
1

Towards Software Defined Measurement in Data
Centers: A Comparative Study of Designs,

Implementation, and Evaluation
Zili Zha, An Wang, Yang Guo, and Songqing Chen

Abstract—Cloud data centers are increasingly adopting the Software-Defined Networking (SDN) technologies for their underlying
connection and communications. However, as a critical part of daily operations and management of such data centers, the network
measurement is essential but has often been constrained by the available resources in the traditional network devices. Thus, how to
properly balance the resource consumption while maintain timely and accurate measurement remains a challenge to data center
systems. Recent advances in Software-Defined Networking (SDN) have enabled flexible and programmable network measurement,
which is referred to as Software Defined Measurement (SDM). A promising trend for SDM is to conduct network traffic measurement
on widely deployed Open vSwitches (OVS) in data centers. However, little attention has been paid to the design options for conducting
traffic measurement on the OVS. In this study, we set to explore different designs and investigate the corresponding trade-offs among
resource consumption, measurement accuracy, implementation complexity, and impact on switching speed. Through extensive
experiments and comparisons, we quantitatively show the various trade-offs that the different schemes strike to balance, and
demonstrate the feasibility of instrumenting OVS with monitoring capabilities. These results provide valuable insights into which design
will best serve different measurement and monitoring needs.

Index Terms—SDN; Open vSwitch; eBPF; network measurement and monitoring.

✦

1 INTRODUCTION

T HE recent years have witnessed the increasing adoption of
Software Defined Networking (SDN) technologies in cloud

data centers. For example, Google uses SDN for both intra data
center and inter data center connection management.1. Critical to
the various operations and management of such data centers, the
network measurement has been playing an essential role in a wide
variety of network management tasks, ranging from traffic engi-
neering, anomaly detection, to QoS provisioning, etc. Traditional
monitoring tools, e.g., Netflow, sFlow, IPFIX, are usually deployed
across in-network hardware devices to collect real-time traffic
statistics. Nonetheless, due to the underlying hardware resource
constraints, they only provide coarse-grained statistics that could
not meet the monitoring demands of the diversified network
applications. How to properly implement monitoring to achieve
timely and accurate results while minimizing the corresponding
resource consumption has remained as a challenging issue.

The rapid development of SDN and network function virtual-
ization (NFV) [1] techniques has motivated a series of research [2],
[3], [4], [5] to enhance the existing measurement schemes. How-
ever, they are either not generic by requiring to implement multiple
sketches for each measurement task [2], [3], [4], or too expensive
to deploy in hardware devices [5]. In recent years, the emerging

• Z. Zha is with George Mason University. zzha@gmu.edu
• A. Wang is with Case Western Reserve University. axw474@case.edu
• Y. Guo is with NIST. yang.guo@nist.gov
• S. Chen is with George Mason University. sqchen@gmu.edu

1. Certain commercial equipment, instruments, or materials are identified
in this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that
the materials or equipment identified are necessarily the best available for the
purpose

programmable dataplanes have spawned great opportunities for
innovation in integrating monitoring solutions into the switching
hardware. This trend enables Software Defined Measurement
(SDM) where users can flexibly manage the monitoring rules via
programming APIs.

Such flexibility can be achieved via both hardware-based ap-
proaches and software-based approaches. For hardware-based ap-
proaches, programmable switch ASICs and SmartNICs are often
leveraged. However, programmable switch ASICs are constrained
by hardware resources, such as fixed hardware stages, limited
per-stage actions and restricted stateful memory (e.g., Registers,
Counters), making per-flow traffic statistics collection a non-
trivial task. SmartNICs could also be leveraged to perform generic
packet and flow-filtering. But they often have limited compute and
memory capabilities, making it even more difficult to completely
offload network measurement tasks. For that reason, some prior
work focused on monitoring only heavy hitter flows [6], [7],
[8]. Additionally, the hardware-based monitoring frameworks all
utilize sketch-based streaming algorithms aiming to minimize the
memory consumption, since memory is the primary concern.

On the other hand, software-based approaches have become
more and more important in building network monitoring func-
tionalities as inspired by the following observations [9], [10], [11].
There are two reasons for this trend. First, commodity servers are
in possession of plentiful CPU and memory resources. Compared
to the hardware routers that often have limited computing and
memory resources, data centers and clouds often have redundant
resources in terms of computing power and memory capacity that
are not fully utilized or idle. Second, software-based approaches
are much more scalable since each end host only needs to process
much smaller amount of traffic as opposed to that of in-network
hardware devices. This sheds light on SDM by using software

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

2

switches, such as Open vSwitches (OVS), since they have become
the building blocks of virtualization software and widely deployed
in data center systems.

One such example is UMON [9], where a set of traffic moni-
toring interfaces are developed to enable user-defined monitoring
rules in OVS. Despite of the abundant hardware resources in
commodity servers, building efficient monitoring frameworks into
data center end hosts remains unexplored. Existing software-based
monitoring solutions [11], [12], [13], [14], mostly focus on the
designs of sophisticated sketching algorithms to achieve both high
monitoring accuracy and network performance. In certain circum-
stances, accuracy of small flows is sacrificed in order to keep up
with the high packet rate, which is undesirable for security related
network applications. Furthermore, their monitoring frameworks
are not readily applicable to virtualization environment since they
are completely independent of the existing software stack in the
end hosts. On the contrary, building monitoring solutions into the
software switches and re-using the same high level APIs makes it
much easier to manage and program from upper layer applications.

Incorporating traffic monitoring capability into a software
switch offers the opportunity to share the key functionalities
required by monitoring that have been implemented in a software
switch. However, the design of such an integration is challenging
in order to achieve minimal forwarding-monitoring function inter-
ference, optimal code sharing, and efficient CPU/memory resource
usage. So far, there is no comprehensive investigation regarding
how to properly and efficiently conduct measurements leveraging
these potentials.

To this end, in this study, we aim to explore different ap-
proaches for gaining a comprehensive understanding of various
trade-offs in SDM using software-based approaches. For this pur-
pose, we set to empirically investigate the different design trade-
offs using OVS [15] as a representative software switch. We start
with an intuitive design, called FCAP (Flow CAPture scheme),
where the forwarding and monitoring forms a pipeline in the OVS
kernel. In FCAP, a packet traverses through the forwarding module
before going through the monitoring module. The flow stats of
interested traffic flows are first collected in the OVS kernel and
then transferred to the user space for further processing. To reduce
the memory consumption, we further design SMON, a Sketch [16]
based MONitoring scheme that compresses the flow stats using
sketches. Sketches are probabilistic data structures that trade off
query accuracy for space efficiency and widely employed in a
multitude of various applications. Since flow identifiers and per-
flow traffic stats both need to be collected, we use an advanced
sketch design, namely, invertible bloom lookup tables [16], in
SMON, which allows us to easily recover the complete flow details
in upper layer applications.

However, both FCAP and SMON place monitoring in the same
pipeline with forwarding. Such a design may cause the switch to
operate below line rate. To minimize such impact, we propose to
design off-path counterparts by decoupling the monitoring from
the forwarding. This is achieved via a ring buffer in the kernel.
The ring buffer temporally caches the packet headers of the
interested traffic flows, which can then be processed independently
by the monitoring module. In this way, the ring buffer effectively
decouples the monitoring from the packet forwarding at the kernel
data path.

FCAP/SMON designs all require extensive instrumentation
into the OVS code base, which is not backward compatible.
For practical deployment, we either need extra patches or re-

install a modified version of OVS with the customized monitoring
functionalities. Moreover, the SMON/FCAP monitoring modules
are implemented within the kernel data path in order to achieve full
visibility and minimize the impact on the forwarding performance.
However, a single software flaw could crash the entire system. To
address these challenges, we further propose an eBPF (extended
Berkeley Packet Filter (eBPF) enhanced [17] monitoring design
that is completely independent of OVS. While its ancestor BPF
is mostly used for in-kernel packet filtering, eBPF extends its
architecture by integrating more features to support more types of
events and actions other than filtering. eBPF offers the possibility
to dynamically generate, load and execute code into the kernel
using the bpf() system call, thus obviating the need to install
customized kernel modules. Many eBPF-based tools are devel-
oped for performance debugging and troubleshooting, e.g., tracing
the TCP sessions lifespan and the block device I/O latency, etc.
Furthermore, BPF maps provide an asynchronous communication
channel for sharing data between the userspace/kernel and across
multiple runs of the kernel program. In our work, to gain full
visibility of both inbound/outbound traffic, our monitoring pro-
grams are attached onto the Linux Traffic Control layer, while the
monitoring filter and flow stats table are both implemented using
eBPF maps.

We conduct extensive experiments to explore the various
trade-offs under the metrics of throughput, latency, CPU over-
head, memory overhead etc. The results show that (1) From the
performance aspect, the off-path designs achieve the minimum
measurement delay compared to on-path counterparts, including
eBPF. (2) On the aspect of accuracy, all the designs can achieve
almost full measurement accuracy, but at different costs. FCAP
and eBPF need to leverage linked lists to resolve collisions in hash
tables; SMON consumes more CPU cycles for sketch decoding;
While the off-path designs have higher memory consumption.
(3) For implementations, UMON is most flexible since it does
not require modifications of OVS kernel code base. eBPF re-
quires minimal maintenance efforts as it is independent of the
development of OVS. (4) Overall, it is feasible to instrument
OVS with monitoring capabilities without affecting the switching
performance significantly.

The remainder of the paper is organized as follows. Section 2
describes some related work. We present our new designs and
implementations in Section 3. We evaluate the proposed designs
in Section 4 with more discussions in Section 5. Finally, we make
concluding remarks in Section 6.

2 RELATED WORK

Traditional Monitoring. Different network measurement
frameworks have been investigated both in software and hardware
switches. Traditional hardware-based solutions utilize tools such
as Netflow [18], sFlow [19] and IPFIX [20], to collect IP Nework
traffic. Other similar solutions include Jflow [21], Cflowd [22] and
NetStream [23] etc. The drawbacks of these solutions are twofold:
they are more expensive to deploy and they do not provide enough
programmability for network management tasks.
SDN-enabled Monitoring. One of the earliest efforts is proposed
by Yu et al. [2] called OpenSketch. In OpenSketch, different
types of sketches are utilized to achieve different measurement
goals. Furthermore, the controller optimizes the sketch allocation
to balance the accuracy and the memory consumption. A followup
prototype called DREAM [3] is proposed to dynamically assign
TCAM counters to different measurement tasks across multiple

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

3

hardware switches in the network. But the users could not cus-
tomize measurement tasks other than the counter-based ones.
In these earlier works, sketches are designed and implemented
for specific monitoring tasks, which means that the monitoring
devices must instantiate multiple sketches in order to support
a variety of concurrent monitoring tasks. This places enormous
burden on resource-constrained hardware devices and drastically
degrades the network performance. To address this limitation, Uni-
vMon [24] proposes a single universal sketch to support multiple
measurement tasks simultaneously. Nonetheless, it requires to up-
date multiple components for each packet, which also introduces
noticeable overhead. Yu et al. also proposed FlowRadar [5] to
improve the NetFlow based network measurement by encoding
and decoding counters with the invertible bloom filter lookup
table (IBLT). In this way, the communication overhead could be
reduced. However, extra components are necessary to implement
on hardware devices. Also, the decoding may introduce redundant
overhead to the controller.
Monitoring within Programmable Dataplanes. Space Sav-
ing [25] is a widely known top-k algorithm to identify the first
top-k frequent items in data streams. Compared to other counter-
based streaming algorithms, Space Saving is much more resource
efficient since it only needs to maintain O(k) counters. Despite of
its memory efficiency, Space Saving is not readily applicable for
heavy flow detection within the emerging programmable hardware
due to the underlying complexities in its data structure and algo-
rithm design. Upon each new flow, the algorithm requires to find
and replace the hash table entry with the minimum packet count,
which cannot be easily implemented considering the hardware
constraints of the hardware programming model. To adapt the
classical algorithm into a hardware-friendly design, HashParallel
and HashPipe [6] refactor the algorithm into a pipeline of hash
tables that can fit in the programmable switches. This pipelined
design helps to ensure that each stage only incurs a limited amount
of processing in order to keep up with the line-rate switching
throughput. Nonetheless, Precision [7] re-examines the problem
and concludes that HashPipe is challenging to realize in the
Reconfigurable Match Tables (RMT) [26] switch programming
model since it does not satisfy the limited branching rule and
single stage memory access rule imposed by the RMT model.
To overcome the hardware limitations, Precision further improves
the design by recirculating a small fraction of the packets at
the cost of packet forwarding performance. Orthogonal to this
direction, Memento [8] examines the problem from a different
perspective by proposing a sliding window based heavy hitter
detection model. It argues that sliding window models are more
accurate and more efficient in terms of detection delay compared
to the traditional interval based detection solutions. Further, it
extends the algorithm to detect hierarchical heavy hitter (HHH)
and network-wide scenarios. Sliding window based models have
also been extensively studied in many earlier works [27], [28].
Marple [29] and Sonata [30] tackle the problem from a different
perspective. Instead of designing new sketches to minimize the
memory consumption in the hardware devices, Marple proposes
a performance query language and designs new switch hardware
primitives to support the language, which allows network opera-
tors to program their performance queries that collects customized
fine-grained traffic statistics at a low processing overhead. Differ-
ent from Sonata, it performs aggregations directly in the switch
hardware, further reducing the data volume streamed to collection
servers.

Edge-based Software Monitoring. Over the past few years,
with the data center networks evolving to larger scales and the
ever increasing line speeds, the resource constraints of hardware
devices have become considerably more stringent. Comparatively,
the edge servers are typically equipped with much more powerful
hardware resources, e.g., CPU and memory. Motivated by this,
there has been continuous efforts aiming to migrate monitoring
functionalities from hardware devices to edge servers. Generally,
existing software-based solutions can be broadly classified into
two categories: passive monitoring system [11], [12], [13] and
active monitoring system [9], [10]. The former category strives to
collect traffic stats for all flows with minimal memory consump-
tion and provable accuracy guarantees, by designing sophisticated
sketches and algorithms. However, in order to keep up with
high line-rates, they focus more on the accuracy of heavy flows
while sacrificing that of the small flows, considering that heavy
flows are usually more important than small flows in typical
monitoring tasks. In contrast, active monitoring systems provide
programmability that allows users to define their own monitoring
tasks and only monitoring the traffic the network operators are
interested in. This efficiently lessens the monitoring workload,
further minimizing resource usage and impacts on the forwarding
performance.

SketchVisor [11] focuses on accurate and timely network mea-
surement under high traffic load. It proposes to combine a sketch
based normal path and a top-k based fast path to achieve both high
throughput and high accuracy. Under high traffic load, the fast
path is activated to absorb the excessive traffic overflowed from
the fast path with slight accuracy degradation. Further, it employs
compressive sensing [31] to recover the flow stats information that
serves as input for higher level monitoring applications. Following
this work, Elastic Sketch [12] enhances SketchVisor by designing
an elastic sketch with two components, a heavy part and a light
part where the former maintains elephant flows and the latter
records the mouse flows. Under heavy traffic load, only the heavy
part is updated and the mouse flow information is lost. Compared
to SketchVisor, Elastic Sketch achieves much higher performance
since only one memory access is needed at high packet rate. In
NitroSketch [13], it is pointed out that Elastic Sketch falls short
in performance and accuracy when the number of flows increases
to a certain point. In comparison, NitroSketch proposes a generic
sketching framework that addresses the bottlenecks of existing
sketched designs and minimizes per-packet CPU and memory
overhead. HeavyKeeper [14] further improves heavy hitter detec-
tion accuracy of Elastic Sketch via a new strategy, count-with-
exponential-decay, to actively evict small flows through decaying.
It reduces the error by 3 orders of magnitude compared to the state-
of-the-art detection schemes. However, in certain applications,
such as anomaly detection, small flows play an equally important
role as heavy flows but cannot be captured by existing passive
monitoring systems that focus on heavy flows.

Following this trend, Trumpet [10] is proposed to collect data
from end-host machines to detect network-wide events. Though
Trumpet is optimized to run on hardware network devices, it is
independent of the existing network management framework.

Although existing software based measurement designs all
function well under particular circumstances, an in-depth inves-
tigation about the resource-accuracy trade-offs is still lacking in
the literature. Our work aims to fill this void by looking into
the various software-based monitoring designs from a systematic
view.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

4

eBPF-based Monitoring. eBPF has enabled the high perfor-
mance datapath in Linux since it was first merged into the Linux
kernel. The development of eBPF has fully unlocked network
programmability and allowed for a diverse community to form
around it, spanning networking, tracing, security, profiling, and ob-
servability. Recently, Abranches et al. designed and implemented
a network monitoring architecture based on eBPF [32]. Their
proposed framework differs from ours in two aspects. First, their
framework attaches itself to a different hook point than ours.
Secondly, their framework is designed to perform analytics over
application traffic, while our framework is mainly used for captur-
ing abnormal network behaviors. eBPF has also been leveraged to
mitigate DDoS attacks. For example, Cassagnes et al. proposed
a framework to monitor containerized user-space applications
and prevent DDoS attacks [33]. Similar efforts have also been
conducted by Miano et al. in [34].

3 DESIGN AND IMPLEMENTATION
To empirically explore the various design trade-offs among

multiple factors, including server resource consumption, monitor-
ing overhead, and implementation complexities, in this section,
we propose five novel monitoring designs, namely, on/off-path
FCAP/SMON [35] and eBPF. Among them, four are incorporated
into OVS and an eBPF-based monitoring framework in parallel
with OVS. Following a brief discussion about the design chal-
lenges arising from building monitoring logic into OVS, we walk
through the design and implementation details of each monitoring
framework.
3.1 OVS and Design Challenges

OVS consists of two major components: a userspace daemon
(ovs-vswitchd), and a kernel datapath [36]. They work together
to forward packets, with the userspace daemon as a full but slow
path while the kernel datapath serving as a forwarding cache.
Such a design aims to optimize the forwarding performance
of the switch. More specifically, incoming packets are firstly
matched against the flow table in the kernel datapath. If the packet
encounter a flow miss in the kernel, it will be forwarded to the
userspace by injecting a upcall. In the userspace, upcalls are
handled by the handler threads, and a flow rule is generated and
installed into the kernel flow cache. As a result, subsequent packets
belonging to the same flow do not need to make detours through
the userspace. Finer-grained kernel flow rules undoubtedly result
in a larger number of flow misses and upcalls. This not only
undermines the switch performance, but also introduces heavier
workloads, thus higher CPU overhead for handlers. Fortunately,
due to the locality of the network traffic, most packets are
processed in the fast path.

Each flow entry provides built-in monitoring capabilities via
fields, such as packet and byte counters. These counters record the
total number and bytes of packets processed by the corresponding
flow entry. As aforementioned, the userspace does not have full
visibility into all packets. Thereby, the packet/byte counts in the
userspace table entries need to be updated by polling the kernel
cache entries. These are managed by the revalidator threads,
which periodically poll the kernel cache for each flow’s packet
and byte counts and aggregates them into the userspace flow table.
In addition, revalidators are also responsible for maintaining the
kernel cache entries. Similarly as handlers, a larger kernel cache
introduces heavier workloads for revalidators.

Nevertheless, this built-in feature in OVS flow tables is neither
flexible nor sufficient for the dynamic monitoring needs, since

flows that are relevant for monitoring and forwarding might not be
overlapped. For example, forwarding rules might specify actions
over destination IP addresses, while monitoring applications need
fine grained flow statistics for each 5-tuple subflow. Relying only
on packet and byte counts of the flow rule could not achieve the
desired monitoring granularity. To cope with this limitation, some
works propose to dynamically install flow forwarding rules for
each subflow into OVS. As a consequence, the first packet of each
subflow has to be sent to the centralized controller for further
handling. This drastically degrades the forwarding performance
of the data plane and causes potential control path congestion. A
more efficient programmable monitoring solution is imperative.
UMON is one of the earliest efforts in this direction.

However, UMON has some limitations on the switch perfor-
mance. The fundamental idea of UMON is to decouple monitoring
from forwarding logic in the userspace, while the kernel datapath
remains intact. To achieve this, the cached entries in the kernel
need to be much more fine-grained than the native OVS, which
is elaborated in Section 3.2. As explained earlier, this inevitably
incurs heavier consumption of system resources. Motivated by
this, our investigations of different monitoring designs mainly
consider the following aspects: monitoring accuracy, resource
consumption, switching performance, and portability.

Overall, to build monitoring capabilities into OVS, there are
a number of challenges we need to address: (1) The added
monitoring logic should introduce minimal interference to the
forwarding path in OVS to guarantee the forwarding and monitor-
ing efficiency; (2) Due to the resource constraints, it is necessary
to strike a balance among efficiency, resource consumption, and
monitoring accuracy; (3) To maximize feasibility and compati-
bility, the monitoring function should be as portable as possible
so that minimal effort would be required to accommodate the
monitoring function.

Taking these into consideration, the monitoring function is
decoupled from the forwarding function by maintaining an ad-
ditional monitoring table, as illustrated in Figure 1. The default
forwarding process is performed by OVS, while the additional
monitoring table supports the added monitoring functionalities.
Contrarily, in the kernel datapath, five monitoring designs are
proposed, which differ in multiple aspects, including interaction
between the monitoring and forwarding functions, the placement
of the monitoring module (Challenge 1), the stats collection data
structures and algorithms (Challenge 2). Beyond these, we also
develop an eBPF-based monitoring framework that runs in parallel
and independently with OVS (Challenge 3).

Unlike other existing work that utilize streaming algorithms
and compact data structures, we mainly leverage simple yet
efficient algorithms in our designs for two reasons. First, streaming
algorithms typically require encoding and decoding processes,
where encoding is generally much simpler than decoding. In
most existing work, such as Trumpet [10], the workload of
complex decoding is often offloaded to the control plane, making
the software-based measurement less scalable. Second, streaming
algorithms can only provide estimate values, making it difficult for
network operators to troubleshoot when something goes wrong.
In the following sections, we delve into the details of each specific
design following a brief overview of UMON.
3.2 Recap of UMON

As introduced in Section 3.1, the monitoring programmability
of UMON is facilitated through the introduction of an independent
monitoring table in the userspace daemon. The overall architec-

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

5

Fig. 1: The OVS architecture. Fig. 2: UMON architecture. Fig. 3: FCAP/SMON architecture.

ture of UMON is depicted in Figure 2. Comparing this figure
with Fig. 1, we can observe that UMON preserves the original
architecture of OVS. It simplifies the monitoring design by only
instrumenting the OVS userspace module, leaving the kernel
datapath untouched. Specifically, the monitoring table maintains
rules that monitor specific TCP traffic, such as TCP SYN packets,
or/and collects subflows in the subflow tables. Besides, the moni-
toring table provides APIs for the controller to install and update
monitoring rules via an extended OpenFlow protocol.

To support the user-defined monitoring granularities, UMON
compiles the forwarding and monitoring flow rules together to
generate cache entries in the kernel. For example, a flow rule
forwards packets destined to host B to port 1 while the monitoring
rule needs to collect the packet/byte counts originated from host
A. UMON combines the two rules to generate a more fine-grained
rule that forwards packets with source IP of A and destination IP
of B to port 1 instead. Following this design, an incoming packet
with (srcIP=C, dstIP=B) cannot find a match in the kernel cache
and will raise a flow miss that needs to be sent to the userspace for
further processing. As aforementioned, due to the lack of visibility
in the userspace, flow statistics need to be properly populated from
the kernel space to the userspace flow table. In the meanwhile,
the flow stats in the monitoring table should also be updated. In
UMON, this credit logic is piggybacked in the revalidator thread
of OVS because it maintains the flow statistics periodically. As in
the above example, the revalidator threads polls the kernel space
for packet/byte counts in the cached flow entries and aggregates
the micro-flows by different fields, e.g., dstIP for the flow table
and srcIP for the monitoring table.

The downside of UMON is that the kernel flow table might
get inflated with a vast amount of fine-grained flows during peak
traffic. Furthermore, a significantly larger amount of flow misses
are generated, thereby, both handler and revalidator threads will
potentially experience much heavier workloads. On the other hand,
statistics collection of monitored flows is integrated into the native
OVS operations without any changes of its current workflow.
Therefore, the latency caused by monitoring interruptions will be
reduced. Moreover, UMON does not require any modifications in
the kernel, thus it could be easily ported to other edge devices
and platforms, such as DPDK and NetFPGA. More details are
discussed in [9].

In this study, we only use UMON as a comparison against the
other designs. These designs, including UMON, embody different
trade-offs between resource (e.g., CPU, memory) consumption,
monitoring efficiency, forwarding efficiency (throughput and la-
tency). One has to strike a balance among these considerations.
In the following, we discuss the specific design considerations in
greater detail.
3.3 Design of Flow Capture (FCAP)

The performance impact of the monitoring functions is pri-

marily dependent on where the functions are placed. Intuitively,
a separate monitoring function in the userspace provides better
isolation and allows better interaction with the users. However, we
have learned two lessons from the development of UMON. (1) the
complexity of userspace rules would introduce extra overhead to
the kernel; (2) the collection of monitoring stats should be prompt
to preserve accuracy. Based on these considerations, we propose to
build a separate monitoring phase in the kernel datapath in OVS.

To guarantee the accuracy of monitoring tasks, we need to
maintain statistics of all the related packets efficiently. The micro-
flow information is more preferable than the mega-flow infor-
mation because monitoring tasks often have dynamic granularity
requirements and micro-flows simplify the aggregation opera-
tions. Thus, we first design two different schemes, FCAP (Flow
CAPture) and SMON (Sketch based MONitoring), to
collect micro-flows. In our current designs, we use 6-tuples
(source/destination IP addresses, source/destination ports, protocol
and TCP flags) to represent each micro-flow.

Fig. 3 shows the architecture of FCAP and SMON. In this
figure, since userspace pipeline is similar as UMON, the for-
warding pipeline in the userspace is omitted here for clarity. To
facilitate user-defined monitoring tasks, an additional kernel filter
table is utilized to classify packets in both FCAP and SMON. The
workflow of FCAP is described in Algorithm 1. Once the packet is
determined to be relevant to a monitoring task (line 1), the 6-tuple
information will be stripped off and kept in the custom 6-tuple
flow stats tables (line 5-8).

However, the way for FCAP and SMON to store such informa-
tion is different. FCAP employs a straightforward mechanism by
storing the 6-tuple flow stats in a hash table. In order to maintain
full accuracy, linked lists are used to resolve hash collisions. With
the hash index, the monitoring thread scans through the linked
list to find the flow entry with the same 6-tuple identifier as
the incoming packet(line 4). Due to its ability to preserve the
complete 6-tuple information, the aggregation operations required
by monitoring tasks are simplified. Furthermore, the collected
statistics are accurate without any loss.

As illustrated in Fig. 3, the monitoring pipeline consists of
two stages, including a kernel filter table and a 6-tuple table. Only
packets finding a match in the filter table are counted towards
the latter. The entries in the kernel filter table are populated from
the userspace monitoring table. Note that the kernel table differs
from the userspace table from two aspects. First, the kernel table
employs longest prefix matching to find any rule that matches
against the header. Instead, the monitoring rules in the userspace
table are matched against one by one since the monitoring rules
may overlap. Secondly, it is not necessary to maintain stats of the
headers in this table.

To aggregate the collected 6-tuple flows, we implement a
thread that employs similar mechanism with that of the revalidator

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

6

thread in OVS [36]. The thread retrieves the flow stats from the
6-tuple stats table at fixed time intervals and updates the counters
associated with the rules in the userspace monitoring table. The
credit function is implemented in a similar way as UMON, which
credits both flow stats and subflows to the monitoring table. To
enhance the efficiency, we further cache the matching results of
the 6-tuple information with an extra hash table, where entries
expire with the default timeout ofproto max idle value. The extra
hash table is a simple data structure that maps the hash values of
6-tuple information to its corresponding bucket.
Algorithm 1 FCAP algorithm

Input: FlowStatsTable,flowTuple

1: isMonitored ← LOOKUPMONITORFILTER(flowTuple)
2: if isMonitored = True then
3: hash ← HASH(flowTuple)
4: bucket ← FINDBUCKET(FlowStatsTable, hash,flowTuple)
5: if bucket ̸= null then
6: UPDATEFLOWSTATS(FlowStatsTable, bucket,flowTuple)
7: else
8: INSERTFLOWTUPLE(FlowStatsTable, bucket,flowTuple)
9: end if

10: end if

3.4 Design of Sketch based Monitoring (SMON)

Although FCAP provides highly accurate statistics, it is not
always affordable and also sometimes may not be necessary. In-
spired by previous work, sketches have great potential in reducing
memory consumption on end hosts. Sketches are space-efficient
probabilistic data structures that are extensively used in streaming
applications to process and store summary information. Examples
include bitmaps, bloom filters, and count-min sketch, which serve
diverse purposes. They provide provable guarantees on the storage
usage and error bounds. In previous work, sketches have been
used for traffic monitoring in hardware network devices, where
memory is a primary concern. Nonetheless, the performance of
sketch monitoring built into software entities remains unexplored.
Intuitively, to achieve higher memory efficiency, sketches involve
more complex computation logic, e.g., more hash computations,
to compress the memory. To investigate the trade-offs between
memory/CPU consumption and monitoring accuracy, we propose
SMON, a sketch-based mechanism to maintain the compressed 6-
tuple flow information. As just mentioned, many research works
have focused on utilizing various sketch mechanisms to perform
monitoring [37], [38], [39], [40]. Among all existing solutions,
the bloom filter has a strong space advantage over other data
structures. However, the primary drawback of bloom filter is that it
does not store the data elements themselves. Therefore, we cannot
retrieve the item based on its key, which limits the capability to
collect subflows.

Goodrich et al. proposed invertible bloom lookup tables
(IBLT), which consists of three components in each bucket to
store a key/value pair and the corresponding count [16]. In this
way, the 6-tuple flow IDs that are hashed into the same bucket are
XORed and stored in a single bucket, as depicted in Algorithm 2.
Instead of using linked lists as in FCAP, flows that fall into the
same bucket are compressed in order to save memory space (line
4-6). In this algorithm, H represents the number of different
hash functions that are pairwise independent. To reduce hash
collisions, an intuitive solution is to use a lot of space to make
collisions unlikely enough to get accurate results. However, space
is typically limited in network switches. To make the algorithm
more efficient, we instead use different hash functions so that
flows have chance to be mapped to buckets that have fewer
hash collisions. Similar approaches have been widely adopted by

existing streaming algorithms, such as the Count-Min sketch [41],
FM sketch [42] and the Tug-of-War sketch [43]. In the user space,
a customized thread periodically retrieves the bloom filter from
the kernel datapath via Netlink socket interface and recovers all
flows from the sketch. The size of the sketch structure is adjusted
according to the estimated number of flows in each time interval
to guarantee successful decoding of flows at a high rate while
ensuring a minimum amount of memory usage. The detailed
decoding process is explained as follows. It iteratively finds the
elements in the bloom filter that contain a single flow and remove
its stats from all the other encoded cells that the flow is hashed
to, until all the buckets are decoded. Ideally, if the size of the
bloom filter is sufficiently large, and exported to the user space
at a high frequency, all flows could be successfully recovered.
In a cloud system, OVSes are often deployed at the edge, thus
can only observe a moderate amount of flows. This suggests that
we can achieve a high decoding rate with a moderate amount of
memory. Apparently, the flow decoding time grows with the size
of the sketch and the number of flows in each measurement epoch.
Similarly with FCAP, the decoded flows are aggregated into in the
user space monitoring table. Besides, the filter table in SMON
has the same designs as FCAP. Later we will show in Section 4
that with a small amount of memory consumption, we manage to
preserve highly accurate statistics.
Algorithm 2 SMON algorithm

Input: IBLT ,flowTuple

1: isMonitored ← LOOKUPMONITORFILTER(flowTuple)
2: if isMonitored = True then
3: foreach k ∈ [1 ..H] do
4: hk ← Hashk(flowTuple)
5: if ISNEWFLOW(flowTupe) then
6: COMPRESSFLOWID(IBLT , hk ,flowTuple)
7: end if
8: UPDATEFLOWSTATS(IBLT , hk ,flowTuple)
9: end for

10: end if

3.5 Off-path Designs of FCAP/SMON

The intuitive designs of FCAP and SMON place monitoring
logic on the normal packet forwarding path in OVS kernel, thereby
are called on-path designs. Such on-path designs introduce extra
processing delay to the OVS forwarding, since monitoring usu-
ally requires more complicated processing logic than forwarding,
which may further reduce the forwarding throughput. To reduce
the negative impact, we further embrace a buffering mechanism in
order to take the monitoring function off the forwarding path. By
using a ring buffer, we aim to decouple the monitoring functions
from the forwarding path. We consider this mechanism for both
FCAP and SMON, and thus design off-path FCAP and off-path
SMON.

The overall architecture of off-path designs is demonstrated in
Fig. 4. The ring buffer is conceptually a circular FIFO queue with
pre-defined size. The main difference between a circular queue
and a linear one is that a circular queue has the maximum size
or capacity that allows it to continue to loop back over itself in a
circular motion. With a linear queue, it is more difficult to adjust its
size during operation. This can be replaced with a dynamic buffer
that grows and shrinks automatically based on packet rates. But
circular buffer is selected for simplicity and efficiency. The size
of this circular queue is set to be X bytes by default. This value
is subject to change and can be determined by system operators
based on their experience. The ring buffer has two pointers, head
pointer for the consumer thread and tail pointer for the producer
thread, as depicted in Fig. 5. As long as the distance between

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 4: Off-path FCAP/SMON architecture.
Fig. 5: Lock-free single-producer single-
consumer circular buffer.

TC
ingress IP Stack TC

egress

XDP

netdev netdev

eBPF
program

eBPF
program

Socket Layer

eBPF
program

Fig. 6: Locations of eBPF hooks where mon-
itoring programs can be attached.

the two pointers does not shrink to zero nor expand to the full
buffer size, both the producer and the consumer could operate
on the data in the queue. In our case, the forwarding process is
the producer by making a copy of the incoming packet header
and appending it to the tail of the buffer, while the monitoring
thread, as the consumer, fetches the headers for further processing
from the head of the buffer. Therefore, the ring buffer provides a
communication channel for the asynchronous interactions between
the two functions.

In our implementation, we employ a lock-free mechanism
when writing to the ring buffer to minimize the performance
overhead. Compared to the exclusive lock mechanism, it brings
a negligible probability of overwriting unprocessed data. In this
way, forwarding will not be delayed if the monitoring thread
cannot keep up with the forwarding process. While reading will
be blocked if the buffer is empty, this aims to guarantee the high
performance of the forwarding function by making constant-time
operations. The lock-free nature helps to ensure that no waiting is
involved in adding or deleting data in the buffer. Since we employ
overwriting to handle full queues, the collected statistics might
not be highly accurate. In order to achieve precise measurement
results, the ring buffer has to be sufficiently large in order to keep
up with the ever-increasing packet rates and flow bursts. These
will be evaluated in our experiments.

In practice, with the built-in support for cpuset in Linux kernel,
one can confine processes to certain processors and memory
node subsets so that the monitoring thread and the forwarding
thread do not compete for CPU resources. Such optimizations are
feasible and practical for data center edge devices where abundant
computing resources are available.
3.6 eBPF-based Monitoring

eBPF was originated from BPF, the Berkeley Packet Filter.
BPF allows to capture and filter network packets that match
specific rules, where filters can be implemented as programs and
run on a register-based virtual machine. eBPF extends the support
to 64-bit registers, among others, and represents an effort to make
programmable Linux kernel. That is, one can run sandboxed
programs in the Linux kernel without changing kernel source
code or loading kernel modules, and thus can be leveraged for
monitoring and security, etc.

The eBPF code is executed in an in-kernel virtual machine
using a custom 64-bit RISC instruction set, with 11 64-bit
registers, a program counter and a 512-byte stack space. eBPF
supports running the code as Just-in-Time compiled bytecode,
which is verified by an in-kernel verifier to guarantee security
(e.g., forbidding loops to ensure program termination and type
checks) before loading the code into the kernel. Internally, various
mechanisms enable communication between in-kernel eBPF code

and user space processes asynchronously, such as eBPF maps and
perf events (FIFO queues). eBPF maps are efficient key-value
stores that allow data to be shared within the kernel (i.e., among
multiple eBPF programs) or between the kernel and user space.

Figure 6 illustrates how eBPF can be used for network traffic
monitoring. Specifically, eBPF programs can be attached to dif-
ferent hook points in the networking data path, such as Traffic
Control (TC) or eXpress DataPath (XDP) [44], thereby enabling
flexible processing on the intercepted packets. As shown in the
figure, ingress traffic can be intercepted in XDP or TC ingress
hooks, while the egress traffic can only be intercepted at the TC
egress hook, as XDP is not available in egress. Furthermore, eBPF
programs can also be attached in the socket layer. Unfortunately,
this does not meet the need of monitoring both local and non-
local traffic. Therefore, the TC layer can serve our purpose the
best because it allows us to investigate both ingress and egress
traffic. In the following, we discuss the specific design details of
our eBPF-based monitoring framework.

eBPF-based Monitoring Framework. As illustrated in Fig-
ure 7, the framework consists of multiple components, including a
monitoring pipeline in the kernel space and a monitoring applica-
tion in the userspace. The communication between the kernel and
user applications is facilitated through a shared eBPF map that
maintains the real time traffic statistics. The userspace application
retrieves the flow stats from the map and clears the entries at fixed
time intervals. Similar to the FCAP/SMON designs, the interval is
determined based on the users monitoring demands.

Monitoring
Application

BPF_HASH
Hosts

BPF_HASH
6-tuple Flow Stats

Table

Userspace

Kernel

tc eBPF

Filtering Stats Collection

recv
packet

OVS DatapathY

N

Packet
Out

Fig. 7: Design of eBPF-based monitoring framework.

As discussed above, our eBPF program is attached to both
the TC ingress and the egress to gain full visibility of all in-
bound/outbound traffic. The eBPF program is executed and the
flow stats are updated for each incoming packet. The monitoring
workload varies along with the number of hosts to be monitored.
For each monitored host, we need to track the number of packets
for each 6-tuple flow associated with it. To filter out the hosts,
each incoming packet has to go through a monitoring filter before
it is counted towards the flow status hash table. More specifically,
the monitoring filter examines the destination IP address of the

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

8

packet and filters out packets that are not monitored (line 12). Only
packets that find a match in the filter will be counted towards the
following flow stats hash table (line 13-14). The workflow of eBPF
monitoring is outlined in Algorithm 3. Intuitively, such processing
may introduce extra performance penalty, which comes in the form
of map lookups and updates. However, programmability is mainly
achieved through this table. Since eBPF maps allow sharing data
between kernel and userspace programs, the monitoring applica-
tion can dynamically update the entries in this table on demand.
For example, monitoring can progress along flow of different
granularity – from course-grained flows to fine-grained flows –
to improve monitoring efficiency. The eBPF maps provide similar
but more efficient programmable APIs than OVS’s match+action
tables. In this work, we will conduct in-depth investigation
about the performance of the eBPF-based monitoring module and
compare it to the aforementioned monitoring alternatives.
Algorithm 3 eBPF Workflow
1: procedure EBPF USERSPACE COMPONENT
2: LOADBPFPROGRAM()
3: POPULATEMONITORTABLE()
4: while true do
5: SLEEP(T)
6: flowStats ← BPFMAPREAD()
7: BPFMAPCLEAR()
8: end while
9: end procedure

10: procedure EBPF KERNEL MONITORING
11: flowTuple ← PARSEHEADERS(packet))
12: isMonitored ← BPFMAPLOOKUP(monitorTable,flowTuple)
13: if isMonitored = True then
14: BPFMAPUPDATE(flowStatsTable,flowTuple)
15: end if
16: end procedure

To understand the root cause of the processing overhead, we
first examine the underlying implementation of the eBPF maps.
Currently, eBPF is featured with fifteen types of maps to maintain
the states across the invocations of the eBPF program and share
data among multiple programs or between the kernel and the user
space. Two of the most commonly used types are hash maps and
arrays, while the other variants serve more complex purposes.
As aforementioned, our eBPF-based monitoring design involves
multiple data structures, including a monitoring filter and a key-
value store for recording flow stats. Note that eBPF programs
cannot process packets in an off-path fashion.The design of the
data structures for each functional component is critical since the
incurred overhead directly affects the network throughput/latency.
In the following, we discuss the designs in more details.

Similar to FCAP/SMON, the monitoring workload is specified
in terms of the set of the destination IP addresses of the monitored
hosts. BPF ARRAY and BPF HASH can both be used for this
purpose, while BPF HASH achieves better performance due to its
hash-based design. Therefore, our monitoring filter is implemented
based on BPF HASH, which can be populated with the host IP
addresses from the user space. Furthermore, it can be updated
at runtime in accordance with changes in the monitoring tasks.
Specifically, in our userspace program, the hash map is initialized
with the IP addresses as keys whereas the value is set to 1, before it
is loaded into kernel. For each incoming packet, if the destination
IP address has a value 1 in the hash table, the corresponding
flow stats will be updated; otherwise, control flow will follow
the original packet processing path. In this way, the host filtering
stage can be performed in O(1) time.

On the other hand, to maintain the 6-tuple flow stats infor-
mation, a hash map (BPF HASH) is used to maintain the flow
identifiers (e.g., 6-tuple) and the corresponding values that refer to

the packet/byte counts per flow. Since eBPF maps are instantiated
inside the kernel, it is critical to keep the size within a reasonable
limit to avoid the exhaustion of kernel memory. In the meanwhile,
to achieve the desired monitoring accuracy, the actually requested
size should be determined based on an sensible estimation of
the total number of flows in the monitored network. By default,
BPF HASH has 10240 entries. Since in our monitoring workload,
the total number of flows far exceeds this value, the table size has
to be explicitly specified during initialization. Unfortunately, eBPF
map cannot be resized after it is created. In the latest kernel im-
plementation, eBPF hash maps use pre-allocation by default. The
maximum memory size is bounded by the max entries defined by
the userspace program during map initialization. Once the map is
full, insertions of new keys will fail in order to make sure that the
eBPF programs will not exhaust kernel memory. In other words, an
underestimated flow count will result in inaccurate measurement
results. Therefore, max entries must be carefully chosen in order
to accommodate all 6-tuple flows. The actual parameter setting is
workload-dependant and will be discussed in detail in Section 4.

As a consequence, the performance penalty is mostly incurred
by the hash map related operations, including hash computation
and hash map updates. Also note that updates to eBPF hash map
elements are atomic, which are more expensive. Eventually, the
exact amount of overhead should be directly correlated with the
actual monitoring workload. A closer scrutinization of the under-
lying implementation of the eBPF hashmap APIs further reveals
that the kernel hash table is consistently reused. In the eBPF
hashmap implementation, linked lists are used to resolve hash col-
lision. Due to this design, the measurement results of the flow stats
are accurate as long as there is no packet loss. In the meanwhile,
the underlying implementation is optimized for lookup speed.
Given the max entries, the hashmap size is always set to the next
power of 2. The total memory allocation is n buckets * bucket size
+ max entries * element size, where n bucket is actual hashmap
size and max entries is the maximum number of entries estimated
by the user. We will conduct experiments to measure and compare
the throughput/latency under various monitoring workloads. A
detailed analysis and comparison with other monitoring designs
will be presented in our evaluations.

4 PERFORMANCE EVALUATION
Our test-bed consists of three Lenovo ThinkServer machines

equipped with Intel Xeon 4-Core 3.20GHz CPU and 4GB memory
that run Ubuntu 14.04. One machine is dedicated to run the
instrumented Open vSwitch (OVS). The second machine serves
both as the packet generator and the data sink that receives the
data from the OVS. These two machines are connected with two
10Gbps Ethernet cables. As shown in [45], the native OVS can
achieve ∼3Gbps switching speed. Thus 10G NIC is sufficient
to make it not the bottleneck. We host the packet generator
and the data sink on the same machine to facilitate the delay
and throughput measurement. The third machine serves as the
SDN controller running Ryu [46]. We perform the trace driven
evaluation using a CAIDA trace [47] that contains about 30 million
packets. The packet trace is replayed using TCPReplay [48] and
is fed into the instrumented OVS. The packets are routed and
measured by the OVS, and received by the data sink.
4.1 FCAP vs. SMON vs. eBPF

In this section we compare the performance of all the moni-
toring designs. For FCAP and SMON, both on-path and off-path
versions are considered. This measurement is conducted under a

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

9

packet rate of 160 Kpps with 1400 hosts being monitored. We
examine the performance in terms of forwarding latency incurred
in the kernel data forwarding path, kernel memory usage, and
measurement accuracy. The results are averaged over 10 runs and
reported in Table 1.

TABLE 1: Comparison of different monitoring designs.

Kernel Monitoring Design eBPF On-Path Off-Path
SMON FCAP SMON FCAP

Forwarding Latency 344ns 848ns 515ns 182ns 182ns
Measurement Accuracy 100% > 99% 100% > 99% 100%

Memory Usage 396KB 96.97KB 149.58KB 2.116MB 2.168MB

The kernel data-path forwarding latency measures the extra
delay introduced by the monitoring modules in the kernel datapath.
For off-path FCAP and SMON, we only measure the delay intro-
duced by the ring buffer. The processing delay of the actual stats
collection by the monitoring module is ignored since they work
off-path. We also measure the overall performance in Section 4.3
which shall reflect off-path modules’ impact.

As shown in Table 1, in general, on-path FCAP/SMON incur
longer delays than their off-path counterparts. It takes 182ns
to put each packet into the ring buffer for off-path monitoring,
while on-path SMON and on-path FCAP incur 848ns and 515ns
of delay, respectively. In addition, the eBPF processing takes
344ns for each packet. Apparently, the off-path design is the
most efficient among all since it only involves a single memory
copy operation. Comparatively, on-path designs consume a signif-
icantly amount of CPU cycles from hash computation and counter
updates, resulting in much longer processing delays. Among the
three on-path designs, eBPF outperforms the other two due to
its highly performant underlying implementation. As discussed in
Section 3.6, eBPF hashmap size is kept sufficiently large in order
to minimize the length of the linked lists. Thereby, the average
per-packet latency is considerably smaller than FCAP. Compared
to eBPF and FCAP, on-path SMON incurs much long processing
delay since sketch encoding requires multiple hash computations
and memory access to multiple counters for each incoming packet.

In terms of memory consumption, on-path SMON consumes
less memory (96.97KB) than on-path FCAP (149.58KB) and
eBPF (396KB). By utilizing sketches, SMON is the most
memory-efficient by compressing multiple flow information into
a single sketch counter at the cost of slight accuracy degradation.
Between FCAP and eBPF, the latter requires more memory usage
due to its large hash table size and the memory pre-allocation
mechanism. Compared to the on-path designs, off-path FCAP and
SMON consume the largest amount of memory since they require
a ring buffer to store all incoming packets.

We next examine if the use of ring buffer and sketch reduces
the measurement accuracy. As shown in Table 1, the results show
that the off-path measurements achieve comparable accuracy as
the on-path measurements as long as the ring buffer is sufficiently
large to accommodate incoming packets. We find that in order
to avoid packet losses, for a packet rate of 160 Kpps, the memory
allocated for the ring buffer must be over 2MB. The size of the ring
buffer can be configured from the user space through the Netlink
interface according to the estimated packet rate and the desired
accuracy. The measurement accuracy of SMON is over 99%,
which suggests the use of sketches does not lead to large accuracy
loss. Moreover, on-path/off-path FCAP and eBPF provide fully
accurate measurement results since they both employ linked lists
to resolve hash collisions in their implementation.

4.2 Impact of Monitoring Workloads
Here we examine the impact of monitoring workloads on the

CPU utilization and memory usage of instrumented OVSes. We
vary the number of monitored hosts, i.e. IP addresses, which
directly leads to a varying number of monitored micro-flows,
as listed in Table 2 and Table 3. We also experiment with two
different packets rates, 80 Kpps and 160 Kpps, replayed by
TCPReplay to represent different OVS switching workloads.

TABLE 2: Memory usage (MB)(packet rate = 160 Kpps).

#hosts 200 400 600 800 1000 1200 1400 1600
#flows 346 703 1067 1402 1698 2082 2550 3043

off-path SMON 2.039 2.049 2.063 2.079 2.087 2.100 2.116 2.132
off-path FCAP 2.075 2.091 2.107 2.118 2.133 2.149 2.168 2.191

eBPF 0.105 0.105 0.160 0.211 0.262 0.324 0.387 0.449
UMON 4.556

TABLE 3: Memory usage (MB)(packet rate = 80 Kpps).

#hosts 200 400 600 800 1000 1200 1400 1600
#flows 217 487 641 811 980 1219 1456 1712

off-path SMON 1.347 1.358 1.360 1.366 1.371 1.379 1.387 1.395
off-path FCAP 1.386 1.393 1.402 1.410 1.418 1.426 1.438 1.469

eBPF 0.043 0.063 0.121 0.152 0.184 0.215 0.246 0.281
UMON 1.589

Figure 8 and Figure 9 depict the CPU utilization overhead
caused by the monitoring activities against the number of mon-
itored hosts at two packet rates. The reported results represent
the total CPU utilization of all related threads including handlers,
revalidators, and new threads created for monitoring purposes. In
FCAP and SMON, we create a user-space thread called collector
to collect the flow stats from the data structures exported from
the kernel datapath at fixed time intervals. Moreover, for off-
path FCAP/SMON, there is a kernel thread that retrieves packets
from the ring buffer. Differently, eBPF monitoring threads are
not incorporated into OVS, so we measured their CPU usage
separately. In all experiments, the stats collection interval is set
to 0.5 second.

In UMON, the flow aggregation functionality is integrated into
the existing revalidator threads. CPU utilization of the two on-path
designs is not shown in the figure since the implementation of
the monitoring modules is similar to their off-path counterparts,
resulting in similar CPU utilization.

As illustrated in Figure 8 and Figure 9, the CPU utiliza-
tion overhead increases as the number of monitored hosts and
the packet rate increase. In addition, off-path FCAP incurs the
least amount of CPU utilization overhead, while eBPF incurs
comparable but slightly larger CPU utilization overhead in the
average case. The difference between the two is attributed to the
different underlying implementation schemes for the communica-
tion between kernel and userspace. As discussed in Section 3,
in FCAP and SMON, the kernel/userspace communication is
facilitated via the Netlink socket interface, following the same
communication mechanism as OVS. Comparatively, with eBPF, at
fixed time intervals, the entries are accessed and cleared from the
userspace via system calls. Compared to FCAP and eBPF, SMON
requires complex sketch decoding operations performed by the
collector thread, resulting higher CPU utilization. The overhead
introduced by UMON is significantly larger than those of off-
path FCAP/SMON, which is mainly due to two reasons. First,
since UMON installs fine-grained forwarding rules in the kernel
flow table, there are more frequent packet misses such that its
userspace handler threads are busy with handling upcalls. Second,
with a large kernel flow table, the revalidator threads in UMON are
also heavily loaded with updating the flow stats into the userspace
monitoring table. On the contrary, in off-path FCAP/SMON, the

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

10

200 400 600 800 1000 1200 1400
Number of hosts

0

100

200

300
UM

ON
 C

PU
 (%

)

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

FC
AP

/S
M

ON
/e

BP
F

CP
U

(%
)

off-path FCAP
off-path SMON
eBPF

Fig. 8: CPU overhead under various monitor-
ing workloads with packet rate 160 Kpps.

200 400 600 800 1000 1200 1400
Number of hosts

0

50

100

150

200

UM
ON

 C
PU

 (%
)

200 400 600 800 1000 1200 1400
0

10

20

30

FC
AP

/S
M

ON
/e

BP
F

CP
U

(%
)

off-path FCAP
off-path SMON
eBPF

Fig. 9: CPU overhead under various monitor-
ing workloads with packet rate 80 Kpps.

300 600 900 1200
Number of monitored hosts

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
ro

ug
hp

ut
 (M

pp
s)

on-path SMON
off-path SMON
on-path FCAP
off-path FCAP
UMON
eBPF

Fig. 10: Throughput(Mpps) of different
schemes under various monitoring workloads.

kernel flow table only contains two flow rules in our experimental
setup, thus imposing negligible CPU overhead to the userspace
handler and revalidator threads. The CPU utilization in these two
cases is mainly attributed to the flow stats aggregation performed
by our custom collector thread.

We next evaluate the memory overhead for monitoring. Since
on-path FCAP/SMON use less memory than their off-path coun-
terparts, we focus on the two off-path schemes and the eBPF-
based approach and compare them to UMON. The results are
shown in Table 2 and Table 3 for two different packet rates.
The memory size in the table is the amount of memory used
in the kernel for the monitoring purpose. As the memory usage
dynamically changes with incoming flows for all schemes, we
take the peak usage in comparison. The memory consumption
in the off-path FCAP/SMON is caused by two data structures: a
kernel ring buffer that caches incoming packets, and the actual
data structures (i.e., hash table in FCAP and sketch in SMON)
to maintain the flow stats. As previously mentioned, sufficient
amount of memory needs to be allocated to the ring buffer in
order to avoid packet losses. The experimental results show that
off-path FCAP consumes about 3% more memory than off-path
SMON.

For eBPF, the memory consumption is mostly incurred by
the BPF map to record flow statistics. For the sake of mem-
ory pre-allocation, the userspace program needs to specify the
approximate maximum number of flows in each time interval
at map initialization. Since this number varies across workloads
and packet rates, the memory consumption of eBPF also varies
accordingly. In Table 1, it indicates that eBPF requires more
memory than on-path FCAP, largely due to the underlying eBPF
hashmap implementation. UMON uses much larger amount of
memory than all other monitoring designs. This is because in order
to support comparable measurement accuracy, the kernel flow
table in UMON has to maintain an individual forwarding entry
for each 6-tuple flow. Consequently, the memory usage greatly
exceeds the other solutions.
4.3 Switching Throughput and Latency

To study the throughput and latency of our designs under high
packet rates, we use DPDK based packet generator MoonGen [49]
for traffic generation and measure the maximum achievable
throughput for each measurement framework when there is no
packet loss and the monitoring stats are highly accurate. Since only
those packets with a match in the monitoring table will be counted
towards the hash table/sketch, the ratio of monitored packets to
the total number of packets directly affects the throughput of the
entire system. To study this impact, we conduct experiment by
varying the number of hosts in the kernel space monitoring table.

The throughput and latency results under different workloads are
shown in Figure 10 and Figure 11, respectively.

300 600 900 1200
Number of monitored hosts

0

200

400

600

800

1000

1200

1400

La
te

nc
y

(n
s)

on-path SMON
off-path SMON
on-path FCAP
off-path FCAP
UMON
eBPF

Fig. 11: Average latency(ns) of different schemes under various
monitoring workloads.

First and foremost, the switching throughput of UMON is the
lowest among all monitoring designs, as can be seen in Figure 10.
This could be explained by the fact that UMON follows the
traditional design of OVS kernel datapath, which requires the
first packet of each new flow to traverse the slow path through
the userspace. The userspace of UMON introduces an extra
monitoring table in the forwarding pipeline. The forwarding rule
and monitoring rule are combined to generate a more fine-grained
flow that would be installed into the kernel cache table. Due to this
design, an enormous amount of flow cache misses are introduced
when we need to collect the flow statistics for each 6-tuple flow.
On-path FCAP/SMON both outperform UMON but lag behind
compared with eBPF and their off-path counterparts. As explained
previously, this is because the monitoring modules (filtering, stats
collection) are placed in the switch forwarding path. But on-
path FCAP achieves higher throughput than on-path SMON, since
the latter requires complex sketch encoding operations, while the
former implements more light-weight hash tables.

On the other hand, off-path FCAP/SMON achieves higher
throughput because monitoring logic is decoupled from forward-
ing and the overhead only involves memory copies from the ring
buffer. This also explains why FCAP and SMON achieve the
same throughput in the off-path paradigm. Finally yet importantly,
despite the fact that eBPF and on-path FCAP both are on-path and
implemented based on hash tables, eBPF achieves slightly better
performance than on-path FCAP as a result of its optimized hash
table implementation within the Linux kernel. Due to the large
size of the hash table, it has a shorter linked list for each bucket
in the hash table in the average case, resulting in higher efficiency
for hash lookups/updates. Overall, from the network performance
perspective, off-path FCAP/SMON is a preferable solution among

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

11

all the designs.
With the same experiment setup, we also measure the average

switching latency and investigate the impact from various monitor-
ing workloads. Figure 11 reveals that off-path designs incur min-
imum delay, while UMON significantly degrades the forwarding
efficiency. Further, the switching performance worsens along the
increase of the workloads. Likewise, eBPF yields smaller latency
than on-path FCAP/SMON for the same reason as throughput.
Off-path options outperform all other alternatives with more
memory consumption. More specifically, the memory required
(15MB ring buffer) scaled linearly (7.5x) with the increase in
throughput to 1.2 Mpps from our earlier experiments at 160 Kpps.
We conclude roughly one MB is needed for each 80 Kpps of
throughput.

5 DISCUSSION
TABLE 4: Comparison of different frameworks.

Designs eBPF On-Path Off-Path UMONSMON FCAP SMON FCAP
CPU Overhead low moderate low moderate low high

Memory Consumption low low low moderate moderate high
Measurement Accuracy precise high precise high precise precise

Forwarding Latency high high high low low high
Implementation Complexity low high high high high low

Based on the evaluation results, it is clear that building
monitoring capabilities into software entities on the edge servers,
either software routers or independent monitoring modules, is
feasible without significantly sacrificing performance overhead.
Nevertheless, each design bears its own pros and cons. Although
it is a seemingly daunting task to determine which design achieves
the overall best performance, we have attained several insights, as
sketched in Table 4, into the design of software-based measure-
ment framework.

First, UMON requires the least implementation efforts with
no modifications to the OVS kernel datapath. However, it derives
fine-grained forwarding rules by combining the forwarding and
monitoring functionality, which leads to the heaviest CPU load
in the user space. In addition, it necessitates significantly more
memory consumption.

Second, FCAP outperforms both SMON and eBPF in all
aspects except that it needs to instrument OVS kernel code.
The off-path FCAP is a particularly better option than its on-
path version on servers with abundant memory resources. Among
all other alternatives, it introduces the minimal impact on OVS
throughput and latency.

Third, SMON is the most memory-efficient option, owing
to the strong space-efficiency of bloom filter sketches. Although
sketches have proved to be efficient in memory-constrained hard-
ware devices, it turns out concerns have shifted away for building
monitoring logic into the end hosts. SMON has a higher demand
on CPU, thus making it less ideal for servers with insufficient CPU
resource or fierce CPU competition.

Fourth, eBPF-based monitoring design achieves comparable
performance with on-path FCAP from the perspective of CPU
utilization, measurement accuracy and switching performance. In
the meantime, it requires minimal maintenance efforts since it
executes independently of OVS and can be configured and updated
without interrupting the system operations. However, it requires
more memory than on-path FCAP due to the underlying hash table
implementation. Nevertheless, its overall performance falls behind
the off-path designs since the eBPF program lies in the packet
processing path.

Since all these schemes are designed for software defined mea-

surement, we can see that: In terms of the switching throughput
and latency, off-path designs offer the best performance, regardless
of the monitoring algorithms, since throughput and latency are
only affected by the ring buffer write operations. Without ring
buffers, on-path FCAP and eBPF achieve comparable through-
put/latency, which demonstrate that hash tables could suffice in a
software monitoring system;

In terms of implementation complexity and portability, eBPF
is the best since monitoring programs could be loaded and updated
at runtime, while OVS-embedded designs require to recompile and
reinstall the OVS binary whenever there is an update.

By comparing the results across all the experiments, we
observe that
• by removing the monitoring functionality from the kernel

forwarding path, off-path schemes can achieve better switch-
ing performance than on-path schemes in terms of network
throughput and latency, while achieving the same measure-
ment accuracy at the cost of higher memory consumption.

• in the design of flow stats collection module, our results
demonstrate that hash table is a more efficient solution com-
pared to sketch due to its lower computational cost, which is
a major factor in the evaluation of CPU utilization.

While there is no scheme that outperforms in all aspects, building
monitoring frameworks into edge servers requires us to carefully
examine the interplay of multiple key factors, including memory
and CPU consumption, measurement accuracy, impact on switch-
ing throughput and latency, maintenance complexity, and so on
so forth. Our empirical study demonstrates that hash tables are
a better fit than sketches in a software monitoring framework
despite of the strong memory-efficiency and wide utilisation of the
sketches in hardware environment. The difference lies in the fact
that hardware devices have much tighter memory constraints than
commodity servers. In terms of the placement of monitoring func-
tionalities, off-path outperforms on-path since the latter introduces
noticeable latency to the traditional packet forwarding pipeline.
Such impact becomes even more evident under high packet rate.

6 CONCLUSION

In recent years, cloud data centers have undergone through a
underlying network diagram change from the traditional network
to software defined networking. Software defined networking has
provided more flexibility for network measurement and monitor-
ing, and enabled software defined measurement. However, prop-
erly achieving timely and accurate measurement results while min-
imizing the resource consumption in data centers remains a critical
challenge. But little is known in the current literature. In this paper,
we have investigated various design options to implement soft-
ware based measurement using Open vSwitches and eBPF-based
solution. Enabling monitoring capability on the widely deployed
OVSes in data centers requires us to take into a number of factors
into consideration during design and implementation, including
resource consumption, impact on the forwarding, measurement
accuracy, implementation complexity, portability etc. In this study,
we have empirically explored the various trade-offs among these
factors by designing, implementing, and evaluating five different
monitoring schemes and quantitatively shown their advantages
and disadvantages. These results provide insightful guidelines
for conducting network traffic measurement on the OVS as well
as software defined measurement in data centers in general. A
preliminary version of this paper appears as “Instrumenting Open
vSwitch with monitoring capabilities: designs and challenges” in

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

12

SOSR2018 [35].

ACKNOWLEDGEMENT
We appreciate the constructive comments from the reviewers. This
work was supported in part by the NSF grants CNS-2007153,
CNS-2008468, a Commonwealth Cyber Initiative grant and a
Google Faculty Research Award.

REFERENCES

[1] B. Han et al., “Network function virtualization: Challenges and opportu-
nities for innovations,” IEEE Communications Magazine, 2015.

[2] M. Yu et al., “Software defined traffic measurement with opensketch.” in
USENIX NSDI, 2013.

[3] M. Moshref et al., “Dream: dynamic resource allocation for software-
defined measurement,” in ACM CCR, 2014.

[4] ——, “Scream: Sketch resource allocation for software-defined measure-
ment,” in ACM CoNEXT, 2015.

[5] Y. Li et al., “Flowradar: A better netflow for data centers.” in USENIX
NSDI, 2016.

[6] V. Sivaraman et al., “Heavy-hitter detection entirely in the data plane,”
in ACM SOSR, 2017.

[7] R. Ben-Basat et al., “Efficient measurement on programmable switches
using probabilistic recirculation,” in IEEE ICNP, 2018.

[8] R. B. Basat et al., “Memento: Making sliding windows efficient for heavy
hitters,” in ACM CoNEXT, 2018.

[9] A. Wang et al., “Umon: Flexible and fine grained traffic monitoring in
open vswitch,” in ACM CoNEXT, 2015.

[10] M. Moshref et al., “Trumpet: Timely and precise triggers in data centers,”
in ACM SIGCOMM, 2016.

[11] Q. Huang et al., “Sketchvisor: Robust network measurement for software
packet processing,” in ACM SIGCOMM, 2017.

[12] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide measure-
ments,” in ACM SIGCOMM, 2018.

[13] Z. Liu et al., “Nitrosketch: Robust and general sketch-based monitoring
in software switches,” in ACM SIGCOMM, 2019.

[14] T. Yang et al., “Heavykeeper: An accurate algorithm for finding top-k
elephant flows,” IEEE/ACM Transactions on Networking, 2019.

[15] “Open vSwitch,” http://openvswitch.org/, 2017.
[16] M. T. Goodrich et al., “Invertible bloom lookup tables,” in IEEE Allerton

Conference, 2011.
[17] M. Fleming, “A thorough introduction to ebpf,” 2017.
[18] B. Claise, “Cisco systems netflow services export version 9,” 2004.
[19] S. Panchen et al., “Inmon corporation’s sflow: A method for monitoring

traffic in switched and routed networks,” 2001.
[20] B. Claise, “Specification of the ip flow information export (ipfix) protocol

for the exchange of ip traffic flow information,” 2008.
[21] Juniper, “Juniper flow monitoring,” 2011.
[22] Alcatel-Lucent, “Cflowd,” https://tinyurl.com/2p9c24dp, 2017.
[23] HP, “Hp netstream monitoring module,” 2012.
[24] Z. Liu et al., “One sketch to rule them all: Rethinking network flow

monitoring with univmon,” in ACM SIGCOMM, 2016.
[25] A. Metwally et al., “Efficient computation of frequent and top-k elements

in data streams,” in Springer ICDT, 2005.
[26] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable

match-action processing in hardware for sdn,” ACM CCR, 2013.
[27] M. Datar et al., “Maintaining stream statistics over sliding windows,”

SIAM journal on computing, 2002.
[28] R. Ben-Basat et al., “Heavy hitters in streams and sliding windows,” in

IEEE INFOCOM, 2016.
[29] S. Narayana et al., “Language-directed hardware design for network

performance monitoring,” in ACM SIGCOMM, 2017.
[30] A. Gupta et al., “Sonata: Query-driven streaming network telemetry,” in

ACM SIGCOMM, 2018.
[31] E. J. Candès et al., “Robust uncertainty principles: Exact signal recon-

struction from highly incomplete frequency information,” IEEE Trans.
Inf. Theory, 2006.

[32] M. Abranches et al., “Efficient network monitoring applications in the
kernel with ebpf and xdp,” in IEEE NFV-SDN, 2021.

[33] C. Cassagnes et al., “The rise of ebpf for non-intrusive performance
monitoring,” in IEEE/IFIP NOMS, 2020.

[34] S. Miano et al., “A framework for ebpf-based network functions in an
era of microservices,” IEEE TNSM, 2021.

[35] Z. Zha et al., “Instrumenting open vswitch with monitoring capabilities:
Designs and challenges,” in ACM SOSR, 2018.

[36] B. Pfaff et al., “The design and implementation of open vswitch.” in
USENIX NSDI, 2015.

[37] X. Li et al., “Detection and identification of network anomalies using
sketch subspaces,” in ACM IMC, 2006.

[38] R. Schweller et al., “Reversible sketches for efficient and accurate change
detection over network data streams,” in ACM IMC, 2004.

[39] G. Cormode et al., “Finding hierarchical heavy hitters in data streams,”
in VLDB, 2003.

[40] Y. Zhang, “An adaptive flow counting method for anomaly detection in
sdn,” in ACM CoNEXT, 2013.

[41] G. Cormode et al., “An improved data stream summary: the count-min
sketch and its applications,” Journal of Algorithms, 2005.

[42] P. Flajolet et al., “Probabilistic counting algorithms for data base appli-
cations,” Journal of computer and system sciences, 1985.

[43] N. Alon et al., “The space complexity of approximating the frequency
moments,” Journal of Computer and system sciences, 1999.

[44] T. Høiland-Jørgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in ACM CoNEXT,
2018.

[45] P. Emmerich et al., “Performance characteristics of virtual switching,” in
IEEE CloudNet, 2014.

[46] “Ryu SDN controller,” https://osrg.github.io/ryu/, 2017.
[47] “Caida internet traces 2012,” https://tinyurl.com/5fcwerv7, 2012.
[48] “Tcpreplay,” http://tcpreplay.appneta.com/, 2017.
[49] P. Emmerich et al., “Moongen: A scriptable high-speed packet genera-

tor,” in ACM IMC, 2015.

Zili Zha is a PhD student in the Computer Sci-
ence Department at George Mason University.
She received her MS degree from the College of
William and Mary and BS degree from University
of Science and Technology of China. Her re-
search interests include data center traffic mea-
surement, network programmability and security.

An Wang is currently an assistant professor in
the Computer and Data Science Department of
Case Western Reserve University. Before join-
ing Case, she received her Ph.D. in Computer
Science from George Mason University in 2018.
Her research interests lie in the areas of security
for networked systems and network virtualiza-
tion, focusing on Software-Defined Networking
(SDN) and cloud systems, and large-scale net-
work attacks. She is also interested in the secu-
rity and privacy issues in the Internet-of-Things

(IoT) environment.
Yang Guo is a computer scientist in the Com-
puter Security Division, National Institute of
Standards and Technology (NIST). His research
interests span broadly over the distributed sys-
tems and networking, with a focus on Software
Defined Networking (SDN), Cybersecurity, and
AI and Machine Learning. Before joining the
NIST, he was a member of technical staff with
Bell Labs (Crawford Hill, NJ) from 2010 to 2015,
and was a Principal Scientist at Technicolor (for-
merly Thomson) Corporate Research from 2005

to 2010. He received multiple NIST Information Technology Lab’s Build-
ing the Future awards, Bell Labs’ team work award, and was on Techni-
color’s Fellowship Network as a technical leader.

Songqing Chen is currently a professor of com-
puter science at George Mason University. His
research interests mainly focus on design, anal-
ysis, and implementation of algorithms and ex-
perimental systems in the distributed and net-
working environment, particularly in the areas of
Internet content delivery systems, Internet mea-
surement and modeling, mobile and cloud com-
puting, network and system security, and dis-
tributed system. He is a recipient of the US NSF
CAREER Award and the AFOSR YIP Award.

Currently, he serves as the chair of IEEE Technical Committee on the
Internet (TCI), and on the editorial boards of IEEE TPDS, IEEE IC, IEEE
IoT-J and ACM TOIT. He also serves in various capacities in conference
organization committees, and most recently as the General Chair of
IEEE ICDCS 2021.

This article has been accepted for publication in IEEE Transactions on Cloud Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3181890

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Boulder Labs Library. Downloaded on June 12,2022 at 15:13:56 UTC from IEEE Xplore. Restrictions apply.

http://openvswitch.org/
https://tinyurl.com/2p9c24dp
https://osrg.github.io/ryu/
https://tinyurl.com/5fcwerv7
http://tcpreplay.appneta.com/

	Introduction
	Related Work
	Design and Implementation
	OVS and Design Challenges
	Recap of UMON
	Design of Flow Capture (FCAP)
	Design of Sketch based Monitoring (SMON)
	Off-path Designs of FCAP/SMON
	eBPF-based Monitoring

	Performance Evaluation
	FCAP vs. SMON vs. eBPF
	Impact of Monitoring Workloads
	Switching Throughput and Latency

	Discussion
	Conclusion
	References
	Biographies
	Zili Zha
	An Wang
	Yang Guo
	Songqing Chen

