
ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

ZKASP: ZKP-based Attestation of Software
Possession for Measuring Instruments

Luís T. A. N. Brandão1, Carlos E. C. Galhardo2, René Peralta3

1ORCID: 0000-0002-4501-089X. National Institute of Standards and Technology (NIST), USA, as a Strativia contractor.
2ORCID: 0000-0002-7398-8182. National Institute of Metrology, Quality and Technology (INMETRO), Brazil.
3ORCID: 0000-0002-2318-7563. National Institute of Standards and Technology (NIST), USA.

This is the author’s version of the article submitted to Measurement Science and Technology, Special Section on
the 20th International Congress of Metrology (CIM 2021). Submitted: 2021-August-20; Revised: 2022-March-01.

With permission, an earlier version with the same title appeared, with differences, in the International
Organization of Legal Metrology (OIML) Bulletin Vol. 62, No. 3, July 2021.

Abstract

Software-controlled measuring instruments used in commercial transactions, such as fuel dispensers and smart me-
ters, are sometimes subject to “memory replacement” attacks. Cybercriminals replace the approved software by a
malicious one that then tampers with measurement results, inflicting a financial loss to customers and companies.
To mitigate such attacks, legal metrology systems often require regular device attestation, where an auditor checks
that the device possesses (“knows”) the approved software. However, current attestation methods usually require
the software to be known by the auditor, thus increasing the risk of inadvertent leakage or malicious theft of propri-
etary information, besides facilitating its malicious adulteration. We describe how this issue can be addressed in
legal metrology systems by using zero-knowledge proofs of knowledge (ZKPoK). These proofs enable attestation
of possession of approved software, while ensuring its confidentiality from the auditor. To further provide publicly
verifiable evidence of freshness, each such proof can be related to a fresh random value from a public randomness
beacon. This article presents the basic conceptual idea, while also discussing pitfalls that should be avoided.

Keywords: device attestation, legal metrology, proof of knowledge, public auditability, randomness beacon,
zero-knowledge proof.

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental procedure or concept adequately. Such identification is neither intended to imply recommendation
or endorsement by INMETRO or NIST, nor to imply that they are necessarily the best available for the purpose.

1. Introduction

1.1. Measuring instruments and legal metrology

In modern society, measuring instruments are a corner-
stone of many activity sectors, including trade, safety,
environment and health. For example, when filling an au-
tomobile fuel tank, a customer trusts that the volume of
fuel dispensed by the pump corresponds to the displayed
measurement result. Given the importance of measure-
ments in many economic activities, each country devel-
ops a “legal metrology” framework composed of laws
and regulations that strive to ensure that measurements
are accurate (agree with corresponding standard units),
reliable (stable against environmental changes), and in-
corruptible (impervious to malicious manipulation).

While scientific metrology is the science of measure-

ment, legal metrology can be defined as the “practice
and process of applying a regulatory structure and en-
forcement to metrology” [OIM12]. Laws concerning
measuring instruments are needed when measurement
errors or fraud can affect commercial transactions, pub-
lic safety, health-related decisions, or the environment
[Kel19]. Each country has at least one national metrolog-
ical authority [OIM13] to enforce the metrological regula-
tions and execute legal metrology procedures. (European
harmonized standards rely on Notified Bodies [Gal13].)

In legal metrology, the accuracy requirement for com-
putational systems calibrated for measurements should
consider that they may be deployed in settings suscep-
tible to adversarial attacks. Therefore, these systems
should consider security properties such as integrity and
authenticity [MANSV20]. In fact, digital/computer se-
curity has been proposed as one of the next-generation

1

https://orcid.org/{0000-0002-4501-089X}
https://orcid.org/{0000-0002-7398-8182}
https://orcid.org/{0000-0002-2318-7563}

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

“key enabling technologies” for Industry [PBOE+21]
and has indeed played an increasing critical role in In-
dustry [CLL20]. Correspondingly, its consideration is
also required for improved legal metrology.

Each legal metrology authority enacts, through reg-
ulations, a set of software security requirements to
protect from and detect non-authorized modifications
in the software of measuring instruments. Then, for an
embedded software to be approved by the metrologi-
cal authority, it must comply with these requirements
[PBMC+14]. The integrity verification of the ap-
proved software is one of the most critical concerns
of software security regulation requirements [PPST15].
In legal metrology, measuring instruments must prove
their software’s integrity to a customer or an official au-
ditor. The integrity check is typically obtained through
a device attestation protocol.

1.2. Device attestation

A “device attestation” protocol is a technique that al-
lows a software-controlled device to make a reliable
statement about its memory content. The device attes-
tation has two participants: the verifier V (the auditor)
and the prover P (the instrument). The main goal
is to enable V to confirm that P has some embedded
software expected by V. This is an essential component
of metrological verification [OIM13].

Device attestation is, in general, implemented as
a challenge-response protocol [CGLH+11]. Figure 1
shows the five main steps: (1) V prepares a challenge
for P, and (2) sends it to P; (3) P computes a response
and (4) sends it to V; (5) V checks that the response is
valid with respect to the challenge.

1. Prepare

Auditor
(Verifier)

5. Verify

Instrument
(Prover)
3. Calculate

2. Challenge

4. Respond

Figure 1. Device attestation

Often, the response is the output of a hash function
that uses the memory content and the challenge. Using
a hash allows succinctness, while still convincing that
the challenge was used. In other words, the response
can only be satisfied with access to the declared mem-
ory content after the challenge was made known. If P
is an honest prover (i.e., it acts as specified by the pro-
tocol, and its memory content satisfies the statement
being proven), it convinces the verifier about memory
content. If P lacks the required memory content, then
it should not be able to convince V.

A device attestation protocol should reflect the cur-
rent status of the prover. This property, called fresh-
ness, is ensured by including a challenge (information

that the prover does not know in advance), which the
prover requires in order to produce the response. Sev-
eral approaches have been proposed to ensure freshness,
such as based on random number [SPVK04], pseudo-
random sequence [CFPS09], increasing integer [ISZ17],
session keys [KBGK17], or timestamps [ERT17]. The
approach proposed in this paper uses a public random-
ness beacon for this purpose.

A randomness beacon is a time-stamped source of
public randomness [KBPB19]. At regular time inter-
vals, it publishes a pulse, containing a fresh sequence
of random bits. The pulse also contains a digital sig-
nature and various other fields. The pulses are also
hash-chained. A beacon needs to have three criti-
cal properties: unpredictability, autonomy, and consis-
tency [FIP11]. Unpredictability means no one can pre-
dict the random bits of new pulses. Autonomy means
no one can influence the probability distribution of the
output bits. Consistency means that all users accessing
a particular pulse have the same view, namely the same
random string. The pulses are archived forever and can
be retrieved by anyone, using a well-defined interface
(e.g., via the Internet).

A proof that is bound to the randomness of a pulse
becomes bound to its timestamp, implying that the
proof cannot have been created before the pulse was
publicly known. The time interval between (i) the
present moment and (ii) the timestamp of that beacon
randomness can be used as a quantitative measure of
freshness. This freshness is publicly verifiable, since
each timestamped pulse from the beacon is signed and
hash-chained in a publicly-readable database. Further-
more, a user can query the database to retrieve any
previous pulse and its associated data.

Legal metrology tries to mitigate the malicious soft-
ware replacement attack by requiring regular device at-
testation (software integrity verification), where an au-
ditor checks that the device possesses (“knows”) the
original software by comparing it to a copy held by the
auditor. However, if the attestation requires the au-
ditor to view the software, there is a major drawback
to confidentiality. The protection of the manufacturer’s
intellectual property is jeopardized, since the attack sur-
face to steal the software has increased beyond the in-
strument. Also, this is inconvenient in practice since it
narrows the set of possible auditors to only include au-
ditors that are trusted to handle confidential material.

1.3. Enhanced security

State-of-the-art practical cryptography offers the oppor-
tunity for legal metrology frameworks to enable attes-
tation of software possession with refined security prop-
erties. In particular, it is possible to enable a dual re-
quirement of confidentially and auditability. For exam-
ple, prior work has considered the case of confidentiality
of measurements, sometimes in systems with many sen-
sors (such as smart-grids), using cryptographic build-

2

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

ing blocks, such as homomorphic encryption and even
functional encryption, to enable auditability of software
functionality with respect to the combination and trans-
formation of many measurement results [PYMS+20].

The present work is focused on confidentiality of
the embedded software, for independent individual
measurements, without concern for confidentiality of
the measurement results. By using a zero-knowledge
proof (ZKP), more specifically a ZKP of knowledge
(ZKPoK), an auditor unacquainted with the approved
software can still check whether it is known by a mea-
suring instrument. The proposed solution approach is
dubbed ZKASP: ZKP-based attestation of software
possession for measuring instruments.

In the proposed ZKASP solution, the assurance of
confidentiality becomes technical/cryptographic, in-
stead of depending on a non-disclosure agreement by
the auditor. Besides the official auditors, the customers
can also run the protocol before a commercial transac-
tion, to ensure that the instruments are able to prove
knowledge of the correct software.

The proposed solution also enables freshness based
on a “nonce”, which is obtained from a public random-
ness beacon. The timestamped nonce creates an up-
per bound for the age of the proof, which can be pub-
licly verified. This solution also prevents replay attacks,
where a valid proof is maliciously repeated. Current
public randomness beacons, such as the NIST one, have
a pulsation period of one minute.

While the proposed solution is conceptually simple, it
is important to avoid a number of pitfalls. For example,
while the generation of a hash of the software requires
knowledge of the software, a proof of knowledge of the
said hash is not a proof of knowledge of the software.
Thus, the ZKASP solution should simultaneously be
succinct and require access to the full software. Dif-
ferent mechanisms are possible depending on the legal
metrology system model and the allowed interaction
between various parties.

2. System model and building blocks

2.1. Participants

For a given type of measuring instrument, there are
various parties in the system of interest:

• Measuring instruments (a.k.a. provers): the
individual instruments that are required to provide
a proof of knowledge of the approved software.

• Auditors (a.k.a. verifiers): those that interact
with the measuring instrument to verify that the
instrument “knows” the approved software. Usu-
ally, these are official auditors, but in the proposed
solution they can also be regular customers.

• The authority: a legal metrology authority (or
notified body) providing public parameters that
enable the device attestation protocol.

• The randomness beacon: an agreed trusted
public randomness source [BeaconUS; BeaconBR;
BeaconCL] that periodically outputs signed times-
tamped random values.

• The vendor/manufacturer: the entity that is
responsible for setting (and possibly updating) the
embedded software in the measuring instruments.

2.2. Building blocks

ZKASP uses the following cryptographic primitives:
• Digital signature [FIPS 186-5]. Any party can

create a pair (k,K) of keys: one private (k) for
signing; one public (K) for verification. Given any
string M , the party can use its private key to com-
pute a signature σ ← Sign[k](M). Given M and σ,
any party with the public key can verify authentic-
ity: VerSign[K](σ,M) = true. However, without
the private key it is unfeasible for any party to
compute σ that would pass the verification.

• Hash function [FIPS 180-4]. A hash function
H takes as input any string M , of arbitrary length,
and outputs a (short) string hM = H(M). Any
party can compute H. Given h, it is unfeasible
for any party to find an M such that h = H(M).
Given M , it is unfeasible for any party to find an-
other M ′ such that H(M ′) = H(M). Furthermore
(informally), H(M) reveals no information about
M (when that M is unpredictable).

• ZKPoK [ZKProof]: A ZKPoK (zero-knowledge
proof of knowledge) is a cryptographic method by
which a party (the prover) proves to another party
(the verifier) that it knows a secret value x, but
does not disclose x itself. For example, the prover
may know the prime factorization of a large inte-
ger (e.g., used in some crypto-systems) and wish to
prove this to a verifier, without revealing the prime
factors. The method ensures that someone without
the secret cannot successfully act as a prover.

ZKASP also uses various components of the infras-
tructure of the Internet, such as secure communication
[RFC 8446] and public-key infrastructure [RFC 5280].
As for the public randomness server, our proposal is to
use any server that is interoperable with the NIST Bea-
con. This server provides, every minute, a timestamped
and cryptographically signed 512-bit random string.
The signature authenticating these random strings can
be verified off-line using the server’s public key.

2.3. ZKPoK bound to time and identities

The type of ZKPoK we will use — let us call it Π — for
proving knowledge of a secret S, with a certain property
T (i.e., T (S) = true), is of the following basic form:

• The verifier sends an external challenge C to the
prover. This external challenge includes a times-
tamp, identifiers, and fresh random values. (We

3

https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://csrc.nist.gov/projects/interoperable-randomness-beacons

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

call it “external” to avoid confusion with a common
[internal] “challenge” step in the generation of Π.)

• The prover replies with a value π ← Π(C, S) that
could only have been produced by someone who
knows secret S satisfying T , and who simultane-
ously knows C.

• Given π and C, the verifier can efficiently compute
VerProof(π,C), which returns true if and only if
the proof is valid, i.e., satisfies the two conditions
expressed above.

Section 3.2 describes our solution, which amounts
to designing the external challenge C and choosing a
ZKPoK Π so as to ensure zero-knowledge, eliminate
some attacks, and mitigate others.

It should not be possible to reuse the proof con-
structed by one instrument in order to produce a proof
for a different instrument. It should also not be possible
to use an old proof to construct a fresh proof, even if by
the same instrument. More generally, a good solution
must ensure that proofs are bound to the context in
which they were produced.

To ensure this, we devise the external challenge C to
be dependent on various strings that, together, specify
the context. For example, if using C = (t, µt, IDP , IDV),
where µt is a random string produced at time t by a
public source of randomness, the proof π ← Π(C, S)
becomes bound to the time t and to the prover and
verifier identities (IDP , IDV).

3. ZKASP protocols

3.1. Setup (initial deployment)

The typical setting for a ZKASP protocol is as follows:
• Cryptographic keys. All parties have private

and public keys for a signature scheme. The j-th
auditor’s private/public key pair is (yj , Yj). The
i-th instrument’s key pair is (xi, Xi). The author-
ity’s and vendor’s key pairs are, respectively, (a,A)
and (v, V). The public key of each party is also
used as its identity.

• Software approval. Through an agreed protocol,
during the type approval [OIM13], the authority
approves the software S developed by a vendor for
use with a type of measuring instruments.

• Software commitment. At time t0, the au-
thority publishes the hash h = H(S) of the
approved software S, along with a signature
σA = Sign[a](t0||rt0 ||h) by the authority, and a
corresponding signature σV = Sign[v](t0||rt0 ||h) by
the vendor, where rt0 is the most recent beacon
randomness (from time t0). On purpose, the sign-
ing of the same element, by the authority and by
the vendor, requires coordination between the two.

• Software deployment. The vendor deploys the
measuring instruments, each with a private-public
key pair (xi, Xi). Only the instrument knows its

own secret key; the authority and the vendor both
have a list of the public keys of all instruments.

3.2. The baseline ZKASP Protocol

Next we provide a textual description of an attestation
interaction, with some simplifications. Some details are
deferred to Figure 2 in Appendix A.

In an attestation interaction, started at time t, be-
tween an auditor j and an instrument i:

1. External challenge. The auditor obtains the
most recent pulse Bt from the public randomness
beacon, verifies its consistency (e.g., that it is
properly signed), and extracts its output random
value rt and the corresponding timestamp t. Then,
the auditor determines the current time t′ in its
own local clock and locally-generates a random
value r′t. The auditor composes these elements,
along with the public key Xi of the instrument
to be audited, and signs them together, obtain-
ing σj = Sign[yj] ((t, rt, t′, r′t, Xi)) and then sends
C = (t, rt, t

′, r′t, Xi, Yj , σj) to the instrument.
2. Response. The instrument checks that the re-

ceived Xi (inside C) is indeed the instrument’s
public key. Then it checks the validity of the au-
ditor’s signature σj , with respect to the public key
Yj . An actual implementation needs to perform
various other verifications, such as checking that
the pair of timestamps is acceptable: well ordered,
and consistent with a trusted local clock (if avail-
able). If any verification fails, then the instrument
aborts the interaction. Otherwise it produces the
proof π = Π(C, S), i.e., a Ct-bound ZKPoK of
“S satisfying H(S) = h”. Finally, the instrument
signs the proof, obtaining Sign[xi](π), and sends
(π, σi) to the auditor.

3. Local verification and transfer. The au-
ditor checks the validity of (π, σi), i.e., that
VerProof[h](π,C) = true and VerSign[Xi](σi, π) =
true. Note that this implies that the proof was
produced after the randomness values rt and r′t
were generated. The auditor then transfers the
tuple (C, π, σi) to the authority.

4. Central verification. The authority makes the
necessary checks, including that the proof is valid
and is bound to the appropriate context — ap-
propriate timestamps, requested by auditor j, and
produced by instrument i after the beacon value
rt was generated. The authority then stores the
proof and associated context. Conceivably, this
can later be publicly audited.

The described protocol is agnostic to the ZKPoK tech-
nique used to prove knowledge of a hash pre-image. This
may be based on a general-purpose ZKPoK technique
to prove knowledge of the input of a function (a hash,
in this case), which yields the output h. The details are
beyond the scope of this paper. However, we note that

4

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

computing such ZKPoK entails not only every step of
the computation of h = H(S), which processes every bit
of S, but also a multiplicative overhead of the ZKP to
prove that each of those steps was correctly performed.

3.3. A lightweight ZKASP protocol

It is conceivable that low-resource devices may be un-
able to efficiently perform the generic ZKPoK described
in Section 3.2. For those cases, we describe a much more
efficient approach, essentially based on a simple discrete-
log ZKPoK (a Schnorr proof [Sch91]). The tradeoff, as
compared with the previous solution, is that it requires
a more active role by the authority (or the vendor) and
a corresponding synchronization by the auditor.

Elliptic curve parameters. The system uses global
elliptic curve parameters [SP 800-186] agreed by every
party. These include a cyclic group Gq of order q and gen-
erator G, e.g., based on Curve25519 [RFC 7748; Ber06],
which can be the same as already used for signatures.

Frequent fresh commitments. For this lightweight solu-
tion, we assume that a trusted party with knowledge of
the software S periodically obtains the most recent pub-
lic randomness pulse Bτ , with random output value ρ
and timestamp τ , uses them to compute a secret value
hτ = H(ρ||S), and then commits to it by publishing
Qτ = hτ ·G. The operation · represents a multiplication
in the elliptic curve. Therefore, Qτ is simply a point on
Curve25519, which can be represented by a 256-bit in-
teger. Under standard cryptographic assumptions, the
publication of Qτ does not reveal hτ .

Since Qτ changes frequently (the frequency can be as
high as the beacon period allows, e.g., once per minute),
the knowledge of hτ = H(ρ||S) can be used as a proxy
for the knowledge of S. However, note that the pe-
riod for producing new values Qτ may be larger than
the beacon pulsating period. To prove knowledge of hτ ,
the following (Schnorr-based) protocol suffices.

Auditor-Instrument interaction:
1. External challenge. In comparison with the base-

line protocol described in Section 3.2, the external
challenge prepared by the auditor (verifier) has
two additional elements: τ , ρ. The challenge be-
comes C = (τ, ρ, t, rt, t

′, r′t, Xi, Yj , σj), where σj =
Sign[yj] ((τ, ρ, t, rt, t′, r′t, Xi)). Recall that t and t′

are the timestamps of the beacon and the auditor.
2. Response. The instrument (prover) makes the

necessary checks, including that the embedded iden-
tifiers and the signature σj are valid, and that the
triplet of timestamps (τ, t, t′) is acceptable. If any
check fails, then the instrument aborts. Otherwise,
it computes the hash hτ = H(ρ||S) and its commit-
ment Qτ = hτ ·G. Then, the instrument produces
the proof π (a ZKPoK of the discrete-log of Qτ):
(a) selects a random number u and computes its

“commitment” U = u ·G;
(b) computes the internal “challenge” c = H (C||U)

(c) computes the “answer” z = u+ c · hτ (mod q);
The prover defines π = (U, z) and signs it σ =
Sign[xi](π) and then sends (π, σi) to the verifier.

3. Local verification and transfer. The verifier
accepts the proof if and only if z · G = U + c · Qτ ,
where c is computed as also prescribed in step 2(b)
for the instrument. The transfer to a central au-
thority and the central verification follow the same
logic as in the baseline protocol.

Note that U and (c·Qτ) are points in the elliptic curve,
and the last addition is an elliptic curve operation. This
is known as a Schnorr proof [Sch91] and, under stan-
dard cryptographic assumptions, securely demonstrates
knowledge of hτ , the discrete-log of Qτ . By proxy, as-
suming that the instrument did not receive the value
hτ from an adversary, it follows that the instrument
must have known the entire software S to learn hτ .

3.4. Clarifications for implementation

Next, we clarify some aspects of the presented protocols.

Timestamps. The described protocols include various
timestamps. Ideally these would be very close to each
other, but it is possible to have some discrepancies,
namely if the period for generating new commitments Qτ

is larger than the beacon’s period. One advantage of in-
cluding the timestamp t′ from the auditor’s clock is that
it constitutes an assertion of the auditor’s responsibility.
One advantage of including the timestamp(s) from the
beacon pulse(s) (whose randomness is/are used) is that
it facilitates verifying whether the time discrepancies
(namely with the auditor’s timestamp) are acceptable
(according to some chosen rule). A concrete implemen-
tation can also decide to bind to the proof a timestamp
from the instrument’s local clock (if/when available).

Knowledge of the instrument’s public key. The descrip-
tion assumes that the auditor knows in advance the in-
strument’s public key Xi. This does not have to be the
case. If unknown at start, Xi can be discovered through
a standard handshake process or even from a physically
stamped code on the instrument. This may be useful
for the case of a member of the public acting as auditor.

External challenge. It is important to note that the
external challenge Ct is not (and does not replace)
what is sometimes called the [internal] “challenge” of
a ZKPoK. In the presented protocols, we are prepend-
ing the external-challenge message to what can then
be a non-interactive ZKPoK, whose internal challenge
component is computed (by the instrument) using the
Fiat-Shamir heuristic [FS87].

5

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

4. Security considerations

4.1. Basic properties

Important security properties for the legal metrology
system stem essentially from the underlying building
blocks: ZKPoK and beacon randomness. Informally:

• Completeness. If every party is honest, then the
system leads the auditors to obtain valid proofs from
instruments. These proofs can later be validated by
the authority and even verified by the public.

• Soundness. A party without access to the soft-
ware cannot produce a signature. This stems from
the “extractability” property of the ZKPoK, i.e.,
that producing a valid proof implies being able to
write down the full software string. Furthermore,
the use of a signature also implies access to the
secret key of the instrument names in the proof.
In practice, we are satisfied with computational
soundness (as is the case already with signatures),
meaning that it relies on cryptographic assump-
tions (e.g., intractability of computing a discrete
logarithm in some mathematical group).

• Zero-knowledge (with transferability). By
definition, the ZKPoK does not reveal any infor-
mation (in a cryptographic sense) about the soft-
ware. However, it is noteworthy that the use of the
Fiat-Shamir technique (for a non-interactive proof)
makes the proof transferable, meaning that one
gains the ability to prove that someone has knowl-
edge of the software. This is an intentional feature.
The digital signature also corresponds to a trans-
ferable proof of access to (i.e., of knowledge of) the
private signing key that corresponds to the public
verification key (the instrument’s public key) that
was bound to the proof of knowledge of software.

• Verifiable freshness. The use of public random-
ness from a randomness beacon binds the proof to
a public timestamped value trusted to be unpre-
dictable before the timestamp. This means that
no one could have generated the proof before said
timestamps. This enables placing an upper bound
on the age of a proof.

The use of a digital signature scheme is crucial for
ZKASP, to provide authenticity of the author of a
proof. In turn, this prevents proxy attacks. Naturally,
this relies on a trust model about public keys, which
can be supported on a public key infrastructure and
blockchains [MMACR19; MMPM20; PWTS18]. Fur-
thermore, the legal metrology framework itself should
promote a system of transparency, which may, for ex-
ample, include making publicly accessible a list of the
public keys of all measuring instruments.

A formal security analysis should consider an ide-
alization of security, such as in the ideal/real simula-
tion paradigm, e.g., in the universal composability (UC)
framework [Can01].

4.2. Adversaries without the approved software

The following paragraphs discuss what can(not) be
achieved by an adversary without the software, with re-
spect to forging proofs. The considerations are intended
as clarifying comments to convey intuition about secu-
rity properties. However, they are not a proof of secu-
rity. Concrete protocols following the ZKASP approach
(i.e., building on fresh, transferable ZKPs of software
possession) should be accompanied by a specific formu-
lation of the properties intended of the system model
(possibly derived from a so-called ideal model) and how
they are achieved by the proposed concrete protocol.

Goal: A malicious instrument, without the valid soft-
ware, wants to produce a valid proof of correct software
possession. For example, either an adversary has re-
placed the instrument’s software, or the instrument has
not undergone a mandatory software update.

Capabilities: The adversary (e.g., a malicious auditor)
has access to honest instruments and is able to request
valid proofs from them, being able to completely deter-
mine the used challenges. However, the adversary is
assumed to not be able to exfiltrate the private signing
key or the approved software from deployed measuring
instruments.

Impracticable attacks: ZKASP inhibits the well-known
proxy attacks and precomputing attacks [SL16] against
device attestation protocols.

• Pre-computing attack (trying to reuse old
proofs): A malicious auditor is able to interact
with an honest instrument and thereby obtain
many proofs. In an unprotected system, the au-
ditor could later try to reuse the pre-computed
proofs, when, in fact, the instrument would already
have been corrupted and no longer possess the
correct software. ZKASP prevents this forgery of
younger proof ages, because of its binding to times-
tamped (unpredictable) beacon randomness. If at
a time t (with precision in minutes) the instrument
loses access to the software, from that moment on-
ward it will not be able to produce a proof with an
acceptable claim that it was produced after time t.

• Proxy attack (trying to use proofs from
others): In unprotected attestation protocols, the
adversary may try to act as a malicious instrument
(without the approved software), evading the attes-
tation by redirecting the challenge to a nearby hon-
est instrument, acting as a proxy [PSLP12]. This is
not possible in ZKASP, since the proofs of software
possession (ZKPoK) produced by other honest in-
struments (with access to the software) are bound
to the instrument’s identity, and will therefore not
be valid if claimed by other instruments.

6

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

4.3. Adversaries with the approved software

It is important to bear in mind that the ZKASP ap-
proach proposes a proof of possession, which is not equiv-
alent to a proof about the entire memory of the instru-
ment. For example, an instrument capable of retaining
the correct software and additional malicious code will
still be an instance of possession of the correct software.

Possible attacks in which the adversary possesses the
approved software are out of scope for resolution in this
paper. Yet, it is instructive to consider their possibility.

• Compression attack: the adversary compresses
the approved software and then adds a small mali-
cious code in the instrument’s memory [CFPS09].

• Time-of-check to time-of-use (TOCTOU) at-
tack: a malicious instrument can download the ap-
proved software just in time for attestation, but all
other times use a malicious software [NJRT20].

• Collusion attack: two malicious instruments
have complementary pieces of the approved soft-
ware; together they can reconstruct the entire
approved software [YWZC07].

• Proofs-as-a-service (PaaS): an adversary that
knows the approved software can create a proof
that is bound to the public key of an instrument
that does not possess the software; then, this ad-
versary could provide (e.g., sell) this forged proof
to a corrupted instrument that would simply sign
the proof, thereby obtaining the two elements (π, σ)
needed to trick the authority into believing that a
valid attestation has been performed.

Despite the above attacks, the attestation provided
by ZKASP addresses an important problem. It prevents
malicious instruments from posing as honest, when
oblivious of the confidential correct software and un-
aided by an adversary knowledgeable of the software.

Possible attacks in which the adversary possesses the
approved software do not break the semantics of the
proof, although it shows one limitation of the ZKASP
approach. This case is out of scope of resolution in this
paper, but for concrete schemes it is worth consider-
ing what complementing techniques may be possible to
implement. For example:

• System restrictions. The compression at-
tack can conceivably be prevented by a non-
compressing software string that fills up the entire
memory. The TOCTOU and collusion attacks may
be mitigatable by hardware restricting the interac-
tion capabilities of the instrument. While these are
conceivable mitigations, ensuring the mentioned re-
strictions is not trivial in practice.

• More sophisticated ZKPoK. The described
PaaS attack requires manipulating the instrument
to sign a forged proof. Conceivably, this can be
mitigated by a more sophisticated ZKPoK that
would be verifiably bound also to the private key
of the instrument, rather than only to the public

key, in a way that prevents the malicious auditor
from building the proof alone. In other words, the
idea would be to require a much higher interaction
between the holder of the key and the holder of
the software. A proof of software possession would
still be possible via an interactive secure computa-
tion between the instrument and the malicious au-
ditor, each with the corresponding secret (private
key and software, respectively). While this would
not eliminate the possibility of the attack (after all,
the pair of colluding parties knows the entire secret
needed to produce the proof), it would increase the
practical difficulty / deterrent for collusion.

5. Discussion

ZKASP is an approach to attestation of software pos-
session by measuring instruments in a legal metrology
framework. The approach enables public auditability
and allows attestation to auditors not in possession of
the software. The approach makes essential use of a
ZKPoK in combination with a public randomness server.

5.1. Foreseen ZKASP deployment

An adoption of the ZKASP approach is expected to
be suitable for deployment in instruments with micro-
controllers running without an operating system. These
micro-controllers, used in “built-for-purpose measuring
instruments” — a type P computer, according to the
European Cooperation in Legal Metrology (WELMEC)
Guide 7.2 [WEL20] — would be chosen to support a
chosen ZKPoK. Instruments such as fuel dispensers (gas
pumps), utility meters, grain moisture meters, and non-
automatic weighing instruments (grocery store scales)
are examples of measuring instruments that could ben-
efit from ZKASP. It is worth noting that ZKASP is
a hybrid device attestation protocol [SL16] that de-
pends on software and specialized hardware to secure
the instrument’s secret signing key. (General-purpose
computers running with an operating system are more
flexible for other attestation approaches [PPST15].)

Concrete implementations are beyond the scope of
this paper but, even in settings where the general
ZKASP approach (a direct ZKPoK of a pre-image of
the hash of a long software) may be too expensive (say,
due to low resources of the micro-controller), it is possi-
ble to consider the described lightweight version, based
on a very efficient Schnorr proof (Section 3.3), albeit
requiring a more active role by the authority and syn-
chronization by the auditor.

5.2. Expectations about ZKASP

It is important to differentiate between what ZKASP
solves and what it does not. To start, a proof of knowl-
edge/possession of the correct software does not guar-
antee absence of an additional incorrect software. So,

7

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

in some cases an attacker may be able to subvert a
measuring device by injecting code that controls the
operation, and that has access to the correct software,
in order to generate a valid proof of knowledge when
requested. For example, it is conceivable that a ma-
licious code injection would make the display screen
always show an amount increased by a constant factor,
in comparison with the correct measurement.

Despite the above, ZKASP at least impedes the gen-
eration of a valid proof by attackers that do not “know”
(or do not have access to) the correct software. There-
fore, if a client checks the proof as a condition of paying,
then it will not be victimized by a device that does not
possess the correct software. Also, if a physical system
is able to guarantee that the software that executes in
connection with a measuring operation is the software
about which a proof of knowledge is performed, then
the proof does provide additional assurance of which
software has operated. (It may still be significantly
difficult to guarantee that the software did not change
between the check and the use.) Furthermore, one can
also consider having the software (the one being at-
tested) digitally signing the measuring results, so that
the later signature verification (say, by the customer,
using a personally-owned mobile device) serves as an
additional check before deciding “what to pay”. While
such complementary procedures can serve as additional
deterrents against corrupted measurement results, the
remainder of the paper is focused only on the actual
ZKASP proposal.

5.3. ZKASP for a digital transformation of legal
metrology

The European Union is under a digital transformation
of the legal metrology infrastructure, known as The
European Metrology Cloud [Thi18]. In the Metrology
Cloud, the manipulation of sensors became an impor-
tant attack vector [OETS18]. ZKASP can mitigate
this attack vector, by having the computer play the
role of verifier. It can perform the attestation of several
sensors in its neighborhood area network [BSK10] and
report the results to the Metrology Cloud. It can also
be applied to prove proper updating of software.

The ZKASP approach can also be used to empower
customers as verifiers. The authority can enable a sys-
tem (e.g., a mobile application) that allows customers
to communicate with instruments, run the device at-
testation, and report proofs. The authority can crowd-
source the collected data to better direct the placement
of market surveillance operations. In this scenario, the
approved software should enforce a period between sub-
sequent attestations to prevent denial of service attacks.

6. Conclusions

This paper presented ZKASP, an approach for ZKP-
based attestation of software possession, for measuring
instruments in a legal metrology context. It combines
a ZKPoK protocol, as well as randomness from a public
beacon, to address challenges of device attestation. The
ZKPoK allows the verifier (auditor) to remain oblivious
of the content of the software embedded in the audited
instrument. The use of beacon randomness establishes a
publicly verifiable upper bound on the age of each proof.

ZKASP is a proposal where cryptography meets
metrology. It combines a privacy-enhancing crypto-
graphic tool (ZKPoK) and verifiable randomness to en-
hance the security guarantees of a real use-case require-
ment (attestation of software possession) of legal metrol-
ogy. Being a high-level proposal, there are various as-
pects that deserve a closer look.

The choice of concrete instantiation options can de-
pend on the exact context, e.g., the computational
power of the processing unit (often micro-controllers) of
the measuring instruments. Interesting options concern
the choice of hash function, which may vary between
the widely recognized secure hash algorithm (SHA)
family standard and other more-recent proposals of
ZKP-friendly hashes.

Acknowledgments. We thank Michael Davidson and
Irena Bojanova from NIST and the anonymous reviewer
from the Measurement Science and Technology journal
for their useful editorial comments.

References

[Ber06] D. J. Bernstein. “Curve25519: New Diffie-Hellman
Speed Records”. In: Public Key Cryptography — PKC
2006. Ed. by M. Yung, Y. Dodis, A. Kiayias, and T.
Malkin. Springer Berlin Heidelberg, 2006, pp. 207–228.
doi: 10.1007/11745853_14.

[BSK10] R. Berthier, W. H. Sanders, and H. Khurana. “In-
trusion detection for advanced metering infrastructures:
Requirements and architectural directions”. In: 2010 First
IEEE International Conference on Smart Grid Com-
munications. IEEE. 2010, pp. 350–355. doi: 10 . 1109 /
SMARTGRID.2010.5622068.

[Can01] R. Canetti. “Universally composable security: a
new paradigm for cryptographic protocols”. In: Proceed-
ings 42nd IEEE Symposium on Foundations of Computer
Science. 2001, pp. 136–145. doi: 10 . 1109 / SFCS . 2001 .
959888.

[CFPS09] C. Castelluccia, A. Francillon, D. Perito, and
C. Soriente. “On the difficulty of software-based attesta-
tion of embedded devices”. In: Proceedings of the 16th
ACM conference on Computer and communications secu-
rity. 2009, pp. 400–409. doi: 10.1145/1653662.1653711.

8

https://doi.org/10.1007/11745853_14
https://doi.org/10.1109/SMARTGRID.2010.5622068
https://doi.org/10.1109/SMARTGRID.2010.5622068
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/1653662.1653711

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

[CGLH+11] G. Coker, J. Guttman, P. Loscocco, A. Her-
zog, J. Millen, B. O’Hanlon, J. Ramsdell, A. Segall, J.
Sheehy, and B. Sniffen. “Principles of remote attestation”.
In: International Journal of Information Security 10.2
(2011), pp. 63–81. doi: 10.1007/s10207-011-0124-7.

[CLL20] A. Corallo, M. Lazoi, and M. Lezzi. “Cybersecu-
rity in the context of industry 4.0: A structured classifica-
tion of critical assets and business impacts”. In: Computers
in industry 114 (2020), p. 103165. doi: 10.1016/j.compind.
2019.103165.

[ERT17] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik.
“HYDRA: hybrid design for remote attestation (using a
formally verified microkernel)”. In: WiSec’17: Proceedings
of the 10th ACM Conference on Security and Privacy in
wireless and Mobile Networks. July 2017, pp. 99–110. doi:
10.1145/3098243.3098261.

[FS87] A. Fiat and A. Shamir. “How To Prove Yourself:
Practical Solutions to Identification and Signature Prob-
lems”. In: Advances in Cryptology — CRYPTO’ 86. Ed. by
A. M. Odlyzko. Springer Berlin Heidelberg, 1987, pp. 186–
194. doi: 10.1007/3-540-47721-7_12.

[FIP11] M. J. Fischer, M. Iorga, and R. Peralta. “A public
randomness service”. In: Proceedings of the International
Conference on Security and Cryptography. IEEE. 2011,
pp. 434–438. doi: 10.5220/0003612604340438.

[Gal13] J.-P. Galland. “The difficulties of regulating mar-
kets and risks in Europe through notified bodies”. In:
Eur. J. Risk Reg. 4 (2013), p. 365. doi: 10 . 1017 /
S1867299X00002634.

[ISZ17] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni. “SeED:
secure non-interactive attestation for embedded devices”.
In: WiSec’17: Proceedings of the 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks.
2017, pp. 64–74. doi: 10.1145/3098243.3098260.

[Kel19] M. Kellermann. Comprehensive Diagnostic Tool.
Annex to the QI Toolkit. The World Bank, 2019. Chap. 11,
pp. 187–207. https : / / www . worldbank . org / en / topic /
competitiveness/brief/qi.

[KBPB19] J. Kelsey, L. T. A. N. Brandão, R. Peralta, and
H. Booth. A Reference for Randomness Beacons: Format
and Protocol Version 2. Draft NISTIR 8213. 2019. doi:
10.6028/NIST.IR.8213-draft.

[KBGK17] F. Kohnhäuser, N. Büscher, S. Gabmeyer, and
S. Katzenbeisser. “Scapi: a scalable attestation protocol
to detect software and physical attacks”. In: Proceedings
of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks. 2017, pp. 75–86. doi:
10.1145/3098243.3098255.

[MMPM20] W. Melo, R. C. Machado, D. Peters, and M.
Moni. “Public-Key Infrastructure for Smart Meters using
Blockchains”. In: 2020 IEEE International Workshop on
Metrology for Industry 4.0 & IoT. IEEE. 2020, pp. 429–
434. doi: 10.1109/MetroInd4.0IoT48571.2020.9138246.

[MMACR19] W. Melo Jr, R. Machado, B. Abreu, L. F. R.
da Costa Carmo, and R. Ramos. “Certificação Digi-
tal como Ferramenta de Segurança para Medidores In-
teligentes”. In: Anais Estendidos do IX Simpósio Brasileiro
de Engenharia de Sistemas Computacionais. SBC. 2019,
pp. 89–94. doi: 10.5753/sbesc_estendido.2019.8641.

[MANSV20] T. Mustapää, J. Autiosalo, P. Nikander, J. E.
Siegel, and R. Viitala. “Digital metrology for the Internet
of Things”. In: 2020 Global Internet of Things Summit
(GIoTS). IEEE. 2020, pp. 1–6. doi: 10.1109/GIOTS49054.
2020.9119603.

[NJRT20] I. D. O. Nunes, S. Jakkamsetti, N. Rat-
tanavipanon, and G. Tsudik. On the TOCTOU problem
in remote attestation. arXiv: Cryptography and Security
(cs.CR). 2020. arXiv:2005.03873.

[OIM12] OIML. OIML D 1:2012: Considerations for a Law
on Metrology. Organization Internationale de Métrologie
Légale. 2012. https ://www.oiml .org/en/files/pdf_d/
d001-e12.pdf.

[OIM13] OIML. OIML V 1: International vocabulary of
terms in legal metrology (VIML). Organization Interna-
tionale de Métrologie Légale. 2013. http://viml.oiml.info.

[OETS18] A. Oppermann, M. Esche, F. Thiel, and J.-P.
Seifert. “Secure Cloud Computing: Risk Analysis for Se-
cure Cloud Reference Architecture in Legal Metrology”.
In: 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE. 2018, pp. 593–602.
doi: 10.15439/2018F226.

[PSLP12] H. Park, D. Seo, H. Lee, and A. Perrig. “SMATT:
Smart meter attestation using multiple target selection
and copy-proof memory”. In: Computer Science and its
Applications. Springer, 2012, pp. 875–887. doi: 10.1109/
SECPRI.2004.1301329.

[PPST15] D. Peters, M. Peter, J.-P. Seifert, and F. Thiel.
“A secure system architecture for measuring instruments
in legal metrology”. In: Computers 4.2 (2015), pp. 61–86.
doi: 10.3390/computers4020061.

[PWTS18] D. Peters, J. Wetzlich, F. Thiel, and J.-P.
Seifert. “Blockchain applications for legal metrology”. In:
2018 IEEE International Instrumentation and Measure-
ment Technology Conference (I2MTC). IEEE. 2018, pp. 1–
6. doi: 10.1109/I2MTC.2018.8409668.

[PYMS+20] D. Peters, A. Yurchenko, W. Melo, K. Shi-
rono, T. Usuda, J. Seifert, and F. Thiel. “IT security
for measuring instruments: confidential checking of soft-
ware functionality”. In: Advances in Intelligent Systems
and Computing; Springer: Cham, Switzerland 1129 (2020),
pp. 701–720. doi: 10.1007/978-3-030-39445-5_51.

[PBMC+14] C. B. do Prado, D. R. Boccardo, R. C.
Machado, L. F. da Costa Carmo, T. M. do Nascimento,
L. M. Bento, R. O. Costa, C. G. de Castro, S. M. Câmara,
L. Pirmez, et al. “Software Analysis and Protection for
Smart Metering”. In: NCSLI Measure 9.3 (2014), pp. 22–
29. doi: 10.1080/19315775.2014.11721691.

[PBOE+21] A. Przyklenk, A. Balsamo, D. O’Connor, A.
Evans, T. Yandayan, A. Akgöz, O. Flys, D. Phillips, V. Ze-
leny, D. Czułek, et al. “New European Metrology Network
for advanced manufacturing”. In: Measurement Science
and Technology (2021). doi: 10.1088/1361-6501/ac0d25.

[Sch91] C.-P. Schnorr. “Efficient signature generation by
smart cards”. In: Journal of cryptology 4.3 (1991), pp. 161–
174. doi: 10.1007/BF00196725.

9

https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1016/j.compind.2019.103165
https://doi.org/10.1016/j.compind.2019.103165
https://doi.org/10.1145/3098243.3098261
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.5220/0003612604340438
https://doi.org/10.1017/S1867299X00002634
https://doi.org/10.1017/S1867299X00002634
https://doi.org/10.1145/3098243.3098260
https://www.worldbank.org/en/topic/competitiveness/brief/qi
https://www.worldbank.org/en/topic/competitiveness/brief/qi
https://doi.org/10.6028/NIST.IR.8213-draft
https://doi.org/10.1145/3098243.3098255
https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138246
https://doi.org/10.5753/sbesc_estendido.2019.8641
https://doi.org/10.1109/GIOTS49054.2020.9119603
https://doi.org/10.1109/GIOTS49054.2020.9119603
https://arxiv.org/abs/2005.03873
https://www.oiml.org/en/files/pdf_d/d001-e12.pdf
https://www.oiml.org/en/files/pdf_d/d001-e12.pdf
http://viml.oiml.info
https://doi.org/10.15439/2018F226
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.3390/computers4020061
https://doi.org/10.1109/I2MTC.2018.8409668
https://doi.org/10.1007/978-3-030-39445-5_51
https://doi.org/10.1080/19315775.2014.11721691
https://doi.org/10.1088/1361-6501/ac0d25
https://doi.org/10.1007/BF00196725

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

[SPVK04] A. Seshadri, A. Perrig, L. Van Doorn, and P.
Khosla. “SWATT: Software-based attestation for embed-
ded devices”. In: IEEE Symposium on Security and Pri-
vacy, 2004. Proceedings. 2004. IEEE. 2004, pp. 272–282.
doi: 10.1109/SECPRI.2004.1301329.

[SL16] R. V. Steiner and E. Lupu. “Attestation in wireless
sensor networks: A survey”. In: ACM Computing Surveys
(CSUR) 49.3 (2016), pp. 1–31. doi: 10.1145/2988546.

[Thi18] F. Thiel. “Digital transformation of legal metrol-
ogy — The European Metrology Cloud”. In: OIML Bul-
letin 59.1 (2018), pp. 10–21. https://www.oiml.org/en/
publications/bulletin.

[WEL20] WELMEC. WELMEC 7.2: Software Guide (Mea-
suring Instruments Directive 2014/32/EU). 2020. https:
//www.welmec.org/guides-and-publications/guides.

[YWZC07] Y. Yang, X. Wang, S. Zhu, and G. Cao. “Dis-
tributed software-based attestation for node compromise
detection in sensor networks”. In: 2007 26th IEEE Interna-
tional Symposium on Reliable Distributed Systems (SRDS
2007). IEEE. 2007, pp. 219–230. doi: 10.1109/SRDS.2007.
31.

[BeaconBR] INMETRO. INMETRO Randomness Beacon.
https://beacon.inmetro.gov.br/. Accessed August 2020.

[BeaconCL] UChile. Randomness Beacon — Random
UChile. https : / / random . uchile . cl / en / randomness -
beacon/. Accessed August 2020.

[BeaconUS] NIST. NIST Randomness Beacon. https : / /
beacon.nist.gov. Accessed August 2020.

[FIPS 180-4] National Institute of Standards and Technol-
ogy (2015). Secure Hash Standard (SHS). (U.S. Depart-
ment of Commerce) Federal Information Processing Stan-
dards Publication (FIPS PUBS) 180-4. Aug. 2015. doi:
10.6028/NIST.FIPS.180-4.

[FIPS 186-5] National Institute of Standards and Technol-
ogy (2019). Digital Signature Standard (DSS). (U.S. De-
partment of Commerce) Draft Federal Information Pro-
cessing Standards Publication (FIPS PUBS) 186-5. Oct.
2019. doi: 10.6028/NIST.FIPS.186-5-Draft.

[RFC 5280] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. “Internet X.509 Public Key In-
frastructure Certificate and CRL Profile”. In: RFC 5280.
Request for Comments 5280 (May 2008), pp. 1–151. doi:
10.17487/RFC5280.

[RFC 7748] A. Langley, M. Hamburg, and S. Turner. “El-
liptic Curves for Security”. In: RFC 7748. Request for
Comments 7748 (Jan. 2016), pp. 1–22. doi: 10 . 17487 /
RFC7748.

[RFC 8446] E. Rescorla. “The Transport Layer Security
(TLS) Protocol Version 1.3”. In: RFC 8446. Request for
Comments 8446 (Aug. 2018), pp. 1–129. doi: 10.17487/
RFC8446.

[SP 800-186] L. Chen, D. Moody, A. Regenscheid, and K.
Randall. Recommendations for Discrete Logarithm-Based
Cryptography: Elliptic Curve Domain Parameters. (U.S.
Department of Commerce) National Institute of Stan-
dards and Technology. Draft NIST Special Publication
(SP) 800-186. Oct. 2019. doi: 10.6028/NIST.SP.800-186-
draft.

[ZKProof] ZKProof (many contributors). ZKProof Com-
munity Reference. Version 0.2. Editors: D. Benarroch,
L.T.A.N. Brandão, E. Tromer. 2019. https://zkproof.org.

A. Figure for the Baseline ZKASP protocol

Figure 2 shows a detailed list of steps to implement the
baseline ZKASP protocol.

The chosen flow with the specified “assignment of audit-
ing task” phase is designed for a system where it is desirable
that the auditor can justify (based on a request from the au-
thority) every auditing request that it then makes to the
instrument. Other variants can be considered. For example,
if the auditor (possibly a customer) does not know h in ad-
vance and it learns it from the instrument, later the proof
of correctness of the proof can only be verified against such
value, deferring to the authority the verification of whether
or not such h is legitimate. One can also consider the case
where the instrument makes available at least the auditor’s
and vendor’s signatures of h, i.e., (σA, σV), along with cor-
responding certified public keys.

Functions with self-explanatory names. The fol-
lowing labels are assumed to be self-explanatory: Get-
BeaconPulse(); GetLocalTime(); ExtractTimeRand(Bt);
ExtractRand(Bt); GetLocalRand(); GetLocalState(sid);
GetState(sid); GetTypeApprovalInfo(); VerProof[h](C, S);
VerTimes(t, t′[, t′′]); VerSign[A](msg); StoreState();
Sign[a](msg), Store(...). Their implementation can vary
based on locally decided requirements, e.g., for how long to
keep state, what time-intervals to allow, etc.

Other functions/operations.
• NextAudit() selects an available auditor Yi to audit the

instrument Xi that has embedded the software h.
• GetSessionId(t1, Xi, h, Yj) must return a nonce (an ele-

ment that never repeats across more than one session).
If the system ensures that the time t1 never repeats
for two assignment tasks, the function (GetSessionId)
can return a collision-resistant hash value. Otherwise,
it could be a hash whose pre-image further contains a
non-repeating counter or randomness.

• MsgXXXtoYYY[A,B](msg): entity of type XXX
(Auth, Audi, or Inst), with public key A, sends mes-
sage msg to entity of type YYY, with public key B.

• VerGetState(t′) returns C and h (StoreState[t′]) only
if: C contains t′; C is recent; and C has not been used
to produce a proof. Otherwise, it raises an exception.

10

https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1145/2988546
https://www.oiml.org/en/publications/bulletin
https://www.oiml.org/en/publications/bulletin
https://www.welmec.org/guides-and-publications/guides
https://www.welmec.org/guides-and-publications/guides
https://doi.org/10.1109/SRDS.2007.31
https://doi.org/10.1109/SRDS.2007.31
https://beacon.inmetro.gov.br/
https://random.uchile.cl/en/randomness-beacon/
https://random.uchile.cl/en/randomness-beacon/
https://beacon.nist.gov
https://beacon.nist.gov
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-5-Draft
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.6028/NIST.SP.800-186-draft
https://doi.org/10.6028/NIST.SP.800-186-draft
https://zkproof.org

ZKASP L. T. A. N. Brandão, C. E. C. Galhardo and R. Peralta

Setup Inputs
Auth : (a,A) (own priv-pub key pair) (1)
Audi : (yj , Yj) (own priv-pub key pair),

A (Auth’s pub key), V (vendor’s pub key) (2)
Inst : (xi, Xi) (own priv/pub key pair), S (software) (3)

Auth: Assignment of auditing task
(Xi, h, Yj) = NextAudit() (4)
(t0, rt0, σA, σV) = GetTypeApprovalInfo(h) (5)
t1 = GetLocalTime() (6)
sid = GetSessionId(t1, Xi, h, Yj) (7)
σ′
A = Sign[a]((sid, t1, Xi, h, Yj)) (8)

StoreState[sid] = (t1, Xi, h, Yj , σ
′
A) (9)

curr = (t1, Xi, h, σ
′
A) (10)

approved = (t0, rt0, σA, σV) (11)
MsgAuthToAudi[A, Yj](task, sid, curr, approved) (12)

Audi (Yj): External Challenge (on input (12))
If σA and σV are not previously checked: (13)

VerSign[A](σA, (t0, rt0, h)) (14)
VerSign[V](σV , (t0, rt0, h)) (15)

VerSign[A](σ′
A, (sid, t1, Xi, h, Yj)) (16)

Bt = GetBeaconPulse[latest] (17)
(t, rt) = ExtractTimeRand(Bt) (18)
t′ = GetLocalTime() (19)
r′t = GetLocalRand() (20)
σj = Sign[yj]((sid, t, rt, t′, r′t, Xi, h)) (21)
C = (sid, t, rt, t

′, r′t, Xi, Yj , σj) (22)
StoreState[t′] = (C, h) (23)
MsgAudiToInst[Yj , Xi](chall, C, h) (24)

Inst (Xi): Response(on input (24))
[parse] (sid, t, rt, t′, r′t, Xi, Yj , σj) = C (25)
Xi =

? Xi (26)
VerSign[Yj](σj , (sid, t, rt, t

′, r′t, Xi, h)) (27)
t′′ = GetLocalTime() [optional] (28)
VerTimes(t, t′[, t′′]) (29)
Hash(S) =? h (30)
π = Πhash(C, S) = ZKPoKhash[S](h,C) (31)
σi = Sign[xi]((π, h, C)) (32)
MsgInstToAudi[Xi, Yj]((proof, t′, π, σi)) (33)

Audi (Yj): Audit and Transfer (on input (33))
(C, h) = VerGetState(t′) (34)
VerProof[h](π,C) (35)
VerSign[Xi](σi, (π, h, C)) (36)
MsgAudiToAuth[Yj , A](transfer, (C, π, σi)) (37)

Auth: Central verification (on input (37))
t2 = GetLocalTime() (38)
[parse] (sid, t, rt, t′, r′t, Xi, Yj , σj) = C (39)
Bt = GetBeaconPulse[t] (40)
ExtractRand(Bt) =

? rt (41)
(t1, Xi, h, Yj , σ

′
A) = GetState(sid) (42)

(Xi, Yj) =
? (Xi, Yj) (43)

VerTimes(t, t′[, t2]) (44)
VerSign[Yj](σj , (t, rt, t

′, r′t, Xi, h)) (45)
VerProof[h](π,C) (46)
VerSign[Xi](σi, (π, h, C)) (47)
LE = (sid, t1, σ

′
A, t2, h, C, π, σi, Bt) (48)

σ′′
A = Sign[a](LE) (49)

Store((LE, σ′′
A)) (50)

Legend: Audi: Auditor. Auth: Authority. Bt: beacon pulse with timestamp t. C: external challenge. h: hash of
the software. Inst: Instrument. LE: tuple variable indicating a log entry. LS: tuple variable indicating a local state; π:
proof transcript. Π: (probabilistic) function to produce a C-bound non-interactive ZKPoK of pre-image S of the hash h.
rt: random output value (randOut) from pulse Bt. r′t: local random value from Audi. sid: session id. σi, σj : signatures
by Inst i and Audi j, respectively. σA, σV : signatures by Auth and Vendor at the time of software approval. σ′

A: Auth’
s signature of current auditing request. σ′′

A: Auth’ s signature of final log entry data. S: [expected] software in Inst
i. t: timestamp in pulse Bt. t0: timestamp of software approval signatures σA, σV t1: Auth’s timestamp of auditing
request t2: Auth’s timestamp of received auditing proof t′: local time at Audi. t′′: local time at Inst or at Auth. (xi, Xi):
private/public keys of Inst. (yj , Yj): private/public keys of Audi.

Figure 2. Baseline ZKASP protocol

11

	ZKASP: ZKP-based Attestation of Software Possession for Measuring Instruments
	Abstract
	Keywords

	1. Introduction
	1.1. Measuring instruments and legal metrology
	1.2. Device attestation
	Figure 1: Device Attestation
	1.3. Enhanced security

	2. System model and building blocks
	2.1. Participants
	2.2. Building blocks
	2.3. ZKPoK bound to time and identities

	3. ZKASP protocols
	3.1. Setup (initial deployment)
	3.2. The baseline ZKASP Protocol
	3.3. A lightweight ZKASP protocol
	3.4. Clarifications for implementation

	4. Security considerations
	4.1. Basic properties
	4.2. Adversaries without the approved software
	4.3. Adversaries with the approved software

	5. Discussion
	5.1. Foreseen ZKASP deployment
	5.2. Expectations about ZKASP
	5.3. ZKASP for a digital transformation of legal metrology

	6. Conclusions
	Acknowledgments
	References
	A. Figure for the Baseline ZKASP protocol
	Figure 2: Baseline ZKASP protocol

