates that SRx must monitor changes within the key validity. 
      In case a key is revoked or expired its signatures will become 
      invalid and this change will be signaled to the router / proxy via 
      a Validation Notification massage. 
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   REQUEST_RECEIPT (128) 
 
      This flag indicates the proxy requests a notification receipt. A 
      receipt is similar to a notification except that the SRx MUST send 
      it regardless if the provided given validation state matches the 
      validation result generated by SRx during a prior validation 
      request. The request receipt is most importantly used to receive 
      the unique update id. In case the proxy generates the update IS it 
      MUST use the same algorithm as SRx to prevent communication 
      problems. 
 
5.6 Origin Result Source / Path Result Source 
 
   These two fields specify what to do with the provided default result 
   values. It is possible that the BGP router might call the validation 
   and provides a prior calculated validation result. this can be as a 
   result of a SYNC request from  the SRx server itself. It also could 
   be used after a session reboot between SRx and router. 
 
   This field can take the following values: 
 
      0: SRX 
      1: ROUTER 
      2: IGP 
      3: UNKNOWN 
 
   IGNORE: Do not provide default result in case no result is available 
   yet. 
 
   All the others: In case the SRx does not already have a validation 
   result it will return the predefined value. In case the validation 
   comes back with a different validation result than the provided one, 
   SRx will notify the router of the change. 
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5.7.   Default Origin Result 
 
   A predefined validation result that if used is returned to the proxy 
   in case no current result is available. 
 
   The following values can be used: 
      0: VALID 
         SRx knows about a ROA that covers this pair of Prefix/Origin. 
 
      1: UNKNOWN 
         The prefix is not covered by any ROA nor is a ROA known that 
         describes a less specific prefix. 
 
      2: INVALID 
         A ROA exists that covers either this prefix or a less specific 
         prefix but none includes the given prefix. 
 
      3: UNDEFINED 
         SRx does not have any result available and no default value was 
         provided. 
 
5.8.   Default Path Result 
 
   A predefined validation result that if used is returned to the proxy 
   in case no current result is available. 
 
   The following values can be used: 
 
      0: VALID 
         SRx could validate the path according to the specifications. 
 
      2: INVALID 
         SRx could not validate the path according to the 
         specifications. 
 
      3: UNDEFINED 
         SRx does not have any result available and no default value was 
         provided. 
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5.9.   Result Type 
 
   Identifies which result to use. This field MUST NOT be "0" zero 
   filled. 
 
   The result type is bit coded. 
            7 6 5 4 3 2 1 0 
           +---------------+ 
           |x|0|0|0|0|0|x|x| 
           +---------------+ 
            |           | | 
            |           | | 
            |           | +------RESULT_TYPE_ORIGIN =   1 
            |           +--------RESULT_TYPE_PATH   =   2 
            +--------------------RECEIPT_REQUEST    = 128 
 
5.10.  Update Identifier 
 
   Specifies a unique id within the router that is used to identify the 
   update when talking between proxy and SRx. It is expected that the 
   identical update results in the exact same Update Identifier at all 
   times. 
 
 
5.11.  Receipt Token 
 
   This field is maintained by the proxy only. It is not used as system 
   wide identifier. the receipt token helps the proxy to assign a 
   receipt notification to the initiating validation request and only if 
   receipts are requested. Otherwise this field will be zero. This token 
   facilitates the timeout management of requests. The client decides on 
   how to tread notifications that do NOT match any requests as well as 
   how to generate this token. SRx simply copies the value from the 
   verification request into the request notification. 
 
5.12.  Origin AS 
 
   The originator of the update. Will be ignored if origin validation is 
   turned off (VERIFY_PREFIX_ORIGIN not set). 
 
5.13.  IPv4 Prefix / IPv6 Prefix 
 
   The IPv4 or IPv6 prefix (In Network order). 
 
5.14.  Prefix Length 
 
   The length of the IP prefix. This value can be 0..32 for IPv4 and 
   0..128 for IPv4. All other values are resulting in an error response. 
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5.15.  ALGORITHM 
 
   BGPsec path validation [RFC8205] only allows two algorithms at the 
   same time for the reason of algorithm change. In case the requested 
   algorithm is not supported, an "Algorithm Not Supported" exception 
   MUST be thrown. 
 
   1: ALGORITHM_1:  
      The first older algorithm that is either the only currently active 
      algorithm or about to be replaced by the newer algorithm specified 
      as ALGORITHM_2. 
 
   2: ALGORITHM_2:  
      The newer algorithm that is intended to replace the older 
      algorithm ALGORITHM_1. 
 
   0xFFFF: 
      This algorithm is just for test purpose until the BGPsec 
      specification is finished. A request for this algorithm MUST not 
      produce an "Algorithm Not Supported" error. 
 
5.16.  Block Type 
 
   The Block Type specifies if the return value of the signature request 
   MUST result in the complete set of BGPSEC data or only the latest 
   signature. If the bit LATEST_SIGNATURE_ONLY is set to "1" one, only 
   the latest signature is transmitted. 
 
            7 6 5 4 3 2 1 0 
           +---------------+ 
           |0|0|0|0|0|0|0|x| 
           +---------------+ 
                          | 
                          +------LATEST_SIGNATURE_ONLY = 1 
 
5.17.  Prepend Counter 
 
   By default, SRx uses the current AS only once for (pre)calculating 
   signatures. For traffic engineering reasons a particular update can 
   contain the same prefix multiple times. The "Prepend Counter" allows 
   the calculation of signatures over multiple entities of the own 
   prepended AS. 
 
5.18.  Length Path Validation Data 
 
   Specifies the length of the data length provided needed for path 
   validation. For ROV validation only, no path data is required. This 
   filed allows to optimize the data volume by setting it to zero were 
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   the AS path is not important - ROV only. in case this value is set to 
   zero "0", no further data MUST be read to this package. 
 
5.18.1 Number of Hops 
 
   Specifies the number of hops within the path. This umber of hops must 
   include repetitions because it is used to calculate the 4 Byte per 
   entry AS Path List (see 5.18.7) 
 
5.18.2 BGPsec_PATH Attribute Length 
 
   This specifies the complete size of the BGPsec_PATH attribute in 
   bytes. 
 
5.18.3 AFI 
 
   The Address Family Identifier as specified in RFC 4760 
 
5.18.4 SAFI 
 
   The Subsequent Address Family Identifier in RFC 4760 
 
5.18.5 Length 
 
   The prefix length in bytes ((prefix_length in bits + 7) div 8). This 
   value is not used to specify the size of the prefix address field 
   size, it is used to identify how many bytes are used within the 
   prefix address filed.  
 
5.18.6 The Prefix Address 
 
   The prefix field in network order. The size of this field is 16 bytes 
   regardless of AFI type. 
 
5.18.7 Local AS 
 
   The local AS number of the receiver of the UPDATE 
 
5.18.8 AS Path List 
 
   An array containing the AS path as consecutive 4 byte ASNs. The right 
   most AS is the originator. AS concatenations must be reflected as 
   concatenations as well. 
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5.18.9 BGPsec_PATH Attribute 
 
   The BGPsec_PATH attribute as specified in RFC 8205. In case the 
   UPDATE was a BGP4 UPDATE, this value will be omitted and the 
   BGPsec_PATH Attribute Length field specified in 5.18.2 must be set to 
   "0" zero.  
 
5.20.  Keep Window 
 
   Keep Window allows to request the SRx to not delete the data assigned 
   to the current connection after the connection is terminated. If 
   used, the keep widow specifies the time in seconds the proxy user 
   needs to reconnect back to the SRx server. This SHOULD be the reboot 
   time of the BGP router, approx. 15 minutes = 900 seconds. The SRx 
   itself does not need to follow the request but is recommended to 
   reduce the recalculation time.   
 
5.21.  Error Code 
 
   All fatal errors MUST result in a Goodbye message followed by closing 
   the connection. Errors are only sent out from SRx, SRx itself does 
   not except any errors. In case SRx receives an Error it MUST return 
   an error packet with error code 2 followed by a Goodbye message. 
 
   0: Wrong Protocol Version (fatal):  
      The handshake fails due to a conflict of version number between 
      the speakers. 
 
   1: Duplicate Proxy Identifier (fatal):  
      The handshake fails due to a conflict of the proxy identifier. An 
      other currently active proxy is using the proxy identifier 
      provided. 
 
   2: Invalid Packet (fatal):  
      This error is sent when SRx receives a packet that is either 
      unknown or unexpected. An example could be twice a Hello Packet, a 
      Hello Packet with insufficient number of peers provided, an Error 
      packet send from proxy to SRx, or other. 
 
   3: Internal error (fatal): 
      The SRx has an internal error (memory, etc.) and is forced to 
      abort the communication. This error might be followed by a goodbye 
      message if possible. Otherwise the client can shut down the 
      connection and try to reconnect after some time. For instance, 30 
      seconds. 
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   4: Algorithm Not Supported:  
      This error is thrown when the given algorithm for path signing / 
      validation is not supported. This error is not considered to be 
      fatal. It signals the proxy to resend the signing request using an 
      alternative algorithm. 
 
   5: Update Not Found:  
      This error is thrown when a signing request for an update cannot 
      be processed because the update can not be found within the 
      database of SRx. 
 
      Even though this error is not considered to be fatal, it should 
      result in a "Synchronization Request" to allow a synchronization 
      between both parties. 
 
6.  Communication 
 
6.1.  Establish a Connection 
 
   Proxy                                  SRx 
     |                                     | 
     | -------------hello----------------> |  P: Send hello 
     |                                     |  S: Receive valid hello 
     |                                     |     package 
     | <---------hello response----------- |  S: response flag: 0 
     |                                     |     (connected) 
 
     ~                                     ~ 
 
   The time between sending a "hello" packet and receiving a 
   "hello response" SHOULD not exceed 30 seconds. 
 
   In case of an error - for instance wrong version number - SRx will 
   send an error message as response followed by a Goodbye message. 
 
   Proxy                                  SRx 
     |                                     | 
     | -------------hello----------------> |  P: Send hello 
     |                                     |  S: (ERROR: Wrong Version) 
     |                                     | 
     | <---------hello response----------- |  S: response flag: 1 
     |                                     |     (not connected) 
     |                                     | 
     | <-----------goodbye---------------- |  S: Send goodbye and close 
     |                                     |     TCP connection 
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6.2.  SRx server closes the connection 
 
   Proxy                                  SRx 
     ~                                     ~ 
 
     |                                     | 
     | <-----------goodbye---------------- |  S: Send goodbye and close 
     |                                     |     TCP connection 
 
   Once the goodbye message is sent out, the server can immediately tear 
   down the connection. 
 
6.3.    Proxy closes the connection 
 
 
   Proxy                                  SRx 
     ~                                     ~ 
 
     |                                     | 
     | ------------goodbye---------------> |  P: Send goodbye and close 
     |                                     |     TCP connection 
 
   Once the goodbye message is sent out, the proxy can immediately tear 
   down the connection. SRx can free up all resources or keep them up 
   for some grace period in case the connection will be reopened. The 
   Keep Window field of the goodbye message specifies a time in seconds 
   the data should be held. 
 
6.4.    Create a validation request 
 
   Proxy                                  SRx 
     ~                                     ~ 
 
     |                                     | 
     | -------------validate-------------> |  P: Send validation request 
     |                                     | 
     | <-------verify notification-------- |  S: Send a notification 
     |                                     |     with receipt flag set. 
 
     ~                                     ~ 
 
   The validation request performs two major actions: 
 
      A: Initiate a request for Origin / Path validation 
      B: Generate a unique update id.  
 
   With each request the proxy provides validation results for both the 
   requested origin validation result as well as the requested BGPsec 
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   path validation result to SRx. SRx uses this results in case no other 
   validation result is available. 
 
   Once SRx completed the validation and the result differs from the 
   previous results a result notification message is send to the proxy. 
 
   In case the validation request did not specify a validation method, 
   no further validation is started and in such case no validation 
   notification will be sent to the proxy. This is useful in regard to 
   updates that originate from the router that implements/uses the proxy 
   instance. In case an update is originated the update Id is also 
   necessary for path signing. 
 
6.5.  Create a validation result notification 
 
   Proxy                                  SRx 
     ~                                     ~ 
 
     |                                     | 
     | <-------verify notification-------- |  S: Send a notification 
     |                                     |     that results are 
     |                                     |     available. 
     |                                     |     Receipt flag is NOT 
     |                                     |     set. 
 
     ~                                     ~ 
 
   A verify notification is send for validation prior requests only. In 
   case a verification was requested for origin validation only, only 
   changes within origin validation are performed. Same with path 
   validation. 
 
6.6.    Synchronization Request 
 
   The synchronization request is initiated by the SRx due to the 
   believe that SRx and proxy might be out of sync. The proxy need not 
   to answer this request but it is strongly recommended. Furthermore it 
   is recommended that the proxy provides the results once received from 
   SRx to reduce the back traffic due to new notifications. In addition 
   it is recommended that the proxy SHOULD NOT set the "receipt flag" to 
   prevent receiving receipts for already known update results. In case 
   a result differs from the provided default result, SRx will send 
   notifications. In case nothing changed in the validation no further 
   traffic has to be processed and therefore no change should be 
   triggered within the decision process of the router. 
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   Proxy                                  SRx 
     ~                                     ~ 
 
     |                                     | 
     | <----------sync request------------ |  S: Send a sync request. 
     |                                     | 
     | -------------validate-------------> |  P: Send validation request 
     |                                     |     (SHOULD NOT SET FLAG 
     |                                     |      REQUEST_RECEIPT) 
     ~                                     ~       
     | -------------validate-------------> |  P: Send validation request 
     |                                     |     (NO REQUEST_RECEIPT) 
 
     ~                                     ~ 
 
6.7.    Error Communication 
 
   At any point in time if an error occurs, SRx initiates an error 
   message indicating the error. In case the error is considered fatal 
   the connection MUST be closed. 
 
   Proxy                                  SRx 
     ~                                     ~ 
 
     |                                     | 
     | <-------------error---------------- |  S: An error occurred 
     |                                     | 
 
     In case the error is fatal followed by: 
 
     |                                     | 
     | <------------goodbye--------------- |  S: Send goodbye and close 
     |                                     |     TCP connection. 
 
   Errors that are considered fatal require a reboot of the session. 
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7.  Implementation Suggestions 
 
   This section deals with implementation modes this protocol tries to 
   address. In general, it is thought that a router might access the SRx 
   through a proxy API. The proxy API then needs to implement this 
   protocol to talk to SRx and communicate validation requests and 
   request results between the router and SRx. This communication can be 
   performed in two modes, synchronous and asynchronous.  
 
   Regardless of the mode the proxy is operated in some parts are and 
   will always be asynchronous. The synchronization defined here is in 
   regards to validation requests and their initial result value. The 
   router itself receives four values from SRx that need to be added to 
   each update entry within the router. 
 
   Update Identifier 
      The Update Identifier (Section 5.10) 
 
   Validation Result 
      Origin (Section 5.7) Path (Section 5.9) 
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