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EXECUTIVE SUMMARY 
 

This report revisits previous numerical predictions and experimental measurements of tensile strain 

capacity (TSC) in curved wide plate (CWP) specimens. The tests [1,2] were performed under a U.S. 

Department of Transportation (DOT) and Pipeline Research Council International (PRCI) co-

sponsored project using specimens taken from American Petroleum Institute (API) 5L X100 pipes [3] 

with an outer diameter 36 in (914 mm) and a wall thickness of 19.1 mm. The present study is motivated 

by the arguably surprising conclusion in [2,4,5] that better predictions can be made from toughness 

data extracted from Charpy V-notch (CVN) tests compared with fracture mechanics tests using single-

edge-notched tensile (SE(T)) specimens. In this work, the 𝐽-integral is employed to describe driving 

and resistance forces rather than the CTOD used previously [2,4,5]. Small-specimen toughness data is 

used to make numerical predictions of full-scale CWP specimens, based on instability and initiation 

limit state methods. Several important factors that impact the utility of the 𝐽-integral approach are 

addressed. These include applicability of “apparent” 𝐽-integral in gross plasticity, consistency of the 

flaw constraint conditions in resistance curve measurements and CWP tests, the type of stress-strain 

relationships used, shape of the flaw, and mechanical properties at the flaw tip. The 𝐽-integral approach 

is shown to yield predictions that agree better with experimental measurements than previous CTOD-

based calculations. Other factors favouring 𝐽  over CTOD include simpler instrumentation and 

interpretation of small-scale tests (single-gauge versus dual-gauge set-up), avoiding the controversy 

over the definition of CTOD, and general applicability with no limitation of steel grade. 
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1. NOMENCLATURE 

𝑎 flaw depth 
𝑐 flaw half-length 
𝑡 pipe or curved wide plate (CWP) wall thickness 
𝑊′ arc width of CWP specimen 
𝑊 width of SE(T) specimen 
𝐻 height of SE(T) specimen 
𝐿 length of CWP  
𝑅 outer radius of CWP 
𝐸 Young’s modulus of elasticity  
𝜈 Poisson’s ratio  
𝜎𝑦 yield stress (engineering)  
𝜎𝑢 ultimate stress (engineering) 
𝜎 true stress 
𝜎eng engineering stress  

𝜀 true strain  
𝜀eng engineering strain 

𝑒 remote engineering strain ≈ applied (nominal) engineering strain 
𝜀𝑢 engineering strain at ultimate stress 𝜎𝑢 
𝑛 strain-hardening exponent  
𝑇 temperature 
𝐽𝐷 𝐽-integral driving force 
𝐽𝑅 𝐽-integral resistance force  
𝐾 stress intensity factor  
𝜂 geometry factor 

2. INTRODUCTION 

This report revisits previous numerical predictions and experimental measurements of tensile strain 

capacity in curved wide plate (CWP) specimens. The tests [1,2] were under a U.S. Department of 

Transportation (DOT) and Pipeline Research Council International (PRCI) co-sponsored project using 

specimens taken from American Petroleum Institute (API) 5L X100 pipes [3] with outer diameter 36 

in (914 mm) and wall thickness 19.1 mm. A detailed description of the specimens’ geometry and test 

procedure may be found in [1]. Ductile instability and initiation limit state solution methods were 

presented in [4–6] to numerically predict the tensile strain capacity (TSC) of CWP specimens. The 

present study is motivated by the arguably surprising conclusion in [2,4,5] that better predictions can 

be made from toughness data extracted from Charpy V-notch (CVN) tests compared with fracture 

mechanics tests using single-edge-notched tensile (SE(T)) specimens. In this work, the 𝐽-integral is 

employed to describe driving and resistance forces rather than the crack-tip opening displacement 

(CTOD) used previously [2,4,5]. Small-specimen toughness data is used to make numerical predictions 

of full-scale CWP specimens, based on instability and initiation limit state methods. Several important 

factors that impact the utility of the 𝐽-integral approach are addressed. These include applicability of 𝐽-
integral in gross plasticity, consistency of the flaw constraint conditions in resistance curve 

measurements and CWP tests, the type of stress-strain relationships used, shape of the flaw, and 

mechanical properties at the flaw tip.  The present 𝐽-integral approach is shown to yield predictions of 
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TSC based on ductile instability and initiation limit state methods that agree better with experimental 

measurements than previous CTOD-based calculations. Strain-based design using 𝐽-integral is thus 

validated, supporting first-principles estimation of initiation and instability strains using only small-

scale SE(T) data and 𝐽-integral calculations for CWP. Further FEA is not required, notably in the 

difficult simulation, post-processing, and material-specific FEA, to get CTOD predictions. 

Additionally, the 𝐽-integral approach avoids controversy over the definition of CTOD and the empirical 

conversions of CVN-to-CTOD data. Other factors favouring 𝐽-integral over CTOD include simpler 

instrumentation and interpretation of small-scale tests (single-gauge versus dual-gauge set-up) and 

general applicability with no limitation of steel grade. A review of tensile strain capacity prediction 

models and experimental data for strain-based design of pipelines has been presented by Park and 

Gianetto [7]. The paper identifies several of the gaps and issues with existing methodologies and 

highlights the merits of 𝐽-integral approach to TSC perdition. 

This report is organized as follows. After this short introduction, Section 2 presents a brief description 

of the ductile instability and initiation limit state solutions along with details regarding the choice of 

resistance curves used in the numerical predictions. Section 3 presents details of 𝐽-integral calculations 

in CWP specimens and the construction of driving force curves. The previously measured CWP test 

data are re-analyzed in Section 4 including a discussion on the interpretation of measured remote strains 

and their relations to the pipe TSC. Comparisons between numerical predictions and experimental 

measurements are presented in Section 5 to draw conclusions on the usefulness of the prediction 

framework presented. Finally, Section 6 summarises concluding remarks.   

 

2. STRUCTURE OF THE TSC PREDICTION APPROACH 

Ductile instability and initiation limit state solution methods as described in [5,6] can be employed to 

estimate strain capacities of the CWP specimens. The ductile instability limit state solution method 

using the 𝐽-integral as fracture mechanics parameter is schematically shown in Figure 1. In this method, 

the limit state is defined by the tangency point of the crack driving force curve and the fracture 

toughness (resistance) curve. Different measures can be used to characterize driving “force” and 

resistance, the most common being CTOD and 𝐽-integral. Previous studies on CWP limit state strain 

have used CTOD [2,4–6]. In the present work, the 𝐽-integral is used because of its simpler experimental 

measurement as compared to CTOD. The 𝐽-integral resistance curve (𝐽𝑅 as a function of crack growth 

Δ𝑎) is a function of material and test conditions (temperature, strain rate, and geometry). The 𝐽-integral 

driving force (𝐽𝐷) is a measure of the energy available to create new surfaces by way of crack growth. 

It is a function of the applied strain 𝑒 and the length of the crack 𝑎 (or, equivalently, crack growth Δ𝑎). 

The ductile instability limit state (i.e., the tensile strain capacity (TSC) and corresponding crack growth 

at unstable failure) is obtained by solving the following system of equations for 𝑒 and Δ𝑎:  

{  

𝐽𝐷(𝑒, 𝑎0 + 𝛥𝑎) = 𝐽𝑅(𝛥𝑎) 

(1) 𝜕𝐽𝐷(𝑒, 𝑎0 + 𝛥𝑎)

𝜕𝛥𝑎
=
𝑑𝐽𝑅(𝛥𝑎)

𝑑𝛥𝑎
 

where 𝑎0 is the initial length of the crack and 𝑒 is the remote strain.  

The initiation limit state is intended to give a conservative estimate of the strain capacity of the plate. 

It is given by the strain at which the driving force 𝐽𝐷 of the initial (stationary) flaw reaches the initiation 

fracture toughness defined to be the 𝐽𝑅 value at a small amount of crack growth Δ𝑎𝑖𝑛𝑖𝑡. The following 

equation is solved for 𝑒: 
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𝐽𝐷(𝑒, 𝑎0) = 𝐽𝑅(𝛥𝑎𝑖𝑛𝑖𝑡) (2) 
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Figure 1. Schematic of the ductile instability limit state solution method. Reproduced from [5]. 

In practice, the specific value of Δ𝑎𝑖𝑛𝑖𝑡 is chosen based on engineering judgment. Potential candidates 

often used in the literature are 0.5 mm [4] or 0.2 mm [8]. This choice will be further discussed later in 

Section 4. 

For a meaningful comparison of 𝐽𝑅 values with 𝐽𝐷 values, the constraint conditions of the flaw in the 

small-scale specimen should be the same as those in the large-scale specimen (see also the discussion 

in Section 2.2 below). Shen et al. [9] concluded that the constraint in a SE(T) specimen with ratio of 

span between load points to width (𝐻/𝑊) equal to 10 provides a reasonable match to that for a 

circumferential crack in a pipe of the same thickness (i.e., pipe wall thickness 𝑡  equal to SE(T) 

specimen width W) subject to tensile loading. Resistance 𝐽𝑅  curves previously reported in [10] for 

X100 pipe girth welds have been used in the present study. These curves were obtained using SE(T) 

specimens with 𝑊=17.2 mm and 𝐻/𝑊=10 based on the test procedures detailed in [11]. For specific 

information regarding the material, specimen preparation and testing performed, the reader is referred 

to [10]. A comparison between the resistance curves obtained from SE(T) and CWP tests has been 

presented in [10]. Obtaining “clean” resistance curves from CWP tests is difficult owing primarily to 

the difficulty in measuring crack size (i.e., from poor sensitivity and scatter in experimentally measured 

compliance) especially at initial stages of the test. Thus, comparison of resistance curves in the two 

geometries (CWP and SE(T)) must be considered tentative at best. By using the SE(T) resistance curves 

to predict the TSCs of CWP specimens, this study sheds some light on the transferability of resistance 

curves obtained from small scale specimens to larger scales. 

The 𝐽𝑅 curves reported in [10] include results with flaws in base metal (BM), heat affected zone (HAZ) 

and weld metal (WM) of the pipe girth welds. A matrix of different SE(T) specimens was created for 

two weld rounds with different target flaw depths, flaw locations, and test temperatures. A power law 

equation of the form 𝐽𝑅 = 𝑐1(Δ𝑎)
𝑐2 was used for curve fitting the experimentally measured 𝐽𝑅 curves. 

In each case, the corresponding curve fitting parameters 𝑐1  and 𝑐2  were reported along with 

comparisons of the measured and target flaw lengths. The initial flaw depths in SE(T) and CWP 

specimens are not necessarily equal to the targeted values (in some cases, they show more than 100% 

difference). In addition, the width of the SE(T) specimen was 𝑊 =17.2 mm, which is marginally 

different than the thickness of the CWP specimens (𝑡=19.1 mm). The following procedure was applied 
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to restore consistency of flaw-tip constraint conditions in SE(T) and CWP specimens. The curve-fitting 

coefficients were first made functions of the initial flaw depth by applying a linear best fit to measured 

SE(T) data. The linear best-fit coefficients are summarized in Table 1-Table 3. For each CWP test, an 

equivalent SE(T) flaw-depth was then obtained by requiring that 𝑎0
SE(T)/𝑊 = 𝑎0

CWP/𝑡. Given 𝑎0
CWP, 

the coefficients 𝑐1 and 𝑐2 required to construct the 𝐽𝑅 curve were obtained using an equivalent SE(T) 

flaw-depth of 𝑎0
SE(T) = 𝑎0

CWP𝑊/𝑡 ≈ 0.9 𝑎0
CWP. Note that the 𝐽𝑅  curve data corresponding to -40°C 

were not available in a number of cases, for example, in HAZ flaw locations in round 2. In such cases, 

which are highlighted in grey in the Tables, the data corresponding to either weld round 1 or 

temperature -40°C were used instead depending on which data was available. All tests were performed 

at quasi-static rate.  

Figure 2 shows a comparison of 𝐽𝑅 curves corresponding to different flaw regions and crack sizes. In 

the following section, a scheme is developed for determining the 𝐽𝐷  curves to enable numerical 

predictions of strain capacities based on ductile instability and initiation limit states. 

 

Table 1. 𝐽𝑅 curve-fit parameters for HAZ flaw location 

  𝑐1(𝑎) = 𝛼1 + 𝛽1𝑎  𝑐2(𝑎) = 𝛼2 + 𝛽2𝑎 

  𝛼1 𝛽1  𝛼2 𝛽2 

Round 1 

23°C (RT) 1718 -95.49  0.782 -0.03643 

−20°C 1604 -99.62  0.7609 -0.007769 

−40°C 1071 91.42  1.43 -0.2121 

Round 2 

RT 1367 -69.85  1.117 -0.08521 

−20°C 1292 -50.2  0.8103 0.003281 

-40°C 1071 91.42  1.43 -0.2121 
 

 

Table 2. 𝐽𝑅 curve-fit parameters for WM flaw location 

  𝑐1(𝑎) = 𝛼1 + 𝛽1𝑎  𝑐2(𝑎) = 𝛼2 + 𝛽2𝑎 

  𝛼1 𝛽1  𝛼2 𝛽2 

Round 1 

23°C (RT) 779.1 -35.91  0.4721 0.03978 

−20°C 730.4 -37.5  0.7345 0.004632 

−40°C -908 430.5  -2.197 0.875 

Round 2 

RT 631.4 2.799  0.5221 0.04353 

−20°C 348.5 50.45  0.9948 -0.03426 

−40°C -908 430.5  -2.197 0.875 

 

 

Table 3. 𝐽𝑅 curve fit parameters for BM flaw location 

  𝑐1(𝑎) = 𝛼1 + 𝛽1𝑎  𝑐2(𝑎) = 𝛼2 + 𝛽2𝑎 

  𝛼1 𝛽1  𝛼2 𝛽2 

Rounds 1 & 2 

23°C (RT) 1445 -46.88  1.043 -0.07077 

−20°C 1648 -49.21  1.194 -0.1123 

−40°C 1648 -49.21  1.194 -0.1123 
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(a) (b) 

  

(c) 

Figure 2. a) 𝐽𝑅 curves for BM, WM and HAZ at room temperature: round 1, 𝑎0/𝑊 =4/17.2 (i.e., 

0.23), b) 𝐽𝑅 curves (HAZ) for various temperatures: 𝑎0/𝑊 =4/17.2 (i.e., 0.23), and c) 𝐽𝑅 curves 

(BM) for various initial flaw depths at room temperature 

 

3. DEVELOPMENT OF CWP DRIVING FORCE CURVES 

2.1 Material model and properties  

The material model used was the same as in the development of SE(T) resistance curves by CANMET 

[11]: 
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where 𝜀 and 𝜎 are the true strain and true stress, respectively, 𝐸 is the Young’s modulus, 𝜎𝑦 is the yield 

strength, and 𝑛 is the strain-hardening exponent. In all cases, elastic properties were 𝐸 = 206.7 GPa 

and 𝜈 = 0.3.  Note that as opposed to the material model found in CSAZ662, i.e., 

𝜀eng =
𝜎eng

𝐸
+ (0.005 −

𝜎𝑦

𝐸
) (
𝜎eng

𝜎𝑦
)

𝑛CSA

, (4) 

the material model equation (3) is written in terms of true stresses and strains. Note that the CSAZ662 

equation is valid only for stresses up to the ultimate engineering stress 𝜎𝑢. The post-𝜎𝑢 stress-strain  

behaviour is sometimes assumed to follow a constant (flat) curve [5]. Some authors have used the 

CSAZ662 equation (4) presumably extrapolated beyond the ultimate stress, see e.g., reference [12].  

Table 4 summarizes the CANMET model tensile properties considered for the pipe base metal (X100), 

HAZ, and weld metal in the present study. The strain-hardening exponent 𝑛 was obtained by converting 

those given in [4] based on the CSAZ662 model by requiring that the engineering strains at engineering 

ultimate stress obtained from the two models are equal. It should be noted that,  in addition to pipe-to-

pipe strength variation, there is a considerable range of yield stress values associated with 

circumferential location even on a single pipe [13]. Hence, the properties given in Table 4 should only 

be regarded as representative properties of the X100 steel.  

Note that the type of the stress-strain model employed can significantly impact 𝐽-integral values. Figure 

3 shows a comparison of 𝐽-integrals of a semielliptical flaw of 𝑎/𝑡 =5/19.1 (0.26) and 2𝑐/𝑡=50/19 

(2.63) in the CWP obtained using the CANMET model equation (3) and CSAZ662 model equation (4). 

In implementing the CSAZ662 model, the true stresses were obtained by converting the engineering 

values in equation (4) up to the engineering stress of 𝜎𝑢  and kept constant at higher strains. The 

difference observed in the 𝐽-integral values reaches 35% in this particular case. The choice of equation 

(3) for the material model was thus made for consistency of 𝐽𝐷 calculations in the present work with 

the 𝐽𝑅  measurements and calculations in [10,11]. As also reported in [11], the strain hardening 

component 𝑛 has a negligible effect on 𝐽-integral values since at large values of 𝑛 the strain-stress 

curve is nearly flat and insensitive to variations in 𝑛. 

The yield strengths given in Table 4 correspond to room temperature. The constitutive equation 

proposed in [14,15] was used to adjust the material properties at different temperatures by adding the 

thermal component of the flow stress Δ𝜎th to the yield strength at room temperature and quasi-static 

rate:  

𝛥𝜎𝑡ℎ = [27.98 − 0.00393 𝑇 𝑙𝑛 (
108

𝜀̇
)]

2

, (5) 

where 𝑇 is the temperature in Kelvin and �̇� is the strain rate in 1/𝑠. Since all CWP tests were conducted 

in quasi-static conditions, the strain rate was taken to be very low at �̇� = 1 × 10−3/𝑠 in all cases. The 

thermal stress according to equation (5) over the range of temperatures in this work is very small; at 

𝑇 = −20° C, the thermal stress is only about 7 MPa. 

Table 4. Tensile properties (longitudinal) of different regions of X100 pipe in CWPs  

 
Tensile Properties 

𝜎𝑦 𝑛 

Base Metal & HAZ 781 17.32 

Weld metal 
Round 1 835 16.10 

Round 2 827 19.61 
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Figure 3. Comparison of 𝐽-integrals of a semielliptical flaw of 𝑎/𝑡 =5/19.1 (i.e., 0.26) and 

2𝑐/𝑡=50/19 (i.e., 2.62) in a CWP obtained using the CANMET and CSAZ662 material models. 

Applied strain: displacement divided by the specimen length (2𝐿); see Figure 6. 

2.2 Calculation of 𝐽-integrals in CWP specimens 

In incremental plasticity, path independent 𝐽-integrals can only be obtained under small scale and 

contained yielding conditions and provided that contour integrals used in the calculations are large 

enough to surround the plastic zone and pass through the elastic region only [16]. In practice, it is 

advised to consider as many contour integrals as possible to ensure that the “saturated value” of 𝐽 is 

reached in the limit of increasing contour size. In the CWP specimens used in this work, this is not 

possible since gross plasticity is encountered for the loading levels of interest. In that case, path 

dependence increases strongly and a saturated value of 𝐽  cannot be reached. An example of this 

situation is shown in Figure 4. The calculated contour integrals become increasingly path dependent as 

the strain increases so that a saturated value cannot be obtained beyond approximately 1.1% of applied 

strain. 

Loss of path dependence in this case may be viewed as being equivalent to deviation from an HRR-

like stress field in nonlinear elasticity theory as “constraint” is lost, i.e., as excessive plastic deformation 

occurs. To ensure small scale yielding and high constraint, the ASTM test standard E1820 [17] 

specifies a maximum 𝐽-integral capacity (validity range) for bend fracture mechanics specimens given 

by the smaller of 𝜎𝑦(𝑡 − 𝑎0)/10  and 𝜎𝑦𝐵/10 where B is the specimen thickness. It is generally 

accepted that constraint is lower in tension specimens than in bending specimens so the above limits 

would be even tighter (smaller validity range) for SE(T) specimens. In two-parameter fracture 

mechanics, this limitation is addressed by calculation of a second parameter to ensure that the constraint 

is the same in the specimen as in the application. For example, Shen et al. [9] used the parameter 𝑄 to 

demonstrate that crack-tip conditions are the same in the SE(T) specimen and pipe application. They 

compared the SE(T) test specimen behaviour with that of a circumferential crack in a pipe to show that 

the specimen geometry used for SE(T) testing (clamped specimen, 𝐻/𝑊=10) was adequate to ensure 

equivalent constraint (𝐽 − 𝑄 match) as 𝐽 values increased. Similarly, for CWPs it is stipulated that the 

constraint conditions at the flaw-tip should remain equivalent to those of the SE(T) geometries as 𝐽 
increases beyond the validity range to generate an HRR-like stress field. 
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Figure 4. An example of loss of path dependence of 𝐽 owing to reaching gross plasticity. Only a 

quarter of the plate is shown. The yellow circles in the top figure mark the boundary of the largest 

contour integral domain (contour number 25). Note that the contour integral cannot touch the free 

surface, otherwise 𝐽 calculations are not valid [16]. Flaw size 𝑎/𝑡=8/19.1 (i.e., 0.42), 2𝑐/𝑡=50/19.1 

(i.e., 2.62). BM properties were used (see Table 4)  

With these considerations in mind, the method used in the present study to circumvent the issues 

emanating from excessive plastic deformation (i.e., strong path dependence of 𝐽-integrals and loss of 

constraint) is as follows. The plastic component of 𝐽-integral is evaluated as a function of area under 

the load versus plastic CMOD curve and added to the well-established elastic component (see equation 

(6) below) based on the method in ASTM E1820 [17]. Parameters are obtained using the procedure 

described in [12] for small scale, contained plasticity in which 𝐽-integral values obtained from direct 

contour integral calculations are valid. At larger strains where gross plasticity is encountered, 𝐽-integral 

values are calculated from the developed relationship rather than direct contour integral calculations. 

This method of calculating 𝐽𝐷 integrals is similar to that used in calculating 𝐽𝑅 curves and ensures that 

the same definitions of 𝐽-integral, whatever they mean, are being calculated in constructing 𝐽𝐷 and 𝐽𝑅 

curves throughout the course of loading. Given that the constraint conditions in SE(T) and CWP 

specimens (i.e., 𝑎/𝑊 and 𝑎/𝑡, respectively) have been designed to be similar (see also Section 2), the 

calculated 𝐽-integral values provide a parameter that describes the same crack-tip conditions in the 

small-scale test and the CWP application. As such, 𝐽-integral can be used in estimating the TSCs even 
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though it strictly loses its validity in gross plasticity i.e., its single-parameter ability to characterize the 

crack-tip stress state. In that sense,  𝐽𝐷 and  𝐽𝑅 integrals here may be viewed as “apparent” values.  

The formula for determining 𝐽 from load versus plastic CMOD data for a stationary crack in a CWP is 

[17] 

𝐽 = 𝐽𝑒 + 𝐽𝑝𝑙 =
𝐾2(1 − 𝜈2)

𝐸
+

𝜂𝐴𝑝𝑙

𝑊′(𝑡 − 𝑎)
, (6) 

in which 𝐾 is the stress intensity factor in the elastic regime which is taken to be equal in semielliptical 

and canoe-shape flaws [18] and is given in [2,19], 𝜈 is Poisson’s ratio, 𝐸 is Young’s modulus, 𝑊′ and 

𝑡 are the specimen arc-width and thickness, respectively, 𝑎 is the flaw depth and 𝐴𝑝𝑙  is the area under 

the load versus plastic CMOD curve as described in [17]. The geometry factor 𝜂 depends only on the 

specimen geometry (including the flaw shape, e.g., semielliptical or canoe shape). Note that  𝜂 is 

independent of mechanical properties. An expression for 𝜂 for semielliptical flaws in CWP specimens 

is given in [12] using the CSAZ662 material model. 𝜂 will be calculated in Section 2.3 using the 

CANMET stress-strain material model, see equation (3). 

Consider again the semielliptical flaw of Figure 4. The 𝐽-integral values obtained from the largest 

contour domain and from plastic load versus CMOD and 𝜂 are compared in Figure 5. The calculated 

values begin to diverge as soon as path independence is lost (at approximately 1.1% strain). At higher 

strains, the contour integral calculations pass through a maximum and begin to decrease (not shown in 

the figure), a physically unacceptable behaviour that appears to be a direct consequence of loss of path 

dependence. 

 

Figure 5. Comparison of 𝐽 values calculated from contour integrals and 𝜂 relationship (i.e., plastic 

load versus CMOD) for a flaw with 𝑎/𝑡= 8/19.1 (i.e., 0.42) and 2𝑐/𝑡=50/19.1 (i.e., 2.62). BM 

properties were used. See also Figure 4. 

2.3 Finite Element models for geometry factor 𝜂 

The geometry factor 𝜂  was determined using finite element simulations performed using Abaqus 

Standard [20]. The target flaw profile in the experimental procedures has been reported to be an arc 

matching the inside diameter of the pipe (i.e., canoe shape). Because the flaws are extended in fatigue 
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to sharpen the tip, the geometry of the flaws produced in practice vary in shape somewhat as opposed 

to being strictly semielliptical or canoe-shape. In the following, both semielliptical and canoe-shape 

flaw geometries are considered to assess their effect on 𝐽-integral values. A typical finite element (FE) 

model of a CWP specimen along with a schematic of the flaw shape in each case is shown in Figure 6.  

(a)  

 

2c

at

        2c

at

 

Semielliptical flaw                                                     canoe-shape flaw 

(b) 

Figure 6. a) Typical Finite Element model of a CWP (only a quarter of the plate is modelled to take 

advantage of symmetry), and b) schematic of semielliptical and canoe-shape flaws 

The matrix of FE simulations considered for obtaining 𝜂  is defined by 𝑎 ∈ {2,3,4,5,6,7,8,9} mm, 

2𝑐 ∈  {30,50,75} mm and 𝜎𝑦 ∈ 𝜎𝑦({HAZ,  WM,  BM} × {weld round 1 & 2}). Only a quarter of the 

plate was modelled to exploit the plate symmetry. An increasing displacement was applied in the 

longitudinal direction at the free end while the symmetry plane was constrained in a way consistent 

with the symmetric deformation. The total displacement applied in each case was large enough to 

induce sufficient plastic deformation at the crack tip without undermining the “nearly-contained 

plasticity” conditions in view of the discussion in Section 2.2. It was confirmed that the “saturated” 

value of 𝐽 was reached by verifying that the values obtained from the three largest contour integrals 

differed by no more than 5% (see Figure 4).  

With 𝐽𝑝𝑙 = 𝐽 − 𝐽𝑒 obtained from FEA, 𝜂 was then taken to be the slope of the best linear fit to  𝐽𝑝𝑙 versus 

𝐴𝑝𝑙/𝑊′(𝑡 − 𝑎) data points obtained at various load levels. Having 𝜂 for all combinations of 𝑎 𝑡⁄  and 

2𝑐/𝑡, a curve fitting approach similar to the one in [12] was conducted leading to  

𝜂 (
𝑎

𝑡
,
2𝑐

𝑡
) = 0.2246 + 0.3338 (

𝑎

𝑡
) − 1.7198 (

𝑎

𝑡
)
2

+ 0.2270√𝑙𝑛 (1 + 8.0622
2𝑐

𝑡
), (7) 

for a semielliptical flaw shape and  

𝜂 (
𝑎

𝑡
,
2𝑐

𝑡
) = 0.7095 + 0.4269 (

𝑎

𝑡
)  − 1.6236 (

𝑎

𝑡
)
2

− 0.0944√𝑙𝑛 (1 + 8.0679
2𝑐

𝑡
), (8) 

L 
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for a canoe shape flaw. 𝐽-integrals used in the construction of 𝐽𝐷 curves were calculated from equations 

(6)-(8) (and not the contour integral calculations) in which the plastic load versus CMOD data were 

obtained from FEA. Figure 7(a) compares the variation of 𝜂 with 𝑎/𝑡 at fixed 2𝑐/𝑡 = 50/19.1 (i.e., 

2.62) for the semielliptical and canoe-shape flaws. Furthermore, typical evolution of 𝐽 with applied 

strain for semielliptical and canoe-shape flaws of 𝑎/𝑡 = 5/19.1 (i.e., 0.26) and 2𝑐/𝑡 =50/19.1 (i.e., 

2.62) are shown in Figure 7(b). The 𝐽-integrals shown were obtained from direct contour integral 

calculation; 𝐽 values obtained from load versus plastic CMOD data were practically identical and are 

not shown for brevity of presentation. The 𝐽-integral values are equal in the elastic range (initial 

quadratic part of the curves). However, they begin to diverge as plastic strains increase in the ligament. 

The difference is approximately 20% in this particular case. At applied strain of 1.5%, the value of 

𝐴𝑝𝑙/(𝑊′ (𝑡 − 𝑎))  is 1834.6 N/mm  in the canoe-shape flaw whereas it is 1357.8 N/mm  in the 

semielliptical flaw, i.e., the plastic CMOD is significantly higher in the canoe-shape flaw. This is 

reflected in higher total values of 𝐽-integral for the canoe-shape flaw: 𝐽𝑝𝑙 = 1005.4 kJ/m2 in the canoe-

shape flaw whereas 𝐽𝑝𝑙 =823.5 kJ/m2 in the semielliptical flaw (𝐽𝑒  is approximately 73.5 kJ/m2 in 

both cases). These difference lead to as high as 20% difference in 𝜂 over the range of strain shown in 

Figure 7 with the 𝜂 values being lower for the canoe-shape flaw. 

  
(a) (b) 

Figure 7. a) Variation of 𝜂 with 𝑎/𝑡 for semielliptical and canoe-shape flaw geometries with 

2𝑐/𝑡 = 50/19.1 (i.e., 2.62), b) variation of 𝐽-integrals with applied strain for a canoe-shape and 

semielliptical flaw with 𝑎/𝑡 = 5/19.1 (i.e., 0.26) and 2𝑐/𝑡 = 50/19.1 (i.e., 2.62). BM properties 

were used. Applied strain is defined as the end displacement divided by the specimen length 𝐿 

(Figure 6). 

Given the uncertainties in the flaw shape, a certain level of error is inevitable in 𝐽-integral calculations. 

Semielliptical flaw geometries have been employed in most works in the literature (see e.g., [5,21]) 

and are assumed to represent the actual flaw geometry in the remainder of this study.  

The 𝐽𝐷  integrals were obtained assuming uniform material properties to simplify the model. This 

introduces a certain level of approximation since CWP specimens are in fact inhomogeneous and the 

flaw-tip plastic strains extend into the other regions neighbouring the flaw-tip location. Further details 

on how inhomogeneity is addressed in the calculations of 𝐽𝐷 will be presented in Section 4.  

a/t
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2.4 Obtaining 𝐽𝐷 curves for CWP specimens  

The 𝐽𝐷 curves represent evolution of 𝐽-integral as a function of applied strain and crack growth. Such 

relationships are derived by interpolating 𝐽-integral values obtained for stationary cracks of different 

sizes. As such, the underlying assumption is that, at a given applied strain, 𝐽-integral depends only on 

the current size of the crack and not on its propagation history.   

The 𝐽-integral in the elastic-plastic regime is assumed to have the following general form:   

𝐽 =  𝐽(𝑎,  𝑐,  𝑡,  𝑅,  𝜎𝑦 , 𝑛, 𝑒). (9) 

Applying standard dimensional analysis, the dimensionless parameters involved are  𝐽′ =
𝐽/𝜎𝑦𝑡 , 𝑎/𝑡, 2𝑐/𝑡, 𝑅/𝑡 , 𝑛,  and 𝑒 . Given that 𝑅/𝑡  is constant in the present application, the above 

equation is written in dimensionless form as 

𝐽′ ≡
𝐽

𝜎𝑦𝑡
= 𝑓 (

𝑎

𝑡
,
2𝑐

𝑡
, 𝑛, 𝑒). (10) 

Note that 𝐽 in general varies quadratically with the applied strain (which is taken to be equal to the 

remote strain 𝑒) when the pipe deformation is elastic with confined plasticity at the flaw tip, and linearly 

when plasticity develops through the net section prior the occurrence of ligament instability. The latter 

is relevant to strain based design [22,23]. With that consideration in mind, the general form of 𝑓 is 

taken to be [23] 

𝑓 = 𝛽0 + 𝛽1𝑒, (11) 

where 𝛽0 and 𝛽1 are functions of 𝑎/𝑡 and 𝑛 given by 

𝛽0 = 𝜃1 + 𝜃2
𝑎

𝑡
, 

𝛽1 = (𝜃3 + 𝜃4𝑛) + (𝜃5 + 𝜃6𝑛) (
𝑎

𝑡
) + (𝜃7 + 𝜃8𝑛) (

𝑎

𝑡
)
2

. 
(12) 

In the above, 𝜃1, … , 𝜃8 are functions of  2𝑐/𝑡 given by 

𝜃𝑖 = 𝛼3𝑖−2 + 𝛼3𝑖−1 (
2𝑐

𝑡
) + 𝛼3𝑖 (

2𝑐

𝑡
)
2

, (13) 

where 𝛼3𝑖−2, 𝛼3𝑖−1, 𝛼3𝑖, 𝑖 =1:8, are interpolation coefficients. The matrix of FE simulations considered 

to calibrate the coefficients was the same as that used in determining 𝜂 (see section 2.3). In each case, 

the applied strain was increased up to 5% so that significant plastic strain occurred in the ligament and 

the 𝐽 -integrals were obtained using the load versus plastic CMOD data and the geometry factor 

obtained in the preceding section. 𝜃𝑖 values were first obtained independently for each flaw length 2𝑐 ∈
{30,50,75} mm by applying a least-square curve fitting to the 𝐽 versus (𝑎/𝑡, 𝑒, 𝑛) data points for each 

2𝑐 . Only the post-elastic data points (i.e., points where 𝐽 varies linearly with applied strain) were 

considered in calibrating the coefficients. The obtained solutions were then used to express 𝜃𝑖 as a 

function of 2𝑐/𝑡 through the second order equation (13). The results are summarized in Table 5. 

Caution should be taken when using approximate equations (10)-(13) for calculations outside the 

ranges considered in the FE matrix. 
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Table 5. Curve fitting coefficients for approximate 𝐽𝐷 curves eqns. (10)-(13) 

 𝛼3𝑖−2 𝛼3𝑖−1 𝛼3𝑖 

𝜃1 -0.0001 0.0093 -0.0099 

𝜃2 -0.0005 -0.056 0.0504 

𝜃3 0.0046 -0.0275 0.0287 

𝜃4 -0.0001 0.001 -0.0011 

𝜃5 -0.0713 0.4193 -0.3749 

𝜃6 0.0021 -0.0192 0.0221 

𝜃7 0.2204 -1.2751 1.3577 

𝜃8 -0.0068 0.0781 -0.0887 

3. CWP MEASUREMENTS 
 

3.1 Test description 

Six linear variable differential transformer (LVDT) gauges were installed in the axial direction in each 

specimen. A schematic of the CWP specimen together with the LVDT gauge placements is shown in 

Figure 8. Two pairs of LVDT gauges were placed in the “remote region” on each side of the flaw, one 

pair on the outer surface of the plate (gauges 1A and 1B) and the other pair on the inner surface of the 

plate (gauges 2A and 2B). These gauges were offset from the axial centerline to avoid the regions of 

“artificially” large strains owing to the design of the specimen. The remaining two LVDT gauges were 

placed on the edges of the plate (gauges 3A and 3B) and were to measure the “across-the-flaw” 

elongation. With this configuration, there isn’t a point on the specimen that lacks strain capture in the 

axial direction. The strains were obtained by dividing the elongations measured by the LVDT gauges 

by their initial lengths.  

Thirty-four CWP specimens of X100 pipe were tested by NIST in the DOT/PRCI sponsored project 

[1,2]. Of these, the raw data of 29 tests are considered for further analysis here. These tests are 

summarized in Table 6. The raw data of the few remaining tests were either judged not processable 

(e.g., CWP-15 which showed excessive noise possibly resulting from LVDT failure), were incomplete 

(e.g., CWP-3), or were no longer available. Three flaw locations were tested, namely, BM, WM, and 

HAZ. Two rounds of welds were made, namely, Round 1 (single-torch mechanized GMAW process) 

and Round 2 (dual-torch mechanized GMAW process). The target flaw depths were 2, 3 and 6 mm and 

the target flaw lengths were 30, 50 and 75 mm. However, the actual flaw depths achieved (see Table 

6) differed somewhat from these targets owing primarily to variable fatigue precracking increments. 

Table 6 also includes the remote strains measured below and above the flaw. The last three columns 

show the numerical prediction results obtained based on the ductile instability and initiation limit state 

methods. Further discussion on the meaning of these variables will be presented below. 

 
Figure 8. Schematic of the CWP along with LVDT gauge placements  
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Table 6. Summary of CWP specifications and measured strains (in percent). All dimensions in mm. 
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CWP-BM1 3×50 -20 BM - 3.11 19.00 3.9 4.34 1.44 [ 1.83 2.57 ] [ 3.23 4.40] [ 1.49 1.59] 

CWP-BM2 3×50 25 BM - 3.00 19.13 3.65 4.79 8.29 [ 1.74 2.42 ] [ 3.01 4.04] [ 1.44 1.53] 

CWP-1 6×30 25 WM-Centerline  1 6.36 18.97 1.32 2.34 2.94 [ 2.50 3.59 ] [ 1.09 1.30] [ 0.81 0.81] 

CWP-2 3×50 -20 HAZ-Below the weld 1 2.98 18.97 3.07 3.81 1.79 [ 1.45 1.95 ] [ 2.87 3.71] [ 1.67 1.73] 

CWP-5 3×50 -20 HAZ-Below the weld 1 2.91 19.00 2.89 1.74 0.96 [ 1.42 1.91 ] [ 2.98 3.85] [ 1.75 1.81] 

CWP-6 2×75 25 WM-Centerline 1 2.12 19.03 2.66 1.92 1.98 [ 0.74 0.86 ] [ 2.54 2.86] [ 2.13 2.08] 

CWP-7 2×75 -20 WM-Centerline 1 2.23 19.10 2.31 4.23 1.67 [ 1.04 1.25 ] [ 2.26 2.59] [ 1.33 1.39] 

CWP-8 2×75 25 HAZ-Below the weld 1 2.17 18.93 2.78 5.56 0.89 [ 0.77 0.98 ] [ 3.98 4.74] [ 3.10 3.19] 

CWP-9 2×75 -20 HAZ-Above the weld 1 1.97 19.01 4.81 2.09 0.64 [ 0.78 0.98 ] [ 4.35 5.20] [ 3.06 3.23] 

CWP-10 6×30 -20 HAZ-Above the weld 1 6.06 18.98 1.77 1.76 4.81 [ 3.66 5.08 ] [ 1.90 2.77] [ 0.76 0.78] 

CWP-11 3×50 -20 WM-Centerline 1 3.14 18.96 2.44 2.62 7.6 [ 1.66 2.20 ] [ 1.96 2.33] [ 1.27 1.30] 

CWP-12 6×30 -20 HAZ-Below the weld 1 6.14 18.90 3.22 3.71 1.82 [ 3.67 5.10 ] [ 1.85 2.69] [ 0.75 0.76] 

CWP-13 3×50 -40 WM-Centerline 1 2.95 18.77 2.05 2.47 2.39 [ 0.80 0.94 ] [ 1.45 1.61] [ 1.40 1.33] 

CWP-14 3×50 -40 WM-Centerline 1 3.21 18.99 2.55 2.35 2.65 [ 1.33 1.68 ] [ 1.60 1.84] [ 1.23 1.22] 

CWP-16 3×50 25 WM-Centerline 1 3.39 18.97 2.31 2.23 8.02 [ 1.33 1.72 ] [ 1.88 2.17] [ 1.45 1.45] 

CWP-17 3×50 -40 HAZ-Above the weld 1 3.09 18.98 2.70 2.89 0.77 [ 1.60 2.19 ] [ 2.83 3.72] [ 1.51 1.58] 

CWP-18 3×50 -40 Weld-Centerline 1 2.81 18.84 3.97 3.15 0.85 [ 0.57 0.65 ] [ 1.39 1.54] [ 1.48 1.37] 

CWP-19 3×50 -20 Weld-Centerline 1 3.27 18.96 2.33 2.26 1.98 [ 1.71 2.28 ] [ 1.89 2.26] [ 1.24 1.26] 

CWP-20 3×50 25 Weld-Centerline 2 2.88 18.92 1.86 1.45 4.88 [ 1.13 1.45 ] [ 1.97 2.27] [ 1.54 1.55] 

CWP-21 3×50 25 HAZ-Above the weld 2 3.09 18.81 1.80 1.89 2.65 [ 1.84 2.57 ] [ 2.54 3.44] [ 1.17 1.25] 

CWP-22 3×50 -20 WM-Centerline 2 2.96 18.98 1.92 1.79 4.37 [ 1.78 2.44 ] [ 1.75 2.12] [ 1.00 1.05] 

CWP-23 3×50 -20 HAZ-Above the weld 2 2.94 18.93 2.18 2.26 3.48 [ 1.67 2.29 ] [ 2.65 3.53] [ 1.32 1.39] 

CWP-24 6×30 25 WM-Centerline 2 6.36 19.23 1.50 1.63 3.06 [ 4.23 6.05 ] [ 1.80 2.40] [ 0.91 0.93] 

CWP-25 6×30 25 HAZ-Below the weld 2 6.29 19.20 1.84 1.28 2.68 [ 2.83 3.80 ] [ 1.56 2.11] [ 0.84 0.83] 

CWP-26 6×30 -20 WM-Centerline 2 6.15 19.22 1.41 1.85 3.52 [ 4.01 5.70 ] [ 1.83 2.41] [ 0.94 0.96] 

CWP-27 6×30 -20 HAZ-Above the weld 2 6.19 19.23 2.14 2.14 2.88 [ 4.80 6.90 ] [ 2.17 3.43] [ 0.65 0.68] 

CWP-28 3×50 -40 WM-Centerline 2 3.08 19.17 2.21 1.93 3.17 [ 0.92 1.13 ] [ 1.46 1.62] [ 1.30 1.27] 

CWP-29 3×50 -40 HAZ-Above the weld 2 3.35 19.14 2.53 2.58 0.99 [ 1.56 2.11 ] [ 2.59 3.36] [ 1.50 1.54] 
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3.2 Post-processing of raw test data  

Some post-processing of the raw test data was found necessary to make full use of the information. 

Figure 9 shows the post-processed data of CWP-09 as a representative of the experimental 

measurements. For the results of the remaining tests, the reader is referred to Appendix A. The reason 

why postprocessing was needed is as follows. First, the specimens are always pre-loaded, and the 

gauges are not typically “zeroed-out” before the start of the test (in some cases a polarity issue exists 

as well). In addition, the geometries of CWP specimens deviate from ideal. As residual stresses are 

relieved when the half-plates are sectioned from the pipes, the resulting CWPs warp somewhat. If, for 

example, a specimen starts out warped (bent) and then straightens at higher loads then the LVDT 

readings will be affected, especially in the initial stages. The raw load-strain curve was moved to pass 

through the origin by first approximating a best fit to its elastic part and then shifting the strain values 

in such a way that this line passes through the origin. To do so, an algorithm was developed that uses 

all data points up to 0.5% strain to determine which part of the curve in this range best represents the 

elastic slope. 

  
(a) (b) 

  

(c) (d) 

Figure 9. Post-processed data of CWP-09 

The LVDT readings on the ID and OD surfaces of the plate invariably show a discrepancy especially 

in the elastic loading ranges. The discrepancy in the elastic range is attributed, as described above, to 

misalignment of the welded half-plates which causes bending (i.e., non-axial strains) when the plate is 

subject to nominally axial loads. One expects the average of OD and ID readings measured on the two 
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sides of the plate to represent the axial strain. Hence, the average of OD and ID strains is taken as the 

value of the strain at each section along the plate. Although the strains measured above, below and 

across the flaw agree in the elastic range, they begin to diverge as plastic strains and crack growth 

develop in the specimen. An example of this is the CWP-09 test (see Figure 9(d)). A similar behaviour 

was observed in almost all other tests even in BM only (no weld) tests where the whole plate was taken 

from one pipe. On average, there is a discrepancy of ~50% between measurements above and below 

the flaw. This non-symmetric behaviour has been attributed to differences in the yield strengths and 

work hardening behaviours above and below the flaw [4]. To further clarify this, consider a simplified 

model of the flawed plate as shown in Figure 10. Assume purely axial (one-dimensional) deformation 

in the longitudinal direction. At a given load applied through the plate ends, a small difference between 

the stress-strain curves of the two remote regions can lead to a relatively large difference in remote 

strains owing to flatness (large 𝑛 values) of the stress-strain curves. With the material model given in 

equation (3), one may deduce from the equality of nominal stresses in the remote regions above and 

below the flaw that 

𝜎𝑦
𝑎 (
𝐸𝜀𝑎

𝜎𝑦
𝑎 )

1/𝑛𝑎

= 𝜎𝑦
𝑏 (
𝐸𝜀𝑏

𝜎𝑦
𝑏 )

1/𝑛𝑏

, (14) 

or  

𝜀𝑎 =
𝜎𝑦
𝑎

𝐸
(
𝜎𝑦
𝑏

𝜎𝑦
𝑎)

𝑛𝑎

(
𝐸𝜀𝑏

𝜎𝑦
𝑏 )

𝑛𝑎

𝑛𝑏

, (15) 

where superscripts 𝑎 and 𝑏 denote the variables above and below the flaw. For 𝑛𝑎 ≅ 𝑛𝑏 ≡ 𝑛, the above 

equation simplifies to 

𝜀𝑎

𝜀𝑏
≅ (

𝜎𝑦
𝑏

𝜎𝑦
𝑎)

𝑛−1 

. (16) 

For 𝑛 ≫ 1, a small difference between 𝜎𝑦
𝑎 and 𝜎𝑦

𝑏 translates into a large difference between 𝜀𝑎 and 𝜀𝑏 

(thus between 𝑒𝑎 and 𝑒𝑏). For example, with 𝜎𝑦
𝑏/𝜎𝑦

𝑎 = 1.1, one obtains 𝑒𝑎/ 𝑒𝑏 ≅ 3.79 assuming 𝑛 =

15. The strains have an inverse relation to the yield strength; the half-plate that has a higher strength 

will experience a lower strain at failure.  

remote region remote region
flaw 

region

 
Figure 10. A simplified model of the CWP specimen subject to uniaxial loading 

 

3.3 Interpretation of experimental measurements 

As explained in [1], the “load versus stroke” plots were monitored during the tests and the tests were 

terminated as soon as it was judged that the maximum load was reached. Since these plots become very 

flat near the maximum load, it is difficult to determine whether the maximum load has actually been 

reached, especially given a small uncertainty in the load signal. An equivalent criterion to maximum 

load would be rapid increase in the CMOD as the crack propagates toward rupture, and so the behaviour 
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of the CMOD record was also checked. All but two of the tests (CWP-11 and CWP-16) were ended 

before complete rupture to avoid damage to the experiment equipment. The two tests indeed failed 

unexpectedly and motivated the monitoring of the CMOD versus stroke plots as part of the termination 

criteria. The post-processed test data show that the CMOD versus stroke curves did not reach a vertical 

asymptote in most of the tests, an example being CWP-09 shown in Figure 9. It is therefore reasonable 

to assume that the TSCs obtained from the experimental measurements are in fact conservative 

estimates. 

The difference in the LVDT measurements above and below the weld raises the question, what should 

be taken as the TSC of the plate? As discussed in the following, it appears that a straightforward answer 

to this question is not readily available. Whereas in [2] the TSCs were taken to be the maximum of the 

strains measured above and below the flaw, in [4] the TSCs were taken to be the average of measured 

strains. In neither of these papers are the assumptions leading to these choices discussed. The difficulty 

stems from the fact that the experimental set-up actually leads to a constant stress in the plate rather 

than a constant strain; at constant stress, the strain differs in the plate sections above and below the 

flaw. This makes it difficult to estimate the “strain” capacity of the plate, a quantity that is intended to 

correspond to a strain-controlled process. It is worth emphasizing that the present work concerns 

prediction of the experimental failure strain. Deducing design recommendations from CWP 

measurements is not discussed here and may follow in a separate study. 

In this work, the WM always overmatches the BM and so at a constant stress the strain is lower in the 

WM. Consider the case of the HAZ flaw location. The WM “shields” the flaw from strains in the plate 

on the opposite side of the weld from the flaw. It may be assumed that the flaw behaves as if it were 

located in a homogeneous plate with properties the same as those of the plate next to the flaw. This 

assumes that the strains in the vicinity of the flaw tip are determined by the plate properties, i.e., that 

the material is symmetric about the flaw. It is doubtless true that the strain on the weld side of the flaw 

is lower than that in the plate, but the preceding assumption should work as a close approximation. 

Thus, for a flaw in the HAZ the TSC of the plate is taken to be the strain measured in the half-plate on 

the flaw side of the weld.  

For WM flaws the situation is more complicated. In that case, the local properties in the flaw-tip region 

are different than those in remote regions. It is assumed that the flaw-tip deformations are controlled 

by the WM tensile properties. This assumes that the flaw behaves as if it were located in a plate of WM 

properties subject to the same nominal stress as in the original plate. For constant stresses, the strain in 

the BM half-plates on the two sides of the weld are different depending on whether the half-plate is 

weaker or stronger than average plate properties. The average of the two strains should give a value 

close to that expected for a plate of average tensile properties and is taken to be the TSC of the plate in 

the case of flaws in the WM. 

4. RESULTS AND DISCUSSION 

4.1 Treatment of inhomogeneities in prediction of the TSC 

Consistent with the assumptions made in Section 3.3, in the case of HAZ flaws the 𝐽𝐷  curves are 

calculated using the average tensile properties of the BM given in Table 4. For WM flaws, 𝐽𝐷  is 

calculated using the average tensile properties of the weld metal (i.e., assuming a uniform plate of WM 

properties). To account for the differences between the remote strains in the BM and WM, an equivalent 

plate is defined with BM properties in the remote regions and it is required that the plates be in 

equilibrium at equal nominal remote stresses. The (true) strain capacity in the equivalent plate 𝜀TSC
eq
 may 

be obtained from equation (15) as 



20 
 

 

 __________________________________________________________________________________

CMAT 

𝜀TSC
eq

=
𝜎𝑦
BM

𝐸
(
𝜎𝑦
WM

𝜎𝑦BM
)

𝑛BM

(
𝐸𝜀TSC

𝜎𝑦
WM

)

𝑛BM

𝑛WM

 (17) 

where 𝜀TSC is the true TSC of a uniform plate with WM properties. Note that equation (17) is written 

in terms of true strains and appropriate conversions (true to engineering and vice versa) need to be 

applied when using this equation. TSC values are presented in terms of engineering strain in the present 

work. 

As also pointed out previously, the actual flaw geometry inevitably differs somewhat from that of the 

ideal FEA flaw geometry, and 𝐽 values for a semi-elliptical flaw are used. Flaw length and depth differ 

somewhat from target values, and 𝐽𝑅 curves are obtained for each flaw depth by interpolating between 

values measured for different flaw depths (see Section 2, Table 1-Table 3). To account for experimental 

uncertainties in 𝐽𝑅 curves, the TSCs are estimated by assuming a ±10% variation in the coefficients 𝑐1 

and 𝑐2 of the 𝐽𝑅 curve in Table 1-Table 3. This provides an estimate of the error in predicted TSC 

resulting from uncertainties in the 𝐽𝑅 curves. 

4.2 Predictions of TSC in CWP specimens   

The ductile instability and initiation limit state methods presented in Section 2 were applied to each 

CWP test. For the ductile instability solution, the system of equations defined by (1) was solved 

numerically using a Newton-Raphson scheme. The solution is shown graphically for CWP-09 and 

CWP-11 as two representative examples in Figure 11. The predicted TSCs obtained are compared with 

the measured remote strains in Figure 12. For completeness, remote strains measured both below and 

above the flaw are shown by including vertical error bars; the average is also shown, notwithstanding 

the argument above concerning selection of the relevant strain. The horizontal error bars show the 

uncertainty in predicted TSC arising from the assumed ±10% uncertainty in the 𝐽𝑅 curves. The data 

corresponding to Figure 12 are included in Table 6. An interesting observation is that the slight 

uncertainties introduced (through variation of 𝑐1 and 𝑐2 ; see above) can lead to relatively large 

differences (~25% on average, and up to 60% in some cases e.g. CWP-27) in predicted TSC values.  

  
Figure 11. Ductile instability limit state solutions for a) CWP-09 and b) CWP-11. Note that only 

one 𝐽𝐷 curve is shown in each case (i.e., curves corresponding to variations in 𝐽𝑅 values 𝑐1 and 𝑐2, 

and to increasing strain, are not shown). 

 

𝐽𝑅   𝐽𝐷 

𝐽𝑅   𝐽𝐷 

𝐽𝑅   𝐽𝐷 

𝐽𝑅   𝐽𝐷 
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Figure 13 shows the predicted ductile instability limit strains without considering the variations in 𝑐1 

and 𝑐2 versus the measured TSCs. For the HAZ tests, the TSC is the measured remote strain in the half-

plate next to the flaw; for WM tests the TSC is the average of remote strain on both sides of the weld; 

see also Section 3.3. 

CWP-08

CWP-09CWP-11

CWP-16

HAZ 

WM

round 1

round 1
round 2

round 2

BM

 

Figure 12. Measured remote strains versus predicted TSCs of CWP specimens 

 

HAZ Below the weld
Above the weld

CWP-08

CWP-09

CWP-11

CWP-16

BM

WM Average
Average

 

Figure 13. Measured versus predicted TSCs of CWP specimens. Variations of 𝑐1 and 𝑐2  are not 

considered in the numerical predictions. For HAZ flaws, the measured TSC is the remote strain in 

the half-plate next to the flaw; for WM and BM flaws the measured TSC is the average of remote 

strain on both sides of the weld. 

The significance of the four tests CWP-08, CWP-09, CWP-11, and CWP-16 marked on Figure 12 and 

Figure 13 is as follows. The tests CWP-08 and CWP-09 have the largest discrepancy between 

maximum and minimum measured remote strains. On the other hand, in CWP-11 and CWP-16 the 

maximum and minimum measured strains are nearly equal (i.e., nearly uniform strains were observed 



22 
 

 

 __________________________________________________________________________________

CMAT 

in these plates). The CMOD versus applied strain and load versus applied strain of these two groups of 

tests are shown in Figure 14 and Figure 15. These two groups appear to identify two extreme conditions 

in CWP specimens. In the first group, namely, CWP-08 and CWP-09, the half-plates must have had 

significantly different tensile properties leading to different strains above and below the flaw. This 

seems to have in turn led to premature termination of the test given that the CMOD curves have not 

reached their vertical asymptotes at termination in spite of the fact that load versus applied strain curve 

has become nearly flat. This aligns well with the observation that the predicted TSCs are relatively 

larger than the measured TSCs for these two test as can be seen in Figure 13. In contrast, the CMOD 

curves corresponding to the second group of tests (CWP-11 and CWP-16, the tests with unexpected 

failure) have reached an asymptotic region at termination, clearly marking the plate’s strain capacity. 

The predicted and measured TSCs are in excellent agreement in these two tests. This is also the case 

for the BM-only tests where the plate inhomogeneity is presumably minimized. 

  

Figure 14. a) CMOD versus applied strain and b) load versus applied strain for CWP-08 and CWP-

09 

 

  

Figure 15. a) CMOD versus applied strain and b) load versus applied strain for CWP-11 and CWP-

16 
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The scatter in Figure 12 and Figure 13 may be attributed to the inevitable and non-quantified scatter in 

various test conditions including the tensile properties of the X100 steel used in making CWP and SE(T) 

specimens, variations in flaw shape, and premature termination of the tests (see Section 3.2). A similar 

type of behaviour has been reported in [5, Figures 19 and 20] for CTOD-based ductile instability limit 

state solutions using values of CTOD obtained from 𝐽𝑅 curves measured in SE(T) tests.  

To determine which of the two approaches (𝐽-based or CTOD-based) gives a better representation of 

experimental TSCs, a “normalized error” 𝑛𝐸  is calculated between the measured and predicted TSC 

data points in Figure 13 and in Table 9 of [4] as  

𝑛𝐸 =
√∑(TSCpred − TSCmeas)

2

√∑(TSCmeas)2
. 

This definition of error gives a measure of the agreement between the predictions and measurements; 

the better the agreement, the smaller the error. Excluding CWP-08 and CWP-09 which were identified 

as outliers as well as the tests for which experimental data were not available in the present study, the 

normalized error is 0.23 for the present 𝐽-based approach and 0.36 for the CTOD-based approach. 

Hence, it is concluded that ductile instability TSCs deduced from 𝐽 is more predictive than those 

deduced from CTOD.  

Next, the TSCs obtained using the initiation limit state method are presented. The choice of the 

initiation crack growth Δ𝑎𝑖𝑛𝑖𝑡 has a significant impact. Results using Δ𝑎𝑖𝑛𝑖𝑡=0.2 mm and Δ𝑎𝑖𝑛𝑖𝑡=0.5 

mm are shown in Figure 16 and Figure 17, respectively. For completeness, the average and range of 

measured remote strains are used in these figures (as in Figure 12). 

From Figure 16, it is observed that initiation strains using Δ𝑎𝑖𝑛𝑖𝑡=0.2 mm are smaller than measured 

remote strains at failure (Figure 16a) and predicted instability strains (Figure 16b). This is as expected, 

because the 𝐽𝑅 curves demonstrate that there is significant increase in toughness beyond a crack growth 

of 0.2 mm. With Δ𝑎𝑖𝑛𝑖𝑡=0.2 mm, the crack growth associated with initiation is limited to a maximum 

of approximately 10% of the initial flaw depth and the predicted initiation strains are conservatively 

lower than both measured remote strains and predicted ductile instability strains. The initiation limit 

state solutions are nearly insensitive to uncertainties in the resistance curves so that the horizontal error 

bars in Figure 16 and Figure 17 are negligible in most cases.  

However, it is observed in Figure 17 that considering initiation to occur at Δ𝑎𝑖𝑛𝑖𝑡=0.5 mm (which has 

been suggested in [4,24]) yields initiation strain predictions that are in many cases larger than the 

measured maximum strain capacities or even the predicted ductile instability limit state strains. Thus, 

Δ𝑎𝑖𝑛𝑖𝑡=0.5 mm appears to be too large to conservatively characterize initiation of crack growth for the 

flaw depths ranging between approximately 2 to 6 mm analyzed here. 

The present re-analysis of available CWP data demonstrates that 𝐽-integral can be usefully calculated 

beyond “validity” limits and allows CWP tensile strain limits to be estimated with reasonable accuracy. 

Sources of uncertainty are limitations in experimental control, inherent scatter in 𝐽𝑅 measurement in 

SE(T) specimens, and 𝐽𝐷 calculation for CWP specimens. Application of the present methodology to 

pipelines requires further analysis for pipe geometries to obtain robust driving-force estimates and 

investigate the practical mythology to predict instability strains. This requires further effort and may 

be the subject of a separate study. Nonetheless, strain based design using 𝐽-integral is thus validated, 

supporting first-principles estimation of initiation and instability using only small-scale SE(T) data and 

𝐽-integral calculations for CWP.  
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(a) (b) 

Figure 16. Comparison of predicted initiation limit state strains (abscissa) using Δ𝑎𝑖𝑛𝑖𝑡=0.2 mm with 

a) measured remote strains, and b) predicted ductile instability limit state strains.  
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(a) (b) 

Figure 17. Comparison of predicted initiation limit state strains (abscissa) using Δ𝑎𝑖𝑛𝑖𝑡=0.5 mm with a) 

measured remote strains, and b) predicted ductile instability limit state strains.  

4.3 Applicability of Charpy toughness in predictions of TSC 

Measured remote strains are compared with initiation limit state predictions from CTOD in Figure 18 

[4]. The following assumptions were made in [4]: CTOD was used as the driving force; CTOD 

toughness data were extracted from Charpy tests; and the initiation crack growth was taken to be 

Δ𝑎𝑖𝑛𝑖𝑡=0.5 mm. It was concluded in [4] that the predictions obtained based upon these assumptions are 

closer to the measured remote strains than the predictions obtained using SE(T) toughness data (for 

both initiation and ductile instability solution methods). As pointed out in the Introduction, one of the 
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objectives of this work has been to assess this arguably surprising conclusion. To shed more light on 

this topic, the literature was interrogated to examine the state of the art in estimating 𝐽𝑅 curves from 

CVN data. Fortunately, Wallin has reviewed this question in a recent paper [25]. An earlier paper by 

Schindler [26] also includes an equation to estimate 𝐽𝑅 curves. The estimation equations according to 

Wallin are 

𝐽𝑅
Wallin(Δ𝑎) =  𝐽1mm Δ𝑎

𝑚 
 

(18) 

where  

𝐽1mm = 296 (
CVN

100
)
1.28

, 

𝑚 ≈ (
𝐽1mm
12517

)
0.2

, 

(19) 

where CVN is the upper-shelf Charpy energy in Joules, Δ𝑎 is in mm, and 𝐽𝑅 is in kJ/m2. With the 

resistance curves in this paper fitted to the form 𝐽𝑅 = 𝑐1 Δ𝑎
𝑐2, it is evident that 𝑚 is identical to 𝑐2 and 

𝑐1 is the value of 𝐽 at 1 mm crack growth, i.e.,  𝐽1mm in Wallin’s terminology. That is, 𝑐1 =  𝐽1mm and 

𝑐2 = 𝑚 in Wallin’s approximation. The estimation equation according to Schindler is 

𝐽𝑅
Schindler (Δ𝑎) = 11.44 CVN 𝜀𝑢

1/3
Δ𝑎2/3 , (20) 

where 𝜀𝑢  is the strain at ultimate stress (i.e., uEl). That is, 𝑐1 = 11.44 CVN𝜀𝑢  and 𝑐2 = 2/3  in 

Schindler’s approximation.  

HAZ 

WM

round 1

round 1
round 2

round 2

BM

 

Figure 18. Comparison of measured remote strains with initiation limit state strains reported in [4] 

based on CTOD and Charpy toughness.  

The values of 𝑐1 and 𝑐2 estimated from these equations are compared in Table 7 for different flaw 

locations and weld rounds with the corresponding values measured using SE(T) specimens with cracks 

of initial size 6 mm at temperature 𝑇 = 25°C. The Charpy impact energies given in the Table were 

taken from [13]. It is evident that the 𝐽𝑅 curve parameters estimated from CVN values fit the values 

measured by SE(T) tests reasonably well. The 𝑐1 values are in the proper range, with Wallin’s values 
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being somewhat conservative and Schindler’s being somewhat unconservative; the 𝑚 values are in 

reasonable accord with SE(T) results. It must be borne in mind that the 𝐽𝑅 curves measured in the 

present work are geometry-dependent, i.e., they are not strictly “valid” and vary with the size of the 

flaw and the ligament. In other words, constraint varies with the specimen geometry and loading mode, 

and corresponding 𝐽𝑅 curves vary accordingly. Care has been taken to match constraints between SE(T) 

specimens and CWP specimens as closely as possible. While the conversion schemes discussed here 

provide reasonably accurate estimations of 𝐽𝑅, they may not perform so well in other applications. 

It is concluded from the above that it is possible to make reasonable estimates of 𝐽𝑅 in the upper shelf 

from CVN data. However, estimating toughness curves (either CTOD or 𝐽) from Charpy tests requires 

empirical correlations and conversions as shown above, which can in turn impact accuracy of the 

numerical predictions in many cases. 𝐽 -based calculations allow adoption of standard fracture 

mechanics tests for accurate predictions of strain capacities without need to empirical conversions and 

avoid the controversy over the definition of CTOD as well. 

Table 7. Comparison of 𝐽𝑅 coefficients obtained from different conversions with SE(T) results. J 

values are given in 𝑘𝐽/𝑚2. 

 
 Wallin 

 
Schindler 

 CANMET 

6 mm crack 

𝜀𝑢 % CVN (𝐽) 𝑐1  ≡ 𝐽1mm 𝑐2 ≡ 𝑚  𝑐1  ≡ 𝐽1mm 𝑐2  𝑐1  ≡ 𝐽1mm 𝑐2 ≡ 𝑚 

BM 4.9 300 1098 0.615  1256 0.667  1164 0.62 

WM 
Round 1 7.4 205 674 0.558  985 0.667  564 0.71 

Round 2 7.4 160 491 0.523  768 0.667  647 0.784 

HAZ 
Round 1 7.4 237 812 0.579  1138 0.667  1132 0.56 

Round 2 4.9 250 869 0.587  1047 0.667  948 0.604 

5. CONCLUSIONS 

In this work,  𝐽-based predictions of TSC based on ductile instability and initiation limit states have 

been compared with values measured in CWP tests. The following conclusions are made: 

1. Predictions of TSC based on ductile instability using 𝐽 resistance curves compare well with TSC 

values measured on curved wide plates. The agreement is significantly better than that obtained 

using CTOD. The normalized error in the measured TSCs with respect to the predicted TSCs is 

0.23 for the 𝐽-based results whereas it is 0.36 for the CTOD-based results reported in [4]. 

2. Predicted TSC values based on initiation crack growth of 0.2 mm give conservative estimates of 

measured TSC. Using growth of 0.5 mm as initiation criterion was found to be unconservative in 

many cases. 

3. The ductile instability limit state solutions can be highly sensitive to the uncertainties in 𝐽 driving 

and resistance curves. For a 10% variation in the coefficients of the 𝐽𝑅 curve, predictions of the 

ductile instability limit state solutions can vary by 25% on average. In contrast, initiation limit state 

strains are nearly insensitive to these variations.  

4. The scatter in the predicted versus measured strain capacities stems mainly from the variation of 

the tensile properties of the X100 steel. A slight difference in the yield strength can lead to a large 

variation in the strain owing to the flatness of the stress-strain curve.  

5. The post-processed raw test data of CWP experiments showed that the remote strains measured 

above and below the flaw differ by ~50% on average. Because the tensile properties of a pipeline 
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vary along its length and circumference, and since most CWP tests were interrupted before final 

failure, the TSC values also vary and judgment is needed in choosing a value for design. 
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APPENDIX A. EXPERIMENTAL MEASUREMENTS OF CWP TESTS 

The experimental measurements corresponding to the tests summarized in Table 6 are given below. 

 

 

 

 

 

Note: Only the ID measurement was available above the flaw in CWP-BM1. The OD strain was taken 

to be equal to the ID strain. 
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Note: Only the OD measurement was available below the flaw in CWP-BM2. The ID strain was taken 

to be equal to the OD strain. 
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