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ABSTRACT
Manufacturers are looking for intelligent solutions to in-

crease quality and productivity. Smart manufacturing envisions
production empowered by autonomous robots that can complete
tasks intelligently, with the focus on adaptability, flexibility, and
versatility. In such systems, agile tasking plays an important role,
as it is critical for robots to be quickly tasked to perform an oper-
ation. However, task agility is not limited to the speed of tasking
robots, but also includes other features such as handling task fail-
ure, planning for new goals, interchangeability of data and task
plans between different robots, and adapting to dynamic environ-
ments. Because robot task agility requires sophisticated dynamic
and continuous planning and replanning, the Gwendolen agent
programming language was chosen to evaluate as the agile robot
planner. In this paper, we develop a manufacturing kitting case
study and provide a list of kitting performance metrics to evaluate
performance. The case study uses Gwendolen, Canonical Robot
Command Language (CRCL), Robot Operating System (ROS),
and Gazebo software components in combination to simulate and
evaluate kitting. We explore the strengths of Gwendolen agile
tasking to assess the operation against the kitting performance
metrics.
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Nomenclature

API Application Programming Interface
APRS Agility Performance of Robotic Systems
BDI Belief–desire–intention
CRCL Canonical Robot Control Language
IEEE Institute of Electrical and Electronics Engineers
KDL Kinematics and Dynamics Library
KRL Kuka Robot Language
NIST National Institute of Standards and Technology
PDDL Planning Domain Definition Language
ROS Robot Operating System
ROS-I ROS-Industrial
SUT System Under Test
XJC XML Java Compiler
XML eXtensible Markup Language
XSD XML Schema Definition

BACKGROUND

Agile manufacturing can be defined as the capability of sur-
viving and prospering in a competitive environment of contin-
uous and unpredictable change by reacting quickly and effec-
tively [1, 2]. For manufacturing robots, the IEEE Robotics and
Automation Standards Working Group on Robot Agility [3] pro-
vides a list of desirable traits of robotic systems under the um-
brella of agility — a complex notion of reconfigurability and au-
tonomy that contrasts to the more ubiquitous pre-programmed
robot tasks. Aspects of robot agility include hardware reconfig-



urability, software reconfigurability, communications, task repre-
sentation, sensing, perception, reasoning, planning, tasking, and
execution [4]. Robot agility is by nature reactive involving a
changing environment for its measurement [5].

To tackle the problem of agility across many different
robotic systems, the Canonical Robot Command Language
(CRCL) [6] was developed at the National Institute of Standards
and Technology (NIST) in the USA. CRCL addresses the myr-
iad of Cartesian and joint level communication schemes inherent
in commercial off–the–shelf robots. For example, a recent sam-
pling of commercial robots shows each with a different robot
programming language such as Karel for Fanuc, INFORM for
Motoman, RAPID for ABB, KRL for Kuka, VAL3 for Stäubli,
and URScript for Universal Robots. To handle industrial appli-
cations, CRCL contains separate XML information models re-
lated to robot motion control and status reporting as well as un-
derlying data types for poses, speeds, and units. CRCL handles
Cartesian and joint robot motion control, as well as parallel and
vacuum gripper control, which allows it to target many industrial
robot applications. Because CRCL supports Cartesian motion
and gripper control, it is well-suited to handle pick and place
robot agile planning operations.

CRCL is an interface to an underlying robot controller which
must provide a real-time robot kinematic solver and handle mo-
tion trajectory planning. For our research purposes, CRCL relied
on the open-source frameworks (Robot Operating System and
Gazebo) for robot control and simulation. The Robot Operating
System (ROS) is an open source software framework that pro-
vides libraries and tools to help create robot systems. For exam-
ple, ROS can be used to build a customized solution or a turnkey
solution by assembling the best open source components that are
integrated into ROS. For example, the Fanuc robot model is used
and defined in the ROS-Industrial (ROS-I) Fanuc package [7]
but could easily be replaced with another ROS robot package.

Gazebo is an open-source 3D physics-based simulator that
can be used to design a virtual industrial robot world. Simulation
is typically just a graphical visualization of the robot sequence of
operations. In the case of Gazebo, physics-based models of the
robots, kits, and environment provide a higher-fidelity approxi-
mation to the real-world. For example, the placing of a “gear”
into a slot holder in visual simulation could overlay two images
at the bottom of the slot (the gear and holder) without conse-
quence. However, in the case of Gazebo physics-based simula-
tion, the gear would “bounce” out of the slot as it is physically
impossible for two solid object to combine.

In agile manufacturing, it is crucial for robots to be rapidly
and intelligently tasked to perform an operation. We define a task
to mean achieving a goal by selecting a series of actions based
on the given state of the robot controller and environment. Tasks
can be discrete events (e.g., place package into box) or continu-
ous activity (e.g., monitor the robot for safe human distancing).
Tasks can also vary in other ways, including timescale, difficulty,

and detail. Given a task goal, an agile task planner consults the
definitions of actions, preconditions, and postconditions in the
problem domain and determines a feasible sequence of actions
to achieve the goal. Of interest in this paper is task representa-
tion and associated reasoning to handle and recover from various
random challenging events. Handling problems with a higher
degree of intelligence results in smarter agile software.

The task planning in this paper is done using the Gwen-
dolen agent programming language as it provides composable
agile planning while offering greater possibilities for formal ver-
ification and explicit autonomy than was used in the past [8, 9].
Gwendolen is a Belief–desire–intention (BDI) agent program-
ming language [10,11]. Beliefs provide information on the likely
state of the environment. Desires include information about the
objectives to be accomplished including priorities or payoffs that
are associated with the various current objectives. Intentions de-
fine the currently chosen course of action. Intuitively, BDI rep-
resents a world that the agent believes to be possible, desires
to bring about, and intends to bring about, respectively. Cor-
respondingly, agile task agents are viewed as being rational and
acting in accordance with their beliefs and goals [12].

Gwendolen uses intentions to store the mechanism for
achieving goals that generally include actions, belief updates,
and the commitment to goals. Gwendolen then defines a plan
with the syntax:

trigger : guard← body
In a plan, the trigger event may match the top event of an in-
tention. The guard is checked against the agent’s state for plan
applicability. A body contains the plan actions for execution.
For example, the Gwendolen syntax for robot command pick and
place plan is shown in Listing 1.

+! pick_and_place(Part, Destination) :
{ ˜B grasped (_) }
<- +!move(Part), +!close_gripper,
+!move(Destination), +!open_gripper;

Listing 1: Gwendolen Pick n Place Listing

Gwendolen uses BDI notation where: ‘+’ denotes the ad-
dition of a belief, ‘+!’ denotes the addition of a goal, ‘{ }’
encloses the guard (context/precondition) of the plan, ‘∼’ de-
notes negation in this case of a belief (represented by B), and ‘( )’
denotes a universal variable (which can match with any value).
Thus, the pick and place plan is triggered by a goal intention
while providing a Part and Destination variable binding. The
guard {∼ B grasped( )} verifies that the gripper is not grasping
any item before executing the plan body. Finally, the body per-
forms a series of actions including a move to the Part location,
close gripper on the Part, move to the Destination location, and
then an open gripper freeing the Part.



To evaluate task agility, a case study using kitting is devel-
oped. Kitting is a method to feed parts to workstations in as-
sembly lines, where the different parts required to assemble one
unit of an end item, or the specific set of parts to be assembled
at a workstation, are included in a kit which is then transferred
to the assembly line [13]. In industrial assembly of manufac-
tured products, kitting is often performed prior to final assembly.
The reasons for implementing such systems usually involve par-
allelized assembly systems, product structures with many part
numbers, quality assurance of the assembly, and high value com-
ponents [14].

In order to assess agile tasking, performance metrics are
used to judge differing systems and approaches to planning. For
this paper, agility performance metrics for manufacturing kit-
ting have been previously studied in Downs et al. [15] and were
adapted for our purposes. Such performance metrics were de-
rived from test methods that assess system agility giving quanti-
tative and qualitative metrics for judging robot system efficiency
and effectiveness. Although the performance metrics defined
in [15] were for robot system agility, they also apply to judg-
ing task agility. In tandem, agile tasking with the Gwendolen
agent-based planner is performed with the results to be judged
against the kitting agility performance metrics.

In the following sections, a case study involving agile task
programming for simulation of robot sensing, planning, and con-
trol of manufacturing kitting is presented. We start with a back-
ground on related work in agile task programming. Next, a case
study is described presenting the software elements required to
deploy a kitting simulation, including Gwendolen agile tasking
planning, CRCL, ROS, and Gazebo software components. Then
performance metrics for kitting are presented with assessment of
Gwendolen planning against these metrics. Finally, a conclusion
summarizes the results and future work to be explored.

RELATED WORK

The objective of this paper is to evaluate the Gwendolen agile
agent-based planner as applied to robot kitting against a list of
kitting performance metrics. This assessment includes the study
of Gwendolen with regard to robot planning, sensing, and con-
trol necessary for the overall kitting operation. Although there
are many examples of research on software agents and the use
of BDI as an agile task planning strategy, this review of related
work focuses on the application of BDI to robotics and consid-
ers the implication of performance metrics on performance. Of
note, conventional BDI does not perform global plan optimiza-
tion which may indeed be preferable to a composable belief sys-
tem. For example, Optaplanner [16] is a lightweight, embed-
dable planning engine for Java programming that handles plan-
ning optimization problems that is being deployed in the NIST
agility laboratory [9]. However, the composability of agent plans
that handle agile tasking including error handling, recovery from

errors, and adaptive planning is the primary focus of the research.
For future work we can look into adding support for Gwendolen
agents to call an external optimisation planner when/if necessary.

Classical task planning is exemplified by the Planning Do-
main Definition Language (PDDL) and has been deployed in
the NIST agility laboratory [17]. Kit building applications were
described with Web Ontology Language (OWL) [18] and then
generating PDDL files from the models in order to generate a
plan or replan. Another PDDL system is found with the ROS-
Plan [19] framework which embeds a PDDL task planner into
robotic systems and links it to existing ROS components. Even
though PDDL systems can cope with action failures by calling
the planner again to replan, we can save time by using a rational
agent that can react to the failure by triggering the appropriate
plans for failure handling.

An interface between the Gwendolen agent programming
language and ROS has been developed to allow Gwendolen
agents to publish and subscribe to ROS topics [20]. Their in-
terface is implemented in Java and communicates with ROS
through the ROSBridge library [21]. The main advantage in
their approach is twofold: first, publishing and subscribing to
ROS nodes is completely transparent to the agent, as everything
is dealt with at the interface level; and second, the agent code can
be used with any version of ROS that has ROSBridge. There are
also several approaches [22–26] that aim to integrate automated
planning with rational agents. Such online planning can com-
plement the reactive behavior obtained from using agents and
could be used to patch existing plans or create new plans at run-
time. The main issue in using these approaches in practice is
that their implementation is either domain specific or no domain
is specified. Such approaches would also have an impact in the
verification of the agent programs, as new or modified plans can
potentially violate existing properties. Finally, robot planning so-
lutions that rely on ROS can connect to many commercial robots,
but preclude the ability to leverage the real-time industrial robot
controllers. Overall, advantages of Gwendolen planning agents
include:

- failure handling since Gwendolen allows plans to be for-
mally verified;

- Gwendolen verification can verify directly the agent pro-
grams that will run the decision-making code;

- the plans in Gwendolen are developed explicitly and the re-
sultant decisions follow a practical reasoning architecture,
such that, it is easier to explain how and why an agent came
about to a decision (i.e., executed an action) as opposed to
trying to figure out how a symbolic planner generated a plan.

Further, Gwendolen is a good fit for the agile kitting case
study that will be evaluated mainly due to the reactive nature of
agent-oriented programming. If an event happens during the ex-
ecution that is not normal but has been pre-emptively identified
(failures, decrease in performance, etc.), then this event will trig-



ger the appropriate plan to react to it. It is imperative for the
decision-making software to be able to adapt on the fly to these
situations in order to remain agile.

Upon first examination, formal verification may not appear
to be as significant as in other planning cases due to the logical
steps within the kitting case study world. However, in general,
formal verification is highly beneficial in finding problems per-
taining to the model of the system (or directly in the program) as
well as finding counterexamples. In our approach, we will show
the utility to provide formal guarantees about the plans that han-
dle failures, since these are one of the main advantages of using
Gwendolen in the kitting case study. To be deemed as agile, mul-
tiple layers of establishing correctness improve overall planning.

KITTING CASE STUDY

In manufacturing, kitting is a process in which individually sep-
arate but related items are grouped, packaged, and supplied to-
gether as one unit (kit). Kitting is a well-studied manufactur-
ing problem. Kitting is a reasonably difficult robot task to test
agile task planning. Kitting requires grasping, pick and place,
and sorting/ordering of objects that can exhibit complexity with
different grippers, gripper changes, dynamic supply from a con-
veyor, etc. However, our goal is to understand and examine agile
tasking for basic kitting with one robot and one gripper manip-
ulating simple gears, trays, and kits in order to measure agility
based on performance metrics. In the case study, the kitting task
is purposefully scoped to be understandable while clarifying the
various elements required. The intent is to demonstrate and eval-
uate the Gwendolen agile task planner given a list of kitting per-
formance metrics.

Architecture
The system is based on the NIST Agility Performance of

Robotic Systems (APRS) agility laboratory that contains two
industrial robots, a Fanuc LR-Mate 200iD and a Motoman
SIA20F [27]. This case study focuses on Gwendolen agile task-
ing for the Fanuc LR-Mate 200iD. Figure 1 shows the architec-
ture for simulated robot kitting. The kitting uses colored plastic
test gears that are moved from their initial location in supply trays
to a final placement in a kit tray’s open slot. Supply trays contain
gears of one type (small, medium, or large), while kits contain a
combination of gear types. For simulation, instead of overhead
cameras in the work volume, Gazebo reports on the model prop-
erties of gears, trays, and kits. The agile task case study system
is composed of the following modules:

Gwendolen Planner — Gwendolen accepts kitting order
and uses the logical world model as provided by the Model
and Control Application Programming Interface (API) to
reason about the kitting problem. Gwendolen selects a plan
that produces kitting actions that are then translated into a

FIGURE 1: Agile Tasking Test Architecture

CRCL step to be transmitted by the CRCL client. Changes
to the world model are reported through CRCL within the
status report and echoed in the Model and Control API.
These changes include physical properties and or logically
derived properties from the physical properties. Any failures
are reported by CRCL, which triggers replanning if possible.

Model and Control API — translates between a logical
world model required for Gwendolen reasoning and a
CRCL physical description of the world model. For each
Gwendolen action, the Model and Control API maps
variables from a logical description into the physical kitting
object properties.

CRCL Client — receives the CRCL messages and sends
the commands to a CRCL server and monitors reported
status. The CRCL client simulator acts like a logical camera
sensor but instead of extracting gear, kit, and tray model
knowledge from a camera, it relies on a Gazebo plugin that
reports on all models in the simulation world. To enable
planning at a logical reasoning level about the kitting world,
the existing CRCL status schema was extended to provide
kitting model (gears, trays, kits, etc.) locations as well as
inferences about the kitting models (e.g., a gear located in a
supply tray slot).

Robot CRCL server — reads CRCL commands and
provides CRCL status updates by forwarding knowledge
to/from the CRCL robot interface and Gazebo simulation.



The CRCL server translates CRCL representation into ROS
representation.

ROS — provides numerous robot control and sensing
packages that were bundled using the ROS framework.
Relevant to the Gwendolen agile planning simulation
were the packages moveit! an open–source Cartesian
and joint motion trajectory planner, the Kinematics and
Dynamics Library (KDL) kinematic solver applied to the
Fanuc LR-Mate 200id, the tf transform library for handling
robot mathematics, and the ROS core to manage message
communication between components. In addition, the
gazebo ros api Gazebo plugin supplied by ROS were used
to set or retrieve simulated robot positioning, as well as to
retrieve kitting world model properties.

Gazebo — the agile kitting task simulation was done us-
ing Gazebo. Gazebo is an open-source 3D physics-based
simulator that can be used to design a virtual robot world.
In our simulation, Gazebo used the Open Dynamics Engine
(ODE) physics engine to provide the physics-based inter-
action of robots, kitting, and environment. The simulated
world provides a robust mechanism to validate and test sys-
tem operation, and at the same time quantify performance
using Gwendolen.

The highest-level task planning module is coded in Java.
Gwendolen parses the BDI notation, and then compiles plans
from BDI into concurrent Java code. Plans are mapped into
threads which may block until a condition is satisfied. Each plan
is executed every cycle. For our purpose, we used Java XML
Java Compiler (XJC) to autogenerate Java classes corresponding
to the CRCL XML Schema Definition (XSD) schema files. Us-
ing these Java classes, CRCL is parsed into Java representation.
Likewise, XJC was used to extend CRCL XSD to enable im-
proved status reporting of model properties as well as model in-
ferences. The Java CRCL implementation also handles the seri-
alization from Java into CRCL XML for transmittal to the CRCL
server on the ROS side.

The ROS side is coded in C++ and uses CodeSynthesis to
parse and serialize the CRCL XML. Once parsed, the CRCL is
translated into ROS representation suitable for moveit! trajectory
planning and kinematic solving. Joint positions are then updated
to Gazebo using the gazebo ros api plugin.

Kitting World
At a high level of kitting operation, the robot is tasked with

picking the appropriate gears from the supply trays, and then
placing the gear into the kit. To keep the kitting scenario sim-
ple for discussion, we will limit the robot agility requirements
and assume the following. First, the robot already has the correct
part gripper and that all parts can use the same gripper. Second,

we will assume the necessary combination of small, medium, and
large part trays and kits will be available on the worktable. The
small supply kits contain four small gears, the medium supply
kit has four medium gears, and the large supply kit has two large
gears. The kit of interest has storage for two medium gears and
two large gears. Figure 2 illustrates the gears, trays, and kits used
for kitting operation that exhibit a simple geometry, with a peg
handle on top to make it possible to pick the part with relative
ease. We assume supply trays are filled with the same gear as
shown in Figure 2 where one medium supply tray contains up to
four medium orange gears, and 1 large supply tray contains up
to two green large gears. The goal is to fill the two kits to capac-
ity using the robot to move a matching gear from the supply tray
into an open slot in the kit. Despite the simplicity, the kitting task
reduces to a pick and place problem with a myriad of problems
and challenges.

FIGURE 2: Kitting World

For our case study, we assume the robot has a two-finger
gripper to grasp the gear peg and move from the supply tray to
the kit. The goal of the kitting problem is to load the kit with
two medium gears and one large gear. Clearly the problem can



Planner Plan Model and Control API CRCL

acquire part Beliefs
1) find “closest” empty kitting slot,
find “closest” matching supply gear
from supply tray
2) gripper empty

CRCL reports logical object properties and first order derived
properties (slots and gears in trays) every cycle. Used here to
determine open kitting slot and matching gear and location.

take part approach gear
grasp gear
retract

init (speeds, units)
moveto pose (approach)
moveto pose (grasping point)
setgripper 1 (close)
moveto pose (retract)
end

place part approach open kit slot
release gear
retract

init(speeds, units)
moveto pose (approach)
moveto pose (slot position)
setgripper 0 (open)
moveto pose (retract)
end

TABLE 1: Kit Planning Steps

exhibit a higher degree of complexity, with multiple robots, mul-
tiple end-effector types, tasking to include unloading trays and
kits, to name a few potential task variants.

Table 1 shows the planning for kitting that includes the ma-
jor plans for specifying the movement of objects from supply
trays to assembly kits. The sequence of operations to be handled
by the kitting planner depends on the constraints for the task.
Four types of constraints are defined and examined: processing
constraints (e.g., new or higher priority kitting order), feasibility
constraints (e.g., sufficient parts in part tray to fill kit), comple-
tions constraints (for example dropped part or robot servo fault),
and random fault constraints (for example dropped part or bad
sensor/actuator.)

To fulfill a kitting task, first the robot must receive a kit or-
der. Then the planning sequence outlined in Table 1 is under-
taken.

First, the acquire part plan is run where the goal is to find
the closest open slot in a kit tray and a matching free gear of the
same size in a supply tray. One of the beliefs that must be sat-
isfied is that the gripper is not already holding a gear. For this
planning step, CRCL provides logical status information used in
determining kitting open slots, supply tray gears, and gear types.
Next a take part moves the robot arm to allow the gripper to
grasp the gear and retract from the supply tray. This planning
step translates the logical gear name into a sequence of CRCL
commands to approach, move to, and retract from the gear phys-
ical pose location. Finally, the place part moves the robot to
place the gear in the open kitting slot. This planning step trans-

lates the kitting slot name into a sequence of CRCL commands to
approach, move to, and retract from the kitting open slot physical
pose location.

Gwendolen Agile Tasking
To enable higher-level plan reasoning, a logical kitting ob-

ject model was developed. So, instead of using CRCL reporting
Cartesian motion primitives such as physical location, objects in
the kitting world were given logical names and properties while
hiding lower level details. To enable this functionality, an ab-
stract Plan Model and Control API was implemented between
the planner and CRCL. This planning API layer required broad-
ening the existing CRCL status reporting to include kitting object
properties (object name, pose, location, type) for API reasoning.
In addition broadening the existing CRCL status reporting in-
cluded inferring gear and kitting tray slot properties that are not
reported by CRCL but instead were derived from first order rea-
soning about the kitting objects. For example, each supply vessel
has slots that may or may not contain a small/medium/large gear
depending on the vessel type. By cycling through the gears, it
can be established which gear slots contain a gear as well as its
properties: name, type (should match vessel supply type), and
state (open or contain a gear name). Likewise, a kit has slot
properties similar to supply vessels, but can be a combination of
small/medium/large gear slots.

As Gwendolen is an agent-based system, agents contain a set
of plans that are selected if their guard is true and then executed
according to their plan body. We explore using Gwendolen to



handle the kitting agile planning outlined previously. First, the
main kitting algorithm is mapped into a Gwendolen plan. The
Gwendolen plan for sending a grasping command to grab an item
with a robotic arm is shown in Listing 2.

+! move_part(Id, Size) :
{ ˜B grasped (_),

B kitting_tray(IdGearTray, Size, Slots)
}
<- find_gear(Slots),

*gear(Gear),
+!move(Gear), +!close_gripper,
+!move(Id), +!open_gripper;

Listing 2: Gwendolen Main Kitting Plan Listing

The Gwendolen plan is triggered upon the addition ‘+’ of
the goal ‘!’move part(Size). Size represents the size of the item
to be grabbed and can be either a free variable or a unified term
(variables start with capital letters). After the colon ‘:’ and in be-
tween the curly brackets we have the guard of the plan. The plan
will only be selected for execution if the guard is satisfied. In this
case, there must not (‘∼’) be a belief called grasped( ), where ‘ ’
indicates variables which may match any potential gripped ob-
ject. Finally, the body of the plan is preceded by the left arrow
and contains a sequence of steps (actions, belief operations, goal
operations, etc.). In this example, the body includes the multiple
actions to pick and place that are sent to the robot. The semicolon
at the end indicates the end of the body of the plan.

As an example of Gwendolen failure handling, let us con-
sider the dropping of the grasped gear that initially did match the
kitting tray open slot. In this setting, the grasp CRCL will use
its underlying force control that causes both gripper fingers to
touch, indicating the grasping of no part. Minimally, this will be
reported as an incorrect size gear in the gripper. In Gwendolen
the code to detect a ‘dropped’ gear by the gripper is given by
Listing 3

+! action_result(Size,Gear,SizeGear,false) :
{ ˜ (Size == SizeGear) }
<- +! locate(SizeGear),

* new_target(NewIdKitTray, NewId),
+! move(NewId),
+! open_gripper;

Listing 3: Gwendolen Dropped Gear Plan Listing

First, the Gwendolen code +! action result(Size, Gear,
SizeGear, false) defines a plan with a trigger event that matches

four parameters Size, Gear, SizeGear, and the false boolean state.
Next, the guard of the plan { (Size == SizeGear) } triggers
when the size of the kit tray slot is not equal to the size of the
gear we are trying to place and the body of the action result
plan will be executed. The plan body follows ‘<−’ where
the first step +!find open slot(SizeGear) calls another subplan
to look for a slot in a kit tray compatible with the size of the
gear that we are currently grasping. The second step of the plan
* new target(NewIdKitTray, NewId) waits for the belief contain-
ing the new target location resulting from the execution of the
above subplan. A timeout and failure would be handled by an-
other plan. Assuming a matching gear is found from the previous
step, the plan performs +!move(NewId), +! open gripper; which
calls a move command to move to the new slot, and then issues
a command to open the gripper and release the gear within its
grasp into the open kitting slot.

For brevity, we only show the plan for handling the failure
of a belief perceived dropped part which corresponds to trying to
place a gear into an open slot of different size. Since there are
other plans that handle failures of the open gripper action, we
need to ensure that the agent will select the correct plan. This is
done by testing if the sizes (received from CRCL) do not match
in the guard of the plan. To solve this failure, first the agent looks
through its updated belief base for a new open slot of the appro-
priate size, moves to it, and then releases the grasp. Most likely,
this will not be the case and the plan will recover by attempting
to find a matching gear, be it the dropped gear or another gear.

ANALYSIS

In the application of agile planning to robotics, the metrics of
interest are performance and correctness. Thus, the goal of as-
sessing performance is to achieve an accurate assessment of the
performance and reliability of the system by defining appropriate
metrics with the following properties [28].

- A metric should have the property that it is repeatable: if
the methodology is used multiple times under identical con-
ditions, the same sensor should result in the same sensor
readings.

- The metrics must exhibit no bias for implementations of
identical technology,

- The metrics must be useful to users and providers in under-
standing the performance they experience or provide.

Thus, in the application of agile planning to robotics, the
metrics of interest are not for instance, programmer productivity
metrics, software management metrics, algorithmic costing met-
rics, or software design metrics. However, a basic performance
metric remains software reliability, which is a probability mea-
surement that the software will perform its intended function for
a specified interval under stated conditions [28].



TABLE 2: Gwendolen Kitting Metrics

The agility handling of abnormal events is the major thrust
of this paper but key aspects of agility include the detection, han-
dling, and recovery of application errors. For example, kitting
agility includes handling of hardware faults, dropped parts, miss-
ing parts, misoriented parts, or faulty parts. Table 2 outlines the
kitting performance metrics that include both correctness, effi-
ciency, and agility aspects. The table provides a general perfor-
mance metric category, specific metric instances, and the Gwen-
dolen performance in the agile tasking category.

In order to evaluate run-time agility, errors are necessary
and for the simulation they were injected into the system at ran-
dom times to monitor system responsiveness. This was done by
adding another software process and pseudo-randomly instigat-
ing the errors. For the system under test (SUT), ignoring an error
state in a robotics environment can be disastrous. Minimally,
the SUT should recognize there is a problem, and gracefully halt

operation until the problem is fixed. Further, there are degrees
of agility in handling faults, such as, acknowledgement and full
remediation and recovery from problem, replanning an alterna-
tive strategy, or understanding the problem and using a substitute
backup plan.

Gwendolen is best suited for adapting to and recovering
from kitting failures. Since Gwendolen plans are composable,
many guards checking for error conditions were developed, of-
ten with alternative plans to recover from foreseeable errors. For
Gwendolen evaluation, injecting actuator or encoder faults into
the simulation were not evaluated as these should be handled at
a lower level of control and reported. Likewise, efficiency of
the Gwendolen planner that measured task and planning time, as
well as optimizing robot speeds and distance traveled were not a
priority but could be handled by fuzzy logic (e.g., slow, medium,
or fast) applied to speed as well as the case for guarded moves



(e.g., soft, medium, hard forces). Assembly operations of mating
of parts was considered out of scope. Safety violations such as
humans in danger or capability violations such as reach, payload,
or speed violations were not studied with Gwendolen but could
be added as part of a Gwendolen verification of operation where
applicable.

For optimization, Gwendolen planning would rely on em-
bedded Model and Control API optimization which could imple-
ment a least distance traveled between free kitting slot and sup-
ply tray gear optimization criteria. Such lower level optimization
may not be globally optimal. Since the scope of the kitting was
limited to basic Gwendolen pick-and-place planning with two-
finger grippers, acknowledging potential problems was deemed
a sufficient level of testing functionality.

CONCLUSION

The ideal smart factory is equipped with machines that are intel-
ligent and adaptable to change and disruption. The occurrence
of an abnormal event should be routinely handled by a smart ma-
chine with no human intervention. In this paper, robot kitting is
used to examine high-level agile task planning using the Gwen-
dolen agent programming language. Gwendolen is designed to
routinely handle and recover from abnormal but foreseen events.
Gwendolen programming was highlighted to study its response
to various kitting agility problems against a list of kitting perfor-
mance metrics.

The use of Gwendolen programming language as an agile
task in a manufacturing kitting case study was studied. Although
the case study concentrated on the fundamental elements of kit-
ting, the ability to augment the Gwendolen program with com-
posable plans to handle potential errors was highlighted. Future
work would leverage the agent-based nature of Gwendolen, as
well as system verification. Potential work includes the integra-
tion of multi-agent shared error handling in an adaptive manner
so that hardware faults would result in a companion robot to as-
sist in completion of a task. Gwendolen verification of kitting
offers many potential benefits not found in many agent-based
planning systems, including robot capability to manipulate the
kitting objects, payload constraints, as well as monitoring energy
use for sustainability analysis.

DISCLAIMER

Commercial equipment and software, many of which are either
registered or trademarked, are identified in order to adequately
specify certain procedures. In no case does such identification
imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the
purpose.
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