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We demonstrate a simplified method for dissipative generation of an entangled state of two
trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity
than previous demonstrations of dissipative entanglement generation and eliminates the need for
auxiliary ions. The entangled singlet state is generated in ∼7 ms with a fidelity of 0.949(4). The
dominant source of infidelity is photon scattering. We discuss this error source and strategies for
its mitigation.

Engineered dissipation has potential as a powerful tool
for quantum applications [1, 2]. Dissipation may be used
for preparation of non-classical states, including entan-
gled states, and this approach can have reduced sensitiv-
ity to certain common experimental imperfections and
limitations [3, 4]. Unlike unitary approaches, dissipa-
tive dynamics can produce desired target states from un-
known or uncontrolled input states; examples in atomic
physics include laser cooling and optical pumping. Fur-
ther, some dissipative protocols can be implemented by
continuous, stationary control fields, and can therefore be
applied to prepare and continuously stabilize entangled
states in the presence of noise. Numerous protocols for
dissipative preparation of non-classical states have been
demonstrated [5–11], and still more have been proposed
and explored [3, 4, 12–21]. An important characteristic
of initial demonstrations [7, 9] was the use of strong driv-
ing fields to create resonances that were resolved and ad-
dressed by weaker drives [3, 22, 23]. These weaker drives
could populate the target state without providing a path
out of it in the limit where the timescales for the strong
dressing drive and the weaker addressing drives were well-
separated. Recently, schemes have been proposed that
avoid these timescale hierarchies. Instead, these schemes
make more efficient use of experimental resources such as
symmetries and auxiliary degrees of freedom [18–21, 24],
and are generally expected to produce the desired target
state with higher fidelity in less time.

Horn et al. have proposed a protocol for dissipa-
tive generation of an entangled singlet state |S〉 =
(|↑↓〉 − |↓↑〉) /

√
2 of two trapped-ion qubits [19]. This

scheme improves upon the demonstration in Ref. [7] by
eliminating the timescale hierarchy and the need for sym-
pathetic cooling, thereby reducing the required number
of ions from four to two. In addition to qubit levels |↑〉
and |↓〉, the protocol uses a stable auxiliary level |aux〉
and a short-lived excited state |e〉, along with a mode of
collective motion of the ions. In their proposal, Horn et
al. applied quantum optimal control to explore the limits

of this scheme, predicting singlet fidelities above 0.98 in
the case that heating of the motional mode used for the
protocol could be kept low. An important fundamental
source of heating is recoil of the ions after photon scat-
tering. The recoil heating rate is linked to the strengths
of the interactions that generate the singlet state. In this
Letter, we employ this protocol to generate an entangled
singlet state with ∼ 0.95 fidelity, limited by photon scat-
tering errors including recoil heating. We discuss how
photon scattering limits the singlet fidelity, theoretically
investigate the large-Raman-detuning limit, and present
strategies for improving the performance of the protocol.

The concept for the protocol is shown in Fig. 1. It
involves simultaneous application of four global interac-
tions, of which three are unitary: blue-sideband (anti-
Jaynes-Cummings) couplings |↓, n〉 ↔ |↑, n+ 1〉 and
|aux, n〉 ↔ |↑, n+ 1〉 driven by Hamiltonians Hbq and
Hba, respectively, and a qubit carrier transition |↓〉 ↔ |↑〉
driven by Hamiltonian Hc. The states |n〉 are number
states of the motional degree of freedom with creation
operator a†. The Hamiltonians are:

Hbq =
h̄Ωbq

2
a†

(
|↑〉1 〈↓|1 + |↑〉2 〈↓|2

)
+H.c., (1)

Hba =
h̄Ωba

2
a†

(
|↑〉1 〈aux|1 + |↑〉2 〈aux|2

)
+H.c., (2)

Hc =
h̄Ωc

2

(
|↑〉1 〈↓|1 + |↑〉2 〈↓|2

)
+H.c.,(3)

where Hc implements the identity on the motion, the
subscripts 1 and 2 label the two ions, and ΩI denotes the
Rabi frequency of interaction HI . A fourth interaction
provides dissipation in the form of spontaneous transi-
tions from the auxiliary state as |aux〉 → |↑〉, |↓〉, or
|aux〉. This is engineered by coupling |aux〉 to |e〉, which
is chosen so that it may only decay to one of these three
levels.

As depicted in Fig. 1, the interactions Hbq and Hc

couple the states |↓↓〉, |T 〉 = (|↑↓〉+ |↓↑〉) /
√

2), and |↑↑〉
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FIG. 1. Protocol for dissipative singlet generation. Four in-
teractions combine to generate the target state |S, n = 0〉 in
the joint Hilbert space of two ions and their collective mo-
tion. Blue-sideband transitions (anti-Jaynes-Cummings inter-
actions) are depicted by solid blue and dashed yellow arrows,
and a qubit carrier interaction (implementing the identity on
the motion) is depicted by thin black arrows. This carrier in-
teraction is required to depopulate the |↑↑, n = 0〉 state, which
is otherwise dark. Excitation of the single-ion |aux〉 state to
|e〉 is shown by a double purple arrow, and decay from |e〉
back to the 2S1/2 ground state is shown by the snaking or-
ange line. The two-qubit basis states are shown with colors
corresponding to those in Fig. 2. Next to each qubit state are
the first few rungs of the motional number state ladder, and
ellipses indicate continuation of interactions to higher num-
ber states. No path exists out of the state |S, n = 0〉, which
is populated by decay from states involving |e〉.

within the total-spin-1 qubit manifold and, together with
Hba, provide a path for one of the qubits to transition to
|aux〉 when starting in any of these states, regardless of
the initial motional occupation n. The dissipative pump-
ing out of |aux〉 then allows population to be continuously
reshuffled until it arrives in the joint state |S, n = 0〉. At
this point, the population becomes trapped because |S〉
is invariant under the qubit interactions Hc and Hbq, and
coupling of the |↑〉 component of |S〉 to |aux〉 due to Hba

only occurs when n > 0. Neglecting errors and imperfec-
tions, the theoretical steady-state fidelity for generation
of |S, n = 0〉 is unity.

We realize this protocol with two trapped 9Be+ ions.
The ions are confined along the axis of a linear Paul
trap [25]. A combination of static and RF electric poten-
tials at ∼ 83 MHz applied to the trap electrodes confines
the ions such that they have an equilibrium spacing along
the axis of the trap of ∼3.7 µm and exhibit quantized col-
lective motion in three dimensions. The frequencies for
the in-phase and out-of-phase (‘stretch’) axial motional
modes are 4 MHz and fs = 7 MHz, respectively, and the

stretch mode is used to engineer the entanglement.
We apply a ∼ 11.9 mT magnetic quantization field [26]

and identify the levels |↓〉, |↑〉, and |aux〉 with Zeeman
sublevels of the 9Be+ 2S1/2 ground state labelled by
hyperfine and magnetic quantum numbers F and mF :
|↓〉 = |F = 2,mF = 2〉, |↑〉 = |1, 1〉, and |aux〉 = |2, 1〉.
The Hamiltonian Hc is realized using ∼ 1.018 GHz mi-
crowave radiation from an external antenna, and the
Hamiltonians Hbq and Hba are realized by driving stim-
ulated Raman transitions with 313 nm laser radiation
tuned hundreds of gigahertz below the 2S1/2 ↔ 2P 1/2

transition. The beam geometry is depicted in Fig. 2a.
The Raman transitions are driven on the blue motional
sideband corresponding to the excitation of the axial
stretch mode, which is chosen because it has a lower heat-
ing rate than the in-phase axial mode. This is due to its
reduced sensitivity to homogeneous electric fields, which
arises because the mode eigenvectors for the two ions
are exact opposites [27]. Effective decay out of |aux〉 is
engineered by driving a unitary coupling between |aux〉
and |e〉 = |2P1/2, F = 2,mF = 2〉, which decays at a rate
Γ ≈ 2π×20 MHz back to |↑〉, |↓〉, and |aux〉 with approx-
imate branching ratio 5:4:3 [7]. This coupling is driven
resonantly by a 313 nm σ̂+-polarized repump laser. An-
gular momentum conservation dictates that |e〉 can de-
cay only to one of these three levels, and other transitions
that may be driven by the same laser are far off-resonant.

The microwave field, with wavelength λµw � |~r1 −
~r2| ∼ 3.7 µm, is nearly the same at the positions ~r1

and ~r2 of the two ions. In the interaction picture for
the qubit levels, the Hamiltonian implemented by the
microwave radiation can be written in the form given
by Eq. (3). This defines a relationship between the ori-
entations of the two qubits’ Bloch spheres. The qubit
sideband interaction then implements the experimental

interaction-picture Hamiltonian H
(e)
bq [21, 28]:

H
(e)
bq =

h̄Ωbq
2

a†
(
ei(∆

~k·~r1+θ) |↑〉1 〈↓|1
− ei(∆

~k·~r2+θ) |↑〉2 〈↓|2
)

+H.c. (4)

= eiΦ
h̄Ωbq

2
a†

(
|↑〉1 〈↓|1 − eiφ |↑〉2 〈↓|2

)
+H.c.

Here ∆~k is the difference wavevector between the Ra-
man beams, and the sign difference arises because the
two ions move in opposite directions in the stretch mode.
We have introduced the phases φ = ∆~k · (~r2 − ~r1) and

Φ = ∆~k · ~r1 + θ, where θ is a reference phase for the
interference pattern between the two Raman beams that
fluctuates from shot to shot due to lack of interferomet-
ric stability between the Raman beams. As a result, the
Bloch-sphere rotation axis that is defined by Φ fluctu-
ates. On the other hand, φ is stable so long as the vectors
~r2−~r1 and ∆~k are stable. By setting φ to π as described

in the Supplementary Information (SI), H
(e)
bq is made to
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coincide with Hbq up to the fluctuating rotation axis de-
fined by Φ. These fluctuations have negligible effect on
generation or invariance of the singlet because they are
slow relative to the entanglement dynamics [29].

In order to implement two stimulated-Raman side-
band transitions simultaneously, we apply far-detuned
laser light at three frequencies ωb (higher frequency ‘blue’
beam) and ωr(q,a) (‘red’ beams, with subscripts denot-
ing the corresponding Hamiltonian) with frequency dif-
ferences ωb − ωrq = (E↑ − E↓)/h̄+ 2πfs and ωb − ωra =
(E↑ − Eaux)/h̄ + 2πfs, where Ej is the energy of state
j. Importantly, in this three-frequency configuration
ωrq−ωra = (E↓−Eaux)/h̄ so that the two red beams can
resonantly drive the stimulated-Raman |↓〉 ↔ |aux〉 car-
rier transition. This would depopulate the singlet state.
However, the red beams’ ~k vector is approximately paral-
lel to the quantization field. As a result, the component
rπ of the red beams’ polarization unit vector (r−, rπ, r+),
with entries corresponding to σ̂−, π̂, and σ̂+ polariza-
tions, is rπ ≈ 0. The Rabi frequency of the |↓〉 ↔ |aux〉
coupling is proportional to this component, so the cou-
pling is strongly suppressed.

We implement this singlet generation protocol and in-
vestigate its performance. In principle, the system can
be initialized in any mixture of states in which each ion is
in |↑〉, |↓〉, or |aux〉 and n is not too large. For increased
efficiency and repeatability, we begin by approximately
preparing |↓↓, n = 0〉 with optical pumping, Doppler
cooling, and sideband cooling. We then simultaneously
apply the four interactions for a variable interaction du-
ration t. Finally, we measure the populations in four
two-qubit basis states by performing global analysis ro-
tation pulses on the two qubits and then performing flu-
orescence detection on the |↓〉 ↔ |2P3/2, F = 3,mF = 3〉
cycling transition. From the photon count histograms
for each condition, maximum-likelihood estimates are ob-
tained for the populations Pn,A(t) with n ions in the
bright |↓〉 state under analysis condition A. We use three
analysis conditions: no rotation, a π pulse, and a π/2
pulse with randomized phase. These yield the popula-
tions Pn,I , Pn,π, and Pn,π/2, respectively. From these
observations, basis-state populations are obtained as [7]:

P↓↓ = P2,I , (5)

P↑↑ = P2,π, (6)

PS − Pll ≡ X = 1− 2P0,π/2 − (P2,I + P2,π)/2, (7)

PT = 2P2,π/2 − (P2,I + P2,π)/2. (8)

Formally, the singlet population exceeds X by the pop-
ulation Pll (‘leakage-leakage’) with both ions in states
other than {|↑〉 , |↓〉}. However, this population is very
small and PS ≈ X in practice.

We investigate singlet generation for two values of the
detuning of the Raman beams from the 2S1/2 ↔ 2P 1/2

transition, the importance of which is described below.
We show the results in Fig. 2b and c. In each case, we

(a)

(b)

(c)

FIG. 2. Experimental geometry and results. (a) Trapped

ions, magnetic field, and ~k vectors for four laser beams: the
higher-frequency Raman beam (blue), two co-propagating
lower-frequency Raman beams at frequencies ωrq and ωra
(red), and a resonant beam with variable frequency ωres that
drives either the |aux〉 ↔ |e〉 coupling or the cycling transi-
tion. Beams have ∼25 µm waists and illuminate both ions
approximately equally. Constraints on the polarizations of

the Raman beams b and r, as indicated next to the ~k vectors
by components (b/r)±,π (see text), arise due to their orienta-
tions with respect to the quantization field. (b, c) Measured
populations in four basis states as a function of interaction
duration for Raman detunings of −315 GHz (b) and −450
GHz (c). Solid lines are simulations with no free parameters.
For −315 GHz detuning, the simulation includes a φ error of
0.05 rad and uses the measured |aux〉 depletion time of 34
µs. The simulated singlet curve from (b) is replicated in (c)
as a dotted black line for comparison. Insets show data on
the fidelity plateau. Three horizontal black lines and shading
indicating the average fidelity on the plateau and a 95 % con-
fidence interval generated by bootstrapping, and error bars
indicate 95 % confidence intervals on individual points.

plot measured populations obtained from Eqs. (5)-(8),
along with uncertainties determined from 10,000 boot-
strap resamplings of the data. In the inset of each fig-
ure we show the data corresponding to a pseudo-steady-
state fidelity plateau and a confidence interval (CI) for
the plateau fidelity. This CI and the plotted uncertain-
ties are bias-corrected 95 % bootstrap CIs [30]. For a
Raman detuning of −315 GHz we measure a fidelity (CI)
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of 0.911 ([0.902, 0.920]), and for −450 GHz we measure
0.949 ([0.945, 0.953]). We elaborate on the bootstrapping
procedure in the SI.

Figure 2b and c also show simulations of the dynam-
ics as solid and dashed lines. The simulations use the
measured Rabi frequencies of the unitary interactions,
the depletion time constant of the |aux〉 state by the re-
pumper laser, the Lamb-Dicke parameter for the stretch
mode, and the Stark shifts induced by the Raman lasers,
all determined in separate measurements. The simula-
tions also incorporate spontaneous Raman and Rayleigh
scattering driven by the Raman lasers [31]. Recoil associ-
ated with these scattering events and with the repumping
transitions is included. Finally, the simulations include
a unitary coupling between |↓〉 and |aux〉 arising from
a residual non-zero π̂-polarization component rπ of the
red Raman beams (SI). The peak fidelity predicted by
the simulation in the −450 GHz detuning case is 0.954,
consistent with the upper CI bound of 0.953 for the av-
erage fidelity between 6 ms and 16 ms. For the −315
GHz detuning case the predicted peak fidelity is 0.946.
Including an error of 0.05 rad for the phase φ in Eq. (4),
corresponding to the typical calibration uncertainty, re-
duces the peak fidelity to 0.935. Simulating the exper-
iment with an |aux〉 repumping time constant of 51 µs
instead of the measured 34 µs brings the predicted peak
fidelity to 0.912. The repumper amplitude is not stabi-
lized during the experiment and is known to drift. We
present simulation details in the SI.

This singlet-generation protocol is robust against a
number of typical experimental errors, including mag-
netic field fluctuations and laser phase noise. On the
other hand, the scheme is sensitive to differential effects
between the two ions, including differences in the Rabi
frequencies of the qubit transitions and differential qubit
frequency shifts (caused by e.g. magnetic field gradients
and differential ac Stark shifts). In our implementation,
we have been able to suppress these differential effects
so that they are negligible. This is demonstrated by di-
rect measurements of the size of these effects (SI) and
also by the agreement of the model with the data. For
−315 GHz (−450 GHz) Raman detuning we calculate an
infidelity contribution of 0.008 (0.009) from the residual
|↓〉 ↔ |aux〉 coupling. Calibration errors likely contribute
to the infidelity in the −315 GHz detuning case as de-
scribed above. In both cases, the remaining infidelity is
due to undesired photon scattering events.

We depict the relevant stimulated and spontaneous
photon scattering processes in Fig. 3a. Spontaneous Ra-
man transitions within the |↑〉, |↓〉, |aux〉 manifold can be
corrected by the singlet-generation dynamics and so do
not accumulate, but instead decrease the steady-state fi-
delity. Spontaneous Raman transitions to leakage states
outside this manifold lead to permanent (to first order)
population loss, and so lead to fidelity decay. In princi-
ple, Rayleigh scattering has two effects: First, Rayleigh

(a)

(b)

-

FIG. 3. Photon scattering error in singlet generation. (a) A
summary of effects associated with scattering of laser photons.
These include stimulated Raman sideband transitions (thick
light blue arrow and dashed yellow arrow), spontaneous Ra-
man transitions (thin black arrows), and Rayleigh scattering
(green loop indicating the identity operation on the internal
state of the ions). These processes asymptotically scale with
the detuning as 1/∆2, 1/∆4, and 1/∆2, respectively. Recoil
leads to heating (modelled by jump operators proportional to
products of a and a† and indicated by the snaking red arrow)
at a rate proportional to η2 to leading order. (b) A calcula-
tion of the error in singlet generation as a function of Lamb-
Dicke parameter η in the large-detuning limit; increasing the
strength of the confining potential and therefore decreasing η
leads to better performance. The larger black dot indicates
the value η = 0.257 used in the experiment.

scattering can cause decoherence of the qubit. This effect
occurs at a rate proportional to the sum of the squared
differences between the scattering amplitudes off of the
two states for each polarization [19, 32]. However, the
singlet state is in a decoherence-free subspace [26, 33–
35], so differential decoherence between the two ions is
required to affect the singlet fidelity. This occurs only
to the extent that the environment resolves which of the
two ions scattered a photon [36], which is expected to
be a small effect for the ∼3.7 µm-spaced ions. There-
fore we neglect Rayleigh decoherence in our model for
the experiment. The second effect of Rayleigh scatter-
ing is heating of the collective motion due to recoil after
scattering events. This heating provides a path out of
the target |S, n = 0〉 state, and is included in our model
as an important error source.

The infidelity due to spontaneous photon scattering
can be reduced at the cost of increased singlet prepa-
ration time. Limitations on this approach come from
restrictions on the preparation time and timescales at
which other errors (e.g. |S〉 ↔ |T 〉 coupling due to mag-
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netic field gradients) become relevant. The relative rate
of spontaneous Raman transitions can be reduced by in-
creasing the Raman detuning ∆, because the asymptotic
scalings of the rates for stimulated and spontaneous Ra-
man scattering are 1/∆2 and 1/∆4, respectively. This
suggests implementation of the scheme with |∆| as large
as is practical. In the large-detuning limit |∆| → ∞,
the only remaining error source is recoil heating due to
Rayleigh scattering (neglecting differential Rayleigh de-
coherence). We investigate the protocol’s performance
in this limit by optimizing the laser polarizations and
interaction strengths. For the same Lamb-Dicke param-
eter η = 0.257 used in the experiment, we calculate a
fidelity of 0.989 and optimal (respecting the geometric
constraints shown in Fig. 2a) Raman beam polariza-
tions of blue-beam π̂ component bπ = 0.59 and red-beam
σ̂+ component r+ = 0.88. These polarizations are close
to the polarizations bπ = 0.62, r+ ≈ 1 used in the ex-
periment, chosen to be near-optimal and experimentally
convenient.

The stimulated-Raman sideband Rabi rate scales as η
while the recoil heating rate scales as η2, so the error in
the large-detuning limit can be reduced by decreasing η.
We numerically investigate the dependence of the steady-
state singlet fidelity in the large-detuning limit as a func-
tion of η and present the results in Fig. 3b. We find that
the error decreases linearly with η and falls below 0.01
(0.001) at η = 0.229 (0.024). The time to approach the
asymptotic fidelity scales as 1/η due to the reduced Rabi
rates for the stimulated Raman sideband transitions.

Another possibility to improve the fidelity may be
to incorporate sympathetic cooling. Periods of cool-
ing should be interleaved with periods of the singlet-
generation dynamics, since otherwise the cooling inter-
feres with the desired coupling |↓, n = 0〉 ↔ |↑, n = 1〉 ↔
|aux, n = 0〉. We find in simulations that if the stretch
mode is re-initialized to n = 0 at intervals equal to the
period 2π/Ωba of the Hba coupling, then the fidelity in
the large-detuning limit increases to 0.994. However, we
also find that without cooling the singlet population has a
steady-state motional occupation of n̄ = 0.002. Ground-
state cooling performance to at least this level would be
required to improve the fidelity. Generally, the steady-
state temperature of the singlet state is determined by
effects (e.g. recoil) that also limit ground-state cooling,
so this kind of strategy may be difficult to productively
implement in practice. A final possibility to improve the
performance would be driving the sidebands not with
Raman lasers but with magnetic field gradients [37–41].
Such interactions typically have smaller sideband Rabi
frequencies and would therefore have slower entangle-
ment dynamics, but could make photon scattering error
negligible.

Our demonstration of dissipative singlet generation
with fidelity of ∼0.95, along with the related work by Ma-
linowski et al. [24], is a step forward in dissipative produc-

tion of entangled resource states. These works indicate a
path towards fidelities that could allow productive incor-
poration of dissipative protocols into practical trapped-
ion platforms for quantum information processing. In
this work, the agreement between the photon-scattering
error model and the data indicate that numerical simu-
lations can be a powerful tool for optimizing trapped-ion
implementations of dissipative protocols in the future,
and also supports our conclusion that the current lim-
itation on singlet fidelity arises from photon scattering
errors. Our work has further investigated the important
role of these errors in entanglement generation, which has
been considered in depth for unitary approaches [31] and
represents an outstanding challenge for the realization of
practical trapped-ion quantum computers [42].
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NUMERICAL SIMULATIONS OF DISSIPATIVE
DYNAMICS

Simulation method

We use the Python QuTiP package [1] to compute evo-
lution of the density matrix ρ according to the Lindblad
master equation:

∂tρ = −i[H, ρ] + LDρ, (1)

where H is the Hamiltonian and LD is the Lindblad dis-
sipator:

LDρ =
∑

j

Ljρ (2)

=
∑

j

[
LjρL

†
j −

1

2

{
ρ, L†jLj

}]
. (3)

Here Lj are the full dissipator contributions for each
of the jump operators Lj that represent deliberate con-
trolled dissipation and also undesirable dissipation mech-
anisms.

To include spontaneous scattering in the model, the
intensities and polarizations of the Raman beams are
deduced by measuring the ac Stark shifts they induce
on the ions and comparing to calculations according to
second-order perturbation theory [2–4]. Recoil after scat-
tering must then be incorporated into the model. In the
Schrödinger picture for the motion and interaction pic-
ture for the qubit levels, recoil associated with transi-
tion matrix element mj contributes jump operators of
the form [4, 5]:

Lj = ei(kz,L−kz,s)zmj , (4)

where mj =
√
γ |f〉 〈i| is a rate-scaled matrix element for

transition |i〉 → |f〉 for initial and final internal states |i〉
and |f〉 with rate γ, kz,L and kz,s are the axial projections
of the wavevectors for the incident laser photon and the
scattered photon, respectively, and z is the operator for
the position along the trap axis of the ion in question.

For our experimental geometry as described in the
main text, for scattering of a Raman photon, and con-
sidering the effect of the recoil on the stretch mode with

annihilation operator a, the full Lindblad dissipator term
for matrix element mj including recoil is [4]:

Lj = −1

2

{
m†jmj , ρ

}
+

∫
dθdφPε(θ, φ)mjISm†j (5)

with

IS = eiη((1−
√

2u(θ,φ))(a+a†)ρe−iη((1−
√

2u(θ,φ))(a+a†). (6)

Here Pε(θ, φ) is the emission pattern for polarization ε
in a spherical coordinate system oriented along the mag-
netic quantization field and

u(θ, φ) = (sin θ cosφ− cos θ) /
√

2. (7)

Transforming to the interaction picture for the mo-
tion, one can write the quantity II corresponding to
Schrödinger-picture IS (Eq. (6)) as:

II =
∞∑

m=0

m∑

n=0

n∑

p=n−m

(
(ηf)2m(−1)m+p

n!(n− p)!(m− n)!(m− n+ p)!
×

ana†(n−p)ρa†(m−n+p)a(m−n)

)
, (8)

where f = (1 −
√

2u(θ, φ)). It is straightforward to use
this equation to numerically calculate the expansion in
the Lamb-Dicke parameter η to order 2m. Our simula-
tions are conducted with an expansion in the Lamb-Dicke
parameter to at least order 12, with at least 17 number
states for the motion included.

Experimental parameters

Simulations are conducted using measured rates and
characteristic repump time for the scaling of Hamiltonian
and dissipation terms. For −315 GHz Raman detuning
these are:

Ωbq = 2π × 6.56 kHz, (9)

Ωba = 2π × 10.03 kHz, (10)

Ωc = 2π × 4.08 kHz, (11)

trep = 34 µs, (12)
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where trep is the depletion time constant of the auxil-
iary state |aux〉. For the −450 GHz detuning case, the
measured Rabi frequencies and repump time are:

Ωbq = 2π × 3.43 kHz, (13)

Ωba = 2π × 5.50 kHz, (14)

Ωc = 2π × 1.77 kHz, (15)

trep = 69.5 µs. (16)

In preparation for taking the data presented in the main
text, these parameters were initialized to values based
on Ref. [6] and then adjusted from there to increase the
singlet fidelity. The values given above were measured
after singlet generation.

Optimal parameters in the large-detuning limit

We have calculated optimal interaction strengths in
the large-detuning limit for a Lamb-Dicke parameter
η = 0.257 and found a maximum fidelity of 0.989. In
addition to optimizing the Raman-beam polarizations,
we optimize the Raman-beam power distribution. For
fixed total Raman beam power Ptot, we parameterize
the power distribution with Pb, Pr = Ptot − Pb, and rq,
where the latter specifies the fraction of the red-beam
power that drives the qubit transition. Then the pow-
ers at the frequencies ωb, ωrq, and ωra are Pb, rqPr, and
(1− rq)Pr. Independent of the other parameters, the op-
timal red/blue distribution is Pb = Pr = Ptot/2 because
the Rabi frequency of each stimulated-Raman sideband
transition is proportional to the common factor

√
PbPr,

which should simply be maximized. This condition is
not met in the experiment; instead, Pr ≈ 0.4Pb in both
cases due to the technical details of the generation of the
Raman beams.

We find optimal polarizations and red-beam power dis-
tribution of bπ = 0.59, r+ = 0.88, and rq = 35.7 %. Un-
der these conditions, Ωbq/Ωba = 0.58. For comparison,
the measurement of this ratio for the −315 GHz (−450
GHz) Raman-detuning experiment was 0.65 (0.62).

The optimal values for the other interaction strengths
are Ωc/Ωba = 0.27 and trepΩba/π = 0.22. The corre-
sponding values for the −315 GHz (−450 GHz) detuning
experiment were 0.41 and 0.68 (0.32 and 0.76), respec-
tively. Investigation of the optimal repumping strength
in the case of finite detuning would be useful in the fu-
ture.

Deviation from optimal parameters

To investigate the sensitivity of the protocol to devi-
ations from the optimal parameters, we have calculated
the fidelity in the large-detuning limit when one of bπ,

(a)

(b)

FIG. 4. Investigation of sensitivity to deviation of parameters
from their optimal values. (a) Large-detuning-limit fidelity as
a function of bπ, r+, or rq with all other parameters held at
their optimal values. (b) Dependence of the fidelity on Ωc or
trep when other parameters are optimal. Fidelity is plotted as
a function of the factor by which the optimal value is scaled
in the simulation.

r+, rq, Ωc, or trep is away from its optimal value. We
present the results in Fig. 4.

CALIBRATION OF THE SPACING BETWEEN
THE IONS

It is important that the projection of the inter-ion sep-
aration vector (~r2 − ~r1 as defined in the main text) onto

the direction of the Raman beam ∆~k vector is m + 1/2

(integer m) wavelengths of the ∆~k vector. This leads to

φ = ∆~k · (~r2 − ~r1) mod 2π = π such that H
(e)
bq coincides

with Hbq, as described in the main text (see Eq. (4)).

We measure and calibrate φ using the following se-
quence [7]: After we prepare the state |↓↓〉, a microwave
π/2 pulse with randomized phase maps the qubits to a
random unit vector on the equator of the Bloch sphere.
We then apply a carrier π/2 pulse using the Raman
beams, which evolves the qubits according to the Hamil-
tonian:

HCR = eiΦ
h̄ΩCR

2

(
|↑〉1 〈↓|1 + eiφ |↑〉2 〈↓|2

)
+H.c. (17)
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FIG. 5. Typical results for the calibration of the phase φ
discussed in the main text. Data and fits corresponding to
the +1-parity population P↓↓+P↑↑ (black dots and line) and
−1-parity population P↓↑ + P↑↓ (blue crosses and line) are
shown as a function of a static shim voltage applied to a
pair of trap electrodes to adjust the curvature of the axial
potential. Error bars indicate 68 % confidence intervals.

The phase Φ = ∆~k · ~r1 + θ (as defined in the main text)
fluctuates from shot to shot. The Rabi frequency of the
interaction is ΩCR, where CR denotes ‘Carrier Raman.’

The carrier Raman pulse rotates the two qubits around
two equatorial axes that have an angle φ between them.
This angle is revealed by the final populations. Averaged
over the randomized phase of the initial microwave π/2
pulse and the fluctuating phase Φ, the populations are:

P↓↓ + P↑↑ =
1

2
+

1

4
cosφ, (18)

P↓↑ + P↑↓ =
1

2
− 1

4
cosφ. (19)

In practice, we fix φ = π by measuring the state parity
as a function of a shim voltage applied to a pair of DC
control electrodes that adjusts the curvature of the axial
potential, and then applying the shim that maximizes the
probability of an anti-correlated final state (Eq. (19)).
In our case, this fixes the ion spacing to 16.5λ̃, where
λ̃ = λ/

√
2 is the wavelength of the interference pattern

between the Raman laser beams with wavelength λ ∼ 313
nm.

Fig. 5 shows typical results for the measurement de-
scribed above. The fits to the data shown share contrast
and phase parameters. Typical uncertainty in the cal-
ibration of the phase φ is ∼0.05 rad. For a phase of
φ = π ± 0.05, and neglecting all other error sources, the
simulated singlet fidelity is 0.993. A φ calibration error
is included in the simulations for −315 GHz detuning as
described in the main text, and φ = π is used in the
simulations for −450 GHz detuning.

EVALUATION OF OTHER ERROR SOURCES

In our implementation we minimize the effects of er-
ror sources other than photon-scattering error and quan-
tify their contributions. Besides a possible φ calibra-
tion error as discussed above, we have identified only one
other important error source, which is the residual uni-
tary |↓〉 ↔ |aux〉 coupling described in the main text.
Here we present our measurements of this error source
and two others: qubit frequency differences and differ-
ences in the qubit-sideband Rabi frequencies Ωbq,1 and
Ωbq,2 on the two ions. The results of measurements used
to characterize these three error sources are shown in
Fig. 6.

Fig. 6a shows a measurement of the residual |↓〉 ↔
|aux〉 coupling, which has a π time of about 5 ms. The
coupling is measured here with −315 GHz Raman de-
tuning. The coupling is included in the simulations pre-
sented in the main text, where it decreases the singlet
fidelity by ∼ 0.008. To include the coupling in the sim-
ulation for the case of −450 GHz Raman detuning, the
strength of the coupling is scaled appropriately from the
−315 GHz-detuning measurement.

Fig. 6b shows the results of a measurement used to
quantify differences in the qubit frequencies of the two
ions. In this measurement, the qubits are initialized in
the state |↓↓〉, and then a π/2 pulse is applied to create
the state (|↓〉1 + |↑〉1) ⊗ (|↓〉2 + |↑〉2)/2 with 50 % pop-

ulation in the |T 〉 = (|↑↓〉+ |↓↑〉) /
√

2 state. Qubit fre-
quency differences lead to a |T 〉 ↔ |S〉 coupling, which we
detect by measuring the |S〉 and |T 〉 populations as de-
scribed in the main text after a delay of variable duration.
We can make this measurement with the Raman beams
on or off to quantify the contribution of differential ac
Stark shifts from these beams to the |T 〉 ↔ |S〉 coupling.
We first minimize magnetic field gradients by minimiz-
ing the |T 〉 ↔ |S〉 coupling with the Raman beams off
by making adjustments to the current through several
magnetic field coils near the ion trap. Then we mini-
mize the |T 〉 ↔ |S〉 coupling with the Raman beams on
through careful beam alignment. Other sources (e.g. the
repumper laser and ac Zeeman shifts from the microwaves
that implement the carrier drive Hc) do not contribute
significantly to qubit frequency differences. We are able
to reduce the coupling so that it has only a small effect
over 6 ms, as shown in Fig. 6b.

Fig. 6c shows qubit Rabi oscillations on two ions,
with loss of contrast coming primarily from differences
in the Rabi frequencies on the two ions. The qubit co-
herence time of >∼ 1 ms also contributes to loss of co-
herence, but a coherence revival beyond 600 µs allows
estimation of ∼1.7 % Rabi-frequency difference between
the two ions. This difference arises because of a resid-
ual magnetic field gradient that is compensated for by
adjusting the pointing of the Raman beams and thereby
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(a) (b)

(c)

FIG. 6. Measurements of error sources. (a) A measurement with a single ion of the residual unitary coupling between the
|↓〉 (∼ 32 photon counts) and |aux〉 (∼ 3 photon counts) states. The reduced contrast of the Rabi oscillation is likely due to
oscillations in the magnetic field direction at 60 Hz. (b) A measurement indicating negligible |T 〉 ↔ |S〉 coupling over 6 ms,
with the Raman beams illuminating the ions. Shown are populations in the |T 〉 state (black crosses) and the |S〉 state (blue
dots) as a function of illumination duration after preparing (|↓〉1 + |↑〉1) ⊗ (|↓〉2 + |↑〉2)/2 with 50 % population in |T 〉. The
|T 〉 ↔ |S〉 coupling has a π time of about 3 ms with the Raman beams off due to a residual magnetic field gradient, which the
Raman beams are aligned to compensate. (c) Qubit-transition Rabi oscillations on two ions. From this measurement and the
fit (blue) we estimate a Rabi-frequency difference of ∼1.7 % between the two ions. The coherence time of this field-sensitive
qubit is >∼ 1 ms. Error bars indicate 68 % confidence intervals on all data points.

introducing small differential ac Stark shifts. As a re-
sult, the |T 〉 ↔ |S〉 coupling is minimized at the cost of
introducing slight Rabi-frequency differences. The sin-
glet fidelity calculated including only this error source is
greater than 0.999.

TWO-QUBIT BASIS-STATE POPULATION
MEASUREMENTS

For each Raman detuning ∆ we measure two-qubit
basis-state populations as a function of dissipative inter-
action duration. In each case a duration tmax is chosen.
The ions are prepared approximately in |↓↓, n = 0〉 using
optical pumping, Doppler cooling, and sideband cooling,
and then the light fields driving the dissipative dynamics
are applied for duration t. The analysis pulses are applied
as described in the main text. Then, after a delay of du-
ration tmax − t, whose purpose is to hold constant the
duty cycle for the detection laser (which is much higher
power than the repumper that participates in the dissi-

pative dynamics), fluorescence detection is performed.

The above procedure yields a set of observed photon
counts cj(t, A), where j indexes over repetitions of in-
teraction duration t and analysis condition A. For each
data point shown in Fig. 2 in the main text, at least
two hundred repetitions were performed for each analy-
sis condition, and three times as many repetitions were
performed for the π/2 pulse with randomized phase as
for the other two conditions.

This full set of counts is used to determine param-
eters for a detection model using maximum-likelihood
estimation. The four model parameters are C(0,1) and
Pr(0,1). The former describe the background counts and
the average number of counts detected from a bright
ion, and the latter give the probabilities for observ-
ing zero or one ion bright. These two parameters also
determine the expected number of counts C2 for two
bright ions and the corresponding observation probabil-
ity Pr2 = 1 − Pr0 − Pr1. The observed counts are as-
sumed to be Poisson-distributed about these calibrated
parameters. Maximum-likelihood estimation then uses
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the parameters Cn and the corresponding Poisson distri-
butions to estimate the populations Pn,A(t) as defined in
the main text, from which the basis-state populations are
determined according to Eqs. (5)-(8) in the main text.

Uncertainties in the reported populations are obtained
using bootstrapping. For each analysis condition and in-
teraction time, a data set of the same size as the ex-
perimental data is obtained by sampling from the data
with replacement. The full analysis procedure is then run
on this batch of synthetic data, yielding bootstrapped
basis-state populations at each interaction time. After
repeating this process N =10,000 times, we obtain bias-
corrected (so-called ‘BCa’ with acceleration parameter
a = 0) confidence intervals on all reported quantities
from the distribution of the corresponding bootstrapped
parameters [8].
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