
PION: Password-based IoT Onboarding Over
Named Data Networking

Davide Pesavento, Junxiao Shi, Kerry McKay, and Lotfi Benmohamed
National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

{davide.pesavento, junxiao.shi, kerry.mckay, lotfi.benmohamed}@nist.gov

Abstract—While the IoT market continues to grow, securing
IoT systems remains a challenge as successful cyberattacks keep
escalating. Named Data Networking (NDN) offers a number
of advantages over traditional IP-based communications and is
considered a promising candidate to revolutionize the IoT space,
thanks to its improved scalability and built-in security features.
A cornerstone of any NDN IoT network is the onboarding
protocol, whose main goal is to bootstrap the cryptographic
keys and trust relationships necessary for a newly joining device
to securely communicate with the rest of the network. Though
several such protocols have been proposed, none so far combines
strong security guarantees with ease of use on IoT devices that
have highly constrained input/output interfaces. In this paper we
introduce a novel password-based onboarding protocol to address
this need. In addition to discussing its design, we produce a
formalization of the protocol and verify its security properties
using an automated analyzer. Finally, we present the results of
benchmarking carried out on a proof-of-concept implementation
that demonstrates the feasibility of our approach.

I. INTRODUCTION

As the most prominent instance of Information Centric
Networking (ICN), Named Data Networking (NDN) is an
emerging network protocol with a data-centric communication
architecture based on the retrieval of named and cryptograph-
ically signed content [1], [2]. The IoT market continues to
grow as IoT brings numerous compelling benefits to many
sectors. However, IoT systems keep experiencing attacks with
significant cybersecurity impacts [3]. Using NDN for IoT net-
working has several advantages [4]–[6], including for device
onboarding which is the subject of this paper.

Before an IoT device is allowed to join an NDN network,
it must go through an onboarding procedure (also known
as bootstrapping or sign-on) whereby a secure authentication
protocol ensures that only legitimate devices can obtain the
necessary credentials and can establish a local identity that
is certified by the network’s trust anchor. Most of the IoT
solutions deployed today rely on cloud services for onboarding
as well as authentication, data storage, and remote control,
which comes with security and privacy risks [7]. By leveraging
NDN’s secure data-centric communications, we can develop
IoT networking solutions that do not rely on cloud services.

In this paper we present PION, a password-based IoT
onboarding protocol for NDN that makes use of a local
certification authority to achieve fully local control of the IoT
network security directly at the edge, without requiring any
cloud support or even an Internet connection. The proposed

protocol possesses several properties that represent a signifi-
cant step forward in securing NDN IoT systems:

• We employ a password-authenticated key exchange as
a building block to establish a strong symmetric key
between two parties that share only a short mnemonic
password. A simple password delivers a friendlier user
experience and is easier to distribute using a wider range
of methods, which is an important requirement for the
constrained and heterogeneous platforms common in IoT.

• We build upon NDN’s native security features, in partic-
ular its per-packet cryptographic signatures, naming, and
digital certificates, providing a solid foundation for data-
centric security independent of the actual communication
channel being used to transport the packets.

• For certificate issuance, our solution leverages and ex-
tends the standard certificate management protocol ND-
NCERT. This simplifies the integration of the onboarding
process with the various other security mechanisms and
conventions used by NDN applications.

• We present a formalization of the protocol and the results
of a security analysis conducted with the help of an
automated software tool.

• We assess the performance of a minimal IoT testbed
running a complete prototype of the protocol and demon-
strate that our approach is viable on constrained devices
in terms of memory usage and binary code size.

The rest of this paper is organized as follows. In Section II
we review previous publications related to ICN and IoT. A few
important foundational concepts are introduced in Section III,
while the system model is described in Section IV. The
proposed protocol is presented in Section V, followed by
its security analysis (Section VI) and experimental evalua-
tion (Section VII). Finally, Section VIII concludes the paper.

II. RELATED WORK

Several existing works discuss ICN-based architectures for
the Internet of Things [4]–[9] and various security aspects
of NDN [10]. Among them we mention Breaking out of the
cloud [7], which sketches out a cloud-independent approach
to build IoT applications, with local trust management and
rendezvous service. PION fully embraces this design direction
by avoiding any reliance on remote cloud services and goes
a step further in defining a detailed protocol for the specific
task of onboarding IoT devices on an NDN network.



OnboardICNg [11] proposes a design based on the well-
known AKEP2 authenticated key exchange, which later in-
spired EAP-PSK. The security of these protocols relies on the
assumption that the pre-shared key (PSK) is cryptographically
strong and thus must be relatively long (16 or 32 bytes). This is
a fair assumption in many scenarios but may be an obstacle to
wider adoption on less capable devices. Other ICN onboarding
protocols [12], [13] have similar expectations.

The need for a strong PSK has several undesirable implica-
tions. Firstly, if the device does not have an easily accessible
input or output interface, exchanging such a long key out-of-
band is error-prone and cumbersome for the user. Secondly, if
the PSK is static, e.g., it is created once when the device is
manufactured and printed as a QR code on the device or its
packaging, there is an increased chance that an attacker could
compromise the confidentiality of the PSK and thus subvert
the security of the whole system. This issue is exacerbated
when we consider second-hand devices, in which case all
previous owners know the device’s PSK and could easily gain
unauthorized access to the network of the new owner. Thirdly,
if the PSK is freshly generated at each onboarding attempt,
it requires a cryptographically secure pseudorandom number
generator which may not always be available.

Finally, with the exception of NDNViber [14], none of the
existing proposals is compatible with the standard NDNCERT
certificate management protocol, making it difficult to inte-
grate the onboarding process with other security mechanisms
and conventions used by NDN applications.

III. BACKGROUND

A. NDN Certificates

An NDN certificate [15] is a digital certificate used to bind
a public key to the identity of its owner. It is an NDN Data
packet that can be retrieved via Interest-Data exchange and
cached anywhere in the network. The Data name is the owner’s
identity name followed by additional name components that
identify the public key and the certificate issuer. The packet
carries the public key itself and a validity period for the
certificate, and is cryptographically signed by its issuer, such
as a certificate authority. A certificate can be self-signed, i.e.,
signed by the private key corresponding to the public key
contained in the certificate itself. This can be used either as a
root trust anchor or as a certificate request.

B. The NDNCERT Protocol

The NDNCERT certificate management protocol [16] is an
application-layer protocol that enables automated management
of the whole NDN certificate lifecycle, from the first certificate
application to its renewal and/or revocation.

A certificate application is a request-response protocol en-
acted between two entities: a certificate authority (CA) and a
requester. In the first round of the protocol, called NEW, the
requester sends its self-signed certificate to the CA and the two
parties establish a symmetric session key through an ephemeral
elliptic-curve Diffie-Hellman (ECDH) key agreement. This
key is then used to encrypt all subsequent messages with

AES-GCM. The procedure continues with one or more rounds
of CHALLENGE, in which the requester proves its identity to
the CA; how this is done depends on the specific challenge
type negotiated between requester and CA. Eventually, if the
challenge succeeds, the CA issues (i.e., signs) the certificate.

NDNCERT has a variety of pre-defined challenges. Some
of them involve an out-of-band step, such as receiving a PIN
code via email. We are interested in the proof-of-possession
challenge, which expects the requester to own a preexisting
certificate issued by either the same or a different CA. In this
challenge, the CA generates a random nonce and sends it to the
requester, which should sign it with the key corresponding to
the existing certificate and return it to the CA. If the signature
is valid and the existing certificate satisfies the CA’s policy,
the challenge is considered successful.

C. Password-Authenticated Key Exchange

Password-Authenticated Key Exchange (PAKE) schemes,
first introduced by Bellovin and Merritt [17], are a family of
interactive protocols in which two or more parties authenticate
each other and derive a shared cryptographic key based on
their knowledge of a weaker shared password, without ever
transmitting the password over the (insecure) communication
channel. The idea is that an attacker cannot carry out an offline
dictionary attack against the protocol, because checking the
correctness of each password guess requires interacting with
either one of the victims. Thus, in a PAKE it is important
to limit the maximum number of authentication attempts to
only a handful of tries, after which the shared password
must be changed. Furthermore, relying just on a short and
simple password, as opposed to a cryptographically strong key,
provides a number of advantages when the password needs to
be displayed to a human user, typed, or communicated out of
band, which ultimately yields a friendlier user experience and
a lower chance of errors.

Several PAKEs have been proposed over the years. We
chose to use SPAKE2 [18], [19] in PION for its simplicity,
efficiency, and because it has been proved secure [20].

IV. SYSTEM MODEL AND ASSUMPTIONS

A. System Model

We consider a home or small office environment where
networked devices communicate over WiFi (IEEE 802.11). We
assume that the WiFi network is protected by WPA2-Personal,
WPA3-Personal, or any other similar method that requires a
shared password for authentication. At the network layer, NDN
may be used directly over layer 2 or as an overlay over IP. The
NDN network has a local certificate authority (CA) which, for
simplicity, also acts as the trust anchor.

To avoid imposing additional requirements on the user
interaction capabilities of the certificate authority software,
which may be running on a headless machine such as the
network’s router or gateway, we introduce a second logical
entity: the authenticator (H). The authenticator is the main
interface through which the user authorizes new devices,
for instance it could be part of a network management app



installed on the user’s smartphone. It is assumed that H has
already established a mutual trust relationship with the CA
prior to the execution of the onboarding protocol.

An IoT device D that wishes to join the network must learn
the network credentials (WiFi password) before it can connect,
and must obtain a local identity that is certified by the CA be-
fore it can start interacting with other entities on the network.
D may be a newly purchased device, or it may be a device
that has been factory-reset after being acquired from a previous
owner or moved from a different network. We expect that D
may have very limited computational, memory, and storage
resources, while CA and H are essentially unconstrained.

The objective of our onboarding protocol is twofold: D
should securely learn the network credentials and the identity
of the trust anchor; at the same time, it should obtain an NDN
certificate for its public key signed by the CA. Moreover, the
protocol must guarantee that no entity other than D can obtain
a valid certificate from the CA and that the network credentials
are never disclosed to any unauthorized party.

B. Threat Model

We consider a threat model where the attacker is bound by
the same computational and memory limits of the underlying
cryptographic primitives. We assume that the attacker is able to
eavesdrop on all network traffic, can inject forged, altered, or
replayed packets, and can delay or prevent reception of packets
sent by other network nodes. However, the attacker may not
break or subvert the security of cryptographic primitives that
are considered secure, such as ECDSA, HMAC, AES, SHA-2,
etc., as long as the assumptions of those primitives are met.

Because this model gives the attacker control over the
channel, it is possible for the attacker to prevent an honest
device from completing the onboarding successfully. This is
a property of the model and channel, not a failure of the
protocol. The adversary has successfully broken the protocol
if they can fraudulently obtain a valid certificate from the CA.

V. THE PION PROTOCOL

The proposed PION onboarding protocol consists of five
steps, depicted in Figure 1 and described in the subsections
below. The authenticator participates only in the first three
steps of the protocol when the direct connection is active.
Conversely, the CA takes part only in the last phase when
the device connects to the home network. No communication
between authenticator and CA needs to occur at any point.
This was a deliberate design choice that allows the authenti-
cator to onboard multiple devices one after the other without
reconnecting to the home network, thereby enabling a more
streamlined experience even with a large number of devices.

A. Direct Connection

The authenticator H establishes a “direct” connection to the
device D. This can be achieved in various ways depending
on the communication technologies supported by both parties.
For instance, D could set up a WiFi access point with a well-
known SSID and H could connect to it, or they could use

authenticator

IoT device

user

2. enter OOB password

1. establish direct connection
3. perform PAKE and obtain 
temporary certificate

4. connect to infrastructure
5. run NDNCERT and obtain 
device identity certificate

wireless AP
& NDN CA

Fig. 1. Overview of PION protocol interactions.

Bluetooth, Zigbee, etc. This connection may even traverse
multiple layer-2 hops as long as it appears as a single hop
at the NDN layer. Since the protocol makes no assumptions
on the security of this connection, the intermediate nodes do
not need to be trusted.

B. OOB Step

The user ensures that D and H agree on an out-of-
band (OOB) password. The OOB password guarantees the
mutual authentication of D and H , and prevents impersonation
and man-in-the-middle attacks on the protocol. A major advan-
tage of PION is that the password can be short and have low
complexity, thanks to the use of a PAKE (see Section III-C).
Typically, 20 bits to 30 bits of entropy are considered suffi-
cient, equivalent to a 7-digit PIN or a 5-character alphanumeric
string randomly sampled from a uniform distribution.

PION does not mandate how the OOB password should be
shared between D and H . In practice, this step is highly depen-
dent on the hardware capabilities of the individual devices. We
envision that the authenticator software will support multiple
OOB methods and will pick the most appropriate one based
on the specific device being onboarded. For instance [21], a
connected light bulb could transmit the password by blinking
in specific patterns and the authenticator could detect these
patterns through the smartphone’s camera. Reversing the roles
is also possible, e.g., an electronic door lock with only a
keypad may not have a way to produce an output. In that
case, the password must be generated and displayed by the
authenticator and then entered on the keypad by the user.

As pointed out in Section III-C, it is critically important to
stop brute-force attacks by limiting the number of password
guesses that an attacker is allowed to make. Consequently,
PION requires the OOB password to be regenerated and
reshared after three failed onboarding attempts.

C. PAKE Step

This step of the protocol takes place between D and H
after they have established a direct connection, and consists
of six messages (three round-trips). In the first two messages,
SPAKE2 [19] is employed to derive a strong shared key from
the low-entropy OOB password previously exchanged. Next,
an explicit key confirmation round provides assurance that



DeviceAuthenticator

PAKE request (Interest)

PAKE response (Data)

CONFIRM request (Interest)

fetch CA profile and authenticator certificate

CONFIRM response (Data)

CREDENTIAL request (Interest)

fetch device temporary certificate

CREDENTIAL response (Data)

Fig. 2. Sequence diagram of the PAKE step.

CADevice

NEW request (Interest)

NEW response (Data)

CHALLENGE selection request (Interest)

CHALLENGE selection response (Data)

CHALLENGE completion request (Interest)

fetch device identity certificate

CHALLENGE completion response (Data)

Fig. 3. Sequence diagram of the NDNCERT step.

the two parties have derived the same key and are therefore
authenticated to each other. Finally, the shared key is used
to encrypt and authenticate the last round, during which D
obtains a temporary NDN certificate (signed by H) and the
infrastructure network credentials necessary for the next step.
In case this step fails, the OOB password cannot be reused,
but a new one must be generated and exchanged.

The first version of PION defines a single ciphersuite, con-
sisting of ECDSA signatures with NIST P-256 as the elliptic
curve, SHA-256 as the hash function, HKDF-SHA-256 as
the key derivation function, HMAC-SHA-256 as the message
authentication code, and AES-GCM-128 as the symmetric
cipher. More ciphersuites can easily be added later with no
changes to the protocol flow.

D. Infrastructure Connection

At this point, D can tear down the direct link to H and
connect to the infrastructure network (e.g., home WiFi) using
the credentials acquired in the previous step.

E. NDNCERT Step

Once connected to the infrastructure network, D initiates
an NDNCERT certificate request with the CA and selects
the proof-of-possession challenge to prove its identity, as
explained in Section III-B and illustrated in Figure 3. The
preexisting certificate used for the challenge is the temporary
certificate issued to D by H during the PAKE step. In addition

to the standard NDNCERT checks, the CA also verifies
that the temporary certificate was indeed issued by a trusted
authenticator by looking at the name in the KeyLocator
field of the certificate. If the challenge is successful, the CA
issues a new certificate to D, which indicates that the device
is now trusted, and the onboarding protocol is complete.

VI. SECURITY ANALYSIS

The security of PION was analyzed both manually and
using the Cryptographic Protocol Shapes Analyzer (CPSA)
automated tool1 that searches for valid execution over strand
spaces [22]. A strand is a sequence of messages sent and
messages received by a party, and each role in the protocol is
defined by a strand. Multiple strands can be bundled into a sin-
gle execution of the protocol, e.g., an authenticator strand and
a device strand would be needed to show correct execution of
the PAKE step of our protocol. CPSA uses the strands defined
in the model to search the strand space for complete executions
of the protocol. An execution that cannot be generalized is
called a shape. An analyst can study the shapes found by the
tool and determine if something unexpected occurs. All of the
shapes that were identified during the search over our models2

showed expected executions of the protocol.

A. Protocol Modeling

Because CPSA performs a search over the strand space,
it will be able to fully examine a simpler model that has a
small strand space. As the number of messages and variables
in a model increases, the search becomes infeasible. There-
fore, it is important to restrict the search to match protocol
assumptions. Some aspects of the protocol were not obvious to
model in CPSA, or resulted in intractably large search spaces.
As detailed below, sometimes our model diverged from the
specification in order to improve the search, e.g., by reducing
the number of variables. We emphasize that the models still
maintain the dependencies and spirit of our protocol.

Modeling the PAKE step: There is no straightforward way
in CPSA to express the computation of the SPAKE2 public
values sent by D and H . Thus, we treat them as a secret
encoding of the public ECDH values using the shared secret w,
derived from the OOB password, as the key. Then we can
verify that w is not leaked.

The derivations of the SPAKE2 keys were originally mod-
eled using the fn-of (function of) relations in CPSA. How-
ever, there were many cases in the results where strands shared
a key, but did not have the same values for the variables used
to derive it. This greatly increased the search space without
yielding any new information. So, instead of representing the
SPAKE2 keys as functions, we simply use the shared key from
the Diffie-Hellman agreement in the search. If we can show
that w and the private exponents are not leaked, it follows that
the derived keys would have been computed correctly.

The search was further constrained by ensuring that shared
secrets, private keys, and transcript are never transmitted.

1https://github.com/mitre/cpsa
2CPSA models and resulting shapes have been omitted due to lack of space.



Moreover, ECDH parameters are fresh and it is assumed that
device and authenticator are honest parties.

Modeling NDNCERT with proof-of-possession: The mod-
eling of this phase was fairly straightforward. The search was
again constrained by ensuring that shared secrets and private
keys are never transmitted. ECDH parameters and the random
challenge are fresh and it is assumed that the CA is honest.

VII. IMPLEMENTATION AND EVALUATION

We wrote a prototype implementation3 of PION and evalu-
ated it on a small testbed consisting of a Raspberry Pi 3B and
an ESP32 development board4. The device firmware and the
authenticator are implemented in C++, with Mbed TLS 2.16 as
crypto library. Where feasible, we used constant-time elliptic
curve operations to mitigate potential timing attacks. The
certificate authority was separately implemented in Node.js.

To demonstrate that PION is transport-agnostic, our imple-
mentation provides a selection of transport technologies. For
the direct connection, the device may utilize either WiFi or
Bluetooth Low Energy (BLE). Since the BLE connection has a
512-byte MTU, which is smaller than some of the onboarding
packets, we also enabled NDNLPv2 fragmentation for the BLE
transport. During the infrastructure connection step, the device
acts as a WiFi client (station) and connects to the access point
in WPA2 mode. This phase may employ either a UDP/IPv4
transport or an Ethernet transport, that transmits NDN packets
directly inside layer-2 frames without any IP encapsulation.

We repeated the experiment 25 times for each of the
4 combinations of transport types: WiFi+UDP, WiFi+Ethernet,
BLE+UDP, BLE+Ethernet. At the beginning of each run, the
device firmware running on the ESP32 generates a fresh OOB
password. Then, on the Raspberry Pi, we start the CA and
the authenticator, we enter the password on the latter, and let
the three parties execute the protocol. The device eventually
reports whether it has successfully obtained a certificate, as
well as statistics regarding packet timing, packet sizes, and
heap memory usage.

A. Experimental Results

We now present the results of our evaluation on the pro-
totype implementation of PION. In particular, we focus on
quantifying the hardware resources required on the device to
execute the protocol; we also look at the size of all transmitted
packets and the time spent processing each received message.

Firmware size: The firmware size, measured with the size
command, is plotted in Figure 4. The figure shows that the vast
majority of the firmware image is taken up by the basic OS
functions and layer-2 networking libraries. PION uses between
40 kB and 60 kB of space while the NDN stack needs 100 kB
to 160 kB, which is between 2.6x and 4x smaller than the
WiFi code and over 6x smaller than the BLE code. We can

3https://github.com/usnistgov/PION (commit 03e81c5)
4Disclaimer: Any mention of commercial products or reference to commer-

cial organizations is for information only; it does not imply recommendation
or endorsement by NIST, nor does it imply that the products mentioned are
necessarily the best available for the purpose.

WiFi + Ethernet WiFi + UDP BLE + Ethernet BLE + UDP
0

200

400

600

800

1000

1200

1400

Co
de

 si
ze

 [k
B]

PION
NDN stack
BLE stack
WiFi stack
Base OS

Fig. 4. ESP32 firmware size.

device
idle

start direct
connect

PAKE
step

direct
disconnect

infra
connect

NDNCERT
step

finish
0

64

128

192

256

320

He
ap

 m
em

or
y 

us
ed

 [k
B]

BLE + Ethernet
BLE + UDP

WiFi + Ethernet
WiFi + UDP

Fig. 5. Heap memory used on ESP32.

conclude that NDN and PION have a very minor impact on
the footprint of the device firmware, therefore code size should
not be regarded as an obstacle to their adoption.

Device memory consumption: In Figure 5 we show the heap
memory utilization at various stages of the protocol execution,
roughly corresponding to the steps outlined in Section V. The
“device idle” state is added for reference and represents the
baseline memory consumption before starting the onboarding.
We can observe that the largest chunk of memory is allocated
by the BLE stack during the direct connection phase and
is then released when the connection is torn down. Up to
the “infra connect” stage, there is no difference between the
Ethernet and UDP scenarios because those transports come
into play only with the infrastructure connection step.

Packet size and processing time: Throughout the execution
of the experiments, we recorded the size of each packet and
the time at which it was sent/received by the device. From
these timestamps we can calculate how long it takes for the
device to process one received packet and prepare the next one.
The results are reported in Table I, where each row roughly
corresponds to one of the substeps depicted in Figures 2 and 3.

The packet size metric incorporates all the NDN and
NDNLPv2 headers in addition to the PION protocol data,
but excludes UDP and Ethernet headers. As expected, the



TABLE I
PACKET SIZE AND PROCESSING TIME FOR EACH MESSAGE EXCHANGE.

PA
K

E
S

T
E

P

Size (B) Time (ms)

WiFi BLE WiFi BLE

PAKE 504 504 1235.20 2081.08
CONFIRM 2053 2125 1971.08 4074.56
CREDENTIAL 1103 1103 327.52 903.04

Total 3660 3732 3533.80 7058.68

N
D

N
C

E
R

T
S

T
E

P

Size (B) Time (ms)

Ethernet UDP

NEW 978 1298.66 1269.68
CHALLENGE 1770 2029.68 1939.18
FETCH CERT 479 54.54 19.32

Total 3227 3382.88 3228.18

number of bytes transmitted is unaffected by the transport
technology, except in the CONFIRM substep. This substep
includes two Interest-Data exchanges to fetch the CA profile
and the authenticator’s certificate. Both are too large for the
MTU of the BLE connection and thus require fragmentation,
which adds 72 bytes of overhead. WiFi has a much larger
MTU, so all other transport types are not affected by this.

The computation cost of PION is largely dominated by
the elliptic curve functions, but also includes packet encod-
ing/decoding and low-level send/receive operations. We can
notice that sending packets over BLE is much slower than
over WiFi, which is to be expected. Overall, a complete
execution of the PION protocol takes about 6.7 seconds on
this particular IoT device, assuming WiFi and UDP, which
is more than acceptable given that onboarding is performed
very infrequently. We stress that this is a proof of concept and
has not been optimized yet. We anticipate that more efficient
implementations will substantially reduce the runtime.

VIII. CONCLUSION

This paper describes PION, a protocol for the secure on-
boarding of IoT devices joining an NDN network. Thanks
to its novel design, PION greatly simplifies the out-of-band
authentication step, reducing the hardware requirements for the
device and at the same time improving the user experience and
providing strong security guarantees. Formal analysis showed
no unexpected executions where an attacker can subvert the
integrity of the protocol. Furthermore, an unoptimized proto-
type implementation demonstrated reasonable performance on
a constrained device, completing a full onboarding procedure
in 6.7 seconds and transmitting less than 7 kB of data.

Additional enhancements are planned as future work, such
as native support for multi-hop forwarding schemes used in
NDN mesh networks. We are also exploring ways to reduce
the number of round-trips without compromising the security.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, 2014.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, 2009, pp. 1–12.

[3] F. Meneghello, M. Calore, D. Zucchetto, M. Polese, and A. Zanella,
“Iot: Internet of threats? a survey of practical security vulnerabilities in
real iot devices,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8182–8201, 2019.

[4] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thomp-
son, J. Burke, B. Zhang, and L. Zhang, “Named data networking of
things,” in 2016 IEEE first international conference on internet-of-things
design and implementation (IoTDI). IEEE, 2016, pp. 117–128.

[5] Z. Zhang, E. Lu, Y. Li, L. Zhang, T. Yu, D. Pesavento, J. Shi, and
L. Benmohamed, “Ndnot: A framework for named data network of
things,” in Proceedings of the 5th ACM Conference on Information-
Centric Networking, 2018, pp. 200–201.

[6] M. Frey, C. Gündoğan, P. Kietzmann, M. Lenders, H. Petersen, T. C.
Schmidt, F. Juraschek, and M. Wählisch, “Security for the industrial iot:
the case for information-centric networking,” in 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT). IEEE, 2019, pp. 424–429.

[7] W. Shang, Z. Wang, A. Afanasyev, J. Burke, and L. Zhang, “Breaking
out of the cloud: Local trust management and rendezvous in named
data networking of things,” in Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation, 2017, pp.
3–13.

[8] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,
“Information centric networking in the iot: Experiments with ndn in the
wild,” in Proceedings of the 1st ACM Conference on Information-Centric
Networking, 2014, pp. 77–86.

[9] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Information centric
networking in iot scenarios: The case of a smart home,” in 2015 IEEE
international conference on communications (ICC). IEEE, 2015, pp.
648–653.

[10] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An overview of security support in named
data networking,” IEEE Communications Magazine, vol. 56, no. 11, pp.
62–68, 2018.

[11] A. Compagno, M. Conti, and R. Droms, “Onboardicng: a secure protocol
for on-boarding iot devices in icn,” in Proceedings of the 3rd ACM
Conference on Information-Centric Networking, 2016, pp. 166–175.

[12] T. Mick, R. Tourani, and S. Misra, “Laser: Lightweight authentication
and secured routing for ndn iot in smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 755–764, 2017.

[13] Y. Li, Z. Zhang, X. Wang, E. Lu, D. Zhang, and L. Zhang, “A secure
sign-on protocol for smart homes over named data networking,” IEEE
Communications Magazine, vol. 57, no. 7, pp. 62–68, 2019.

[14] S. K. Ramani, P. Podder, and A. Afanasyev, “Ndnviber: Vibration-
assisted automated bootstrapping of iot devices,” in 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2020, pp. 1–6.

[15] NDN Project. NDN certificate format version 2.0. [Online]. Available:
https://named-data.net/doc/ndn-cxx/0.8.0/specs/certificate.html

[16] ——. NDNCERT protocol version 0.3. [Online]. Avail-
able: https://github.com/named-data/ndncert/wiki/NDNCERT-Protocol-
0.3/69d841e20515a5f7e8e5452e8366225e55bf2f86

[17] S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-
based protocols secure against dictionary attacks,” 1992.

[18] M. Abdalla and D. Pointcheval, “Simple password-based encrypted key
exchange protocols,” in Cryptographers’ track at the RSA conference.
Springer, 2005, pp. 191–208.

[19] W. Ladd and B. Kaduk, “SPAKE2, a PAKE,” Internet Engineering
Task Force, Internet-Draft draft-irtf-cfrg-spake2-26, Feb. 2022, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/draft-
irtf-cfrg-spake2-26

[20] M. Abdalla and M. Barbosa, “Perfect forward security of SPAKE2.”
IACR Cryptol. ePrint Arch., vol. 2019, p. 1194, 2019.

[21] J. Suomalainen, “Smartphone assisted security pairings for the internet
of things,” in 2014 4th International Conference on Wireless Commu-
nications, Vehicular Technology, Information Theory and Aerospace &
Electronic Systems (VITAE). IEEE, 2014, pp. 1–5.

[22] F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman, “Strand spaces:
Proving security protocols correct,” Journal of computer security, vol. 7,
no. 2/3, pp. 191–230, 1999.


