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The observation of Pauli blocking of atomic spontaneous decay via direct measurements of the atomic
population requires the use of long-lived atomic gases where quantum statistics, atom recoil, and
cooperative radiative processes are all relevant. We develop a theoretical framework capable of
simultaneously accounting for all these effects in the many-body quantum degenerate regime. We apply
it to atoms in a single 2D pancake or arrays of pancakes featuring an effectiveΛ level structure (one excited
and two degenerate ground states). We identify a parameter window in which a factor of 2 extension in the
atomic lifetime clearly attributable to Pauli blocking should be experimentally observable in deeply
degenerate gases with ∼103 atoms. We experimentally observe a suppressed excited-state decay rate, fully
consistent with the theory prediction of an enhanced excited-state lifetime, on the 1S0 − 3P1 transition in
87Sr atoms.
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Introduction.—Spontaneous emission emerges from the
interaction of an excited atom with the vacuum of
electromagnetic field modes [1,2]. It depends on the
atomic internal structure but also on the density of
states of the joint atom-photon system, which can be
engineered by shaping the environment as widely dem-
onstrated in cavity [3–7], circuit [8–13], and waveguide
QED [14–16].
The emission rate can also be modified by Fermi

statistics and Pauli blocking of the motional states into
which an excited atom can decay. Since this effect was first
pointed out [17], there have been a variety of subsequent
theoretical explorations [18–26]. However, the experimen-
tal observation of Pauli blocking of radiation has been
difficult due to the complex interplay of cooperative effects
and atomic motion. Cooperative effects, arising from the
virtual exchange of photons between atoms and the
resulting dipolar interactions, can also enhance or suppress
the radiative decay rate of the system [27–39], especially at
the high densities required for Pauli blocking. At the same
time, the emission process couples the internal dynamics to
the motional states, leading to competition between the
recoil kick during emission and the extent of the Fermi sea
that blocks the decay.
Recent experiments have for the first time observed Pauli

blocking through measurements of light scattered by
atomic ensembles [40–42]. There, the mentioned undesir-
able competing effects were minimized by performing
angular-resolved measurements to select low momentum
transfer processes and by using a far detuned probe to

minimize cooperative dipolar processes and suppress the
number of excited atoms.
However, an observation of enhanced lifetimes due to

Pauli blocking by direct measurements of the excited-state
population has yet to be demonstrated. Resonantly exciting
a significant fraction of atoms to the excited state to
subsequently measure their decay may result in significant
dipolar interaction effects in striking contrast to scattering
experiments. Moreover, working on a slow transition
enabling time-resolved observation of the excited-state
population poses the challenge that radiative decay rates
and cooperative effects become comparable with the Fermi
energy and associated motional degrees of freedom, which
all need to be taken into account.
In this Letter, we develop a theoretical framework based

on a master equation formulated in momentum space
capable of describing the full dipolar dynamics of optically
excited atoms confined in two dimensions (see Fig. 1) or in
stacks of two-dimensional pancakes. While the few-body
two-level problem can be treated exactly [26], our frame-
work goes beyond this limit and, instead, is developed to
tackle multilevel atomic ensembles in the interacting
quantum degenerate regime. There, prior approaches fail
since they account for Pauli blocking in a semiclassical
noninteracting setting [23–25], include interactions for
atoms at frozen positions, neglecting the recoil momentum
[27–39], treat two-level systems in static motional states
[43,44], neglecting motional dynamics, and do not account
for the multilevel structure required for the Pauli blocking
mechanism described here.
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Our key finding is that a highly imbalanced ultracold
Fermi gas excited by a resonant π pulse (which suppresses
coherences) can feature at T=TF ∼ 0.1 (with TF the Fermi
temperature) up to 50% Pauli suppression at peak densities
of 1014 cm−3 in a parameter regime where cooperative
effects only affect the lifetime weakly. We perform mea-
surements on the 1S0 − 3P1 transition in fermionic 87Sr at
T=TF ¼ 0.6 with a natural lifetime of Γ−1 ¼ 21.3 μs.
Working with this long-lived narrow transition enables
our experiment to spectroscopically resolve the multilevel
structure and implement time-resolved measurements of
the excited-state population dynamics. We observe an up to
20% reduction of the decay rate of the excited-state
population, thus providing both theoretical predictions
and direct experimental evidence for an enhanced lifetime
of an optically excited state due to Pauli blocking.
Model.—We analyze first the case of a Fermi gas in a

single pancake in the regime where only the ground-state
harmonic oscillator mode n0;z is occupied, but motion is
allowed in x and y [Fig. 1(a)]. For simplicity, we work with
two-dimensional plane waves in x, y as our single-particle
atomic basis, labeled by the momentum k ¼ ðkx; kyÞ.
We consider an effective Λ-type internal level structure

[Fig. 1(b)] with two internal ground states as the minimal
system, allowing strong Pauli blocking even under full
excitation of one of the states, but note that our results can
be straightforwardly extended to more general multilevel

systems. For specificity we focus on the 1S0ðF ¼ 9=2Þ to
3P1ðF ¼ 11=2Þ transition of 87Sr, with the mF ¼ −9=2
excited state as e and the mF ¼ −9=2;−7=2 ground states
as g0 and g1, respectively, and set the quantization axis
along x. We assume the presence of a magnetic field large
enough to suppress transitions to other levels (which are
omitted in the figure). The atoms are initially in an
incoherent mixture with N0 atoms in g0 and N1 in g1.
This configuration features π and σ− polarized decay, at
rates Γ00 ¼ 2=11Γ and Γ11 ¼ 9=11Γ, respectively, with
Γ−1 ¼ 21.3 μs [45].
Atoms are excited by a short laser pulse with pulse area θ

and then let to evolve and decay for some time t in the dark,
after which the total excited-state population is measured
[Fig. 1(c)]. We focus on the effective decay rate γeffðθÞ ¼
limt→0

_NeeðtÞ=Neeð0Þ obtained at initial time for the total
number of excitations NeeðtÞ. While the decay rate can
change with time, in the cases discussed here, the decay at
early times is well approximated by an exponential decay
with rate γeff .
The initial excitation laser with wave number kL is

propagating along the strongly confined z direction and
linearly polarized (nL) along x so that it only excites g0
atoms to e [Fig. 1(b)]. Because of the strong confinement
along z, the motional state does not change during
excitation: the Rabi pulse transfers a g0 atom with
momentum k into the superposition cosðθ=2Þjg0;k; n0;zi þ
sinðθ=2Þje;k; n0;zi [Fig. 1(c)], where θ ¼ ΩLt with the
Rabi coupling ΩL of the g0 − e transition. The pulse is
assumed to be fast, so we can ignore any interactions
during it.
To describe the dynamics during the dark time, we start

from the usual atom-light Hamiltonian and perform a Born-
Markov approximation leading to a multilevel master
equation (ME) with dipolar interactions [46]. We further
only keep resonantly coupled pairs of modes k and q and
neglect momentum changing collisions (see Supplemental
Material [47]), which is justified at early times by the lack
of coherences in the initial state between different momen-
tum modes. For the atomic density matrix, this leads [47] to
the following ME, _̂ρ ¼ −i½Ĥ; ρ̂� þ Lðρ̂Þ with

Ĥ ¼
X

α;β

�X

k;q

Δkk;qq
αβ ĉ†e;kĉ

†
gβ ;qĉgα;kĉe;q

þ
X

k≠q
Δkq;qk

αβ ĉ†e;kĉ
†
gβ ;qĉgα;qĉe;k

�
; ð1Þ

Lðρ̂Þ ¼
X

α;β

�X

k;q

Γkk;qq
αβ ð2σ̂qqgβeρ̂σ̂kkegα − fσ̂kkegα σ̂qqgβe; ρ̂gÞ

þ
X

k≠q
Γkq;qk
αβ ð2σ̂qkgβeρ̂σ̂kqegα − fσ̂kqegα σ̂qkgβe; ρ̂gÞ

�
: ð2Þ

(a)

(d) (e)

(b) (c)

FIG. 1. (a) A 2D cloud of atoms is optically excited by a laser
pulse with Rabi frequency ΩL and wave vector kL propagating
perpendicularly to the 2D plane and linearly polarized (nL) along
x. (b) Internal level structure (Λ system), with one excited state e
and two ground states gα. The single-particle decay rate for e →
gα is Γαα. (c) Protocol: after state preparation, atoms evolve freely
and decay during a dark time t, followed by population
measurement. (d) In plane momentum space ðkx; kyÞ with two
Fermi seas (red and blue circles). Filled circles denote occupied
states. Interaction processes involving virtual exchange of
photons between atoms at k and q are depicted as a wiggly
line; single-particle spontaneous decay proportional to Γ are
illustrated as the circular region (blue shading) around k0.
(e) Processes included in the master equation. Top: dipolar
exchange between atoms in momenta k and q. Bottom: sponta-
neous decay from k0 to q0.
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Here, σ̂kqe;gα ¼ ĉ†ekĉgα;q, and ĉ†e;k (ĉ†gα;k) creates a fermion in
the e (gα) state with in plane momentum k ¼ ðkx; kyÞ in the
harmonic oscillator ground state n0;z along z.
The termsΔkl;mn

αβ (Γkl;mn
αβ Þ describe coherent (incoherent)

exchange of photons of the relevant transitions α, β ¼ 0, 1
between two atoms in the corresponding internal and
motional states [Figs. 1(d) and 1(e)]. They are defined
as projections of the real (Re) and imaginary part (Im)
of Green’s tensor G as Δij;kl

αβ ¼ dT
αG

ij;kl
Re d̄β, Γij;kl

αβ ¼
dT
αG

ij;kl
Im d̄β, where dα ¼ Cαnα, given in terms of the

Clebsch-Gordan coefficient Cα and the polarization vector
nα [n0 ¼ ex, n1 ¼ ðey þ iezÞ=

ffiffiffi
2

p
], and dT and d̄ denote

the transpose and complex conjugate, respectively.
Green’s tensor is GðrÞ ¼ ð3Γ=4Þf½I − r̂ ⊗ r̂�ðeik0r=k0rÞþ
½I − 3r̂ ⊗ r̂�[½ieik0r=ðk0rÞ2� − ½eik0r=ðk0rÞ3�]g, with the
wave vector k0 of the ground-excited-state transition.
The matrix elements Gij;kl are defined as Gij;kl¼R
drdr0ϕ̄iðrÞϕjðrÞGðr−r0Þϕ̄kðr0Þϕlðr0Þ, where ϕkðx;y;zÞ¼

ð1= ffiffiffiffi
A

p ÞeiðkxxþkyyÞψ0ðzÞ. The area A is chosen to approxi-
mate a harmonically trapped gas with trapping frequency
ω⊥ ¼ 2π × 150 Hz [47].
We emphasize that, in contrast to models considering

multilevel atoms with static motional states, e.g., for atoms
deeply confined in optical lattices [46], the second line of
the Lindblad operator [Eq. (2)] contains momentum chang-
ing terms, which are crucial to correctly capture Pauli
blocking in bulk Fermi gases.
We then derive equations of motion by using a mean-

field approximation, which factorizes four-operator terms
as products of two-operator terms (see Supplemental
Material [47]). Given the uncorrelated initial conditions,
this treatment is well justified at short times. We further
assume that the dynamics is dominated by the momentum
diagonal elements of the density matrix ρμνqq ¼ hĉ†μ;qĉν;qi,
where μ; ν ¼ e; g0; g1, given the lack of momentum off-
diagonal coherences in the initial state. Under these
approximations the population of the excited state in
momentum q evolves as

dρeeqq
dt

¼
X

α

X

k

−2Γkq;qk
αα ð1 − ρgαgαkk Þρeeqq

þ
X

α;β

X

k

iðGqq;kk
αβ ρegαqq ρ

gβe
kk − Ḡqq;kk

αβ ρ
gβe
qq ρ

egα
kk Þ; ð3Þ

where Gkk;qq
αβ ¼ Δkk;qq

αβ þ iΓkk;qq
αβ . The first line corre-

sponds to the spontaneous decay process je;q; n0;zi →
jgα;k; n0;zi at a rate set by Γqk;kq

αα , which accounts for the
momentum conservation in the emission process, and is
Pauli suppressed by the factor 1 − ρgαgαkk . Thus, the ME in
momentum space naturally recovers Pauli blocking for
arbitrary multilevel structures and generic geometries,
while also including the most relevant cooperative effects,

such as superradiance and subradiance, that emerge from
the terms in the second line. The latter depend on the
coherences ρegα between the excited and the ground-state
atoms and have contributions from the coherent (Δ) and
incoherent dipolar exchange processes (Γ).
Pauli blocking in noninteracting atoms.—We start by

studying the first line of Eq. (3) fully neglecting interaction
effects and note the close resemblance to prior semi-
classical approaches [24], where the decay of the atoms
is dictated solely by the volume of the available phase
space. To gain intuition note that Γqk;kq

αα mediates the decay
of an atom e with momentum q to the ground state gα at
momentum k if jk − qj ≤ k0 (2D) or jk − qj ¼ k0 (3D)
[47]. This decay will be Pauli blocked if the corresponding
state is occupied due to the factor 1 − ρgαgαkk . Consequently,
in the presence of a Fermi sea of ground-state atoms, the
decay rate will be reduced. The degree of Pauli blocking
will depend on the ratio of k0 to kF (controlled by the
density) and the mean occupation within the Fermi sea (set
by the temperature of the gas).
To illustrate this phenomenology, we show in Fig. 2 the

rate γnoninteff =Γ for an initially balanced Fermi gas with N0 ¼
N1 noninteracting atoms and full excitation of all g0 atoms
to the e state (i.e., θ ¼ π), as a function of the temperature
T=TF. In this case the maximal Pauli suppression achiev-
able is Γ11=Γ ∼ 81% when all decay channels into g1 are
blocked. We compare the 3D (dashed) to the strongly
confined 2D system (solid) for a range of N (colors), i.e., of
k0=kF. Most notably, we observe a strong enhancement of
Pauli blocking in 2D compared to 3D, over a significantly
larger range of temperatures.
This can be understood as follows. First, the axial

confinement changes the energy spectrum and thus the

FIG. 2. Pauli blocking of spontaneous emission for noninter-
acting atoms. Decay rate γnoninteff =Γ vs T=TF comparing 3D
(dashed) to 2D (solid) for N0 ¼ N1 and θ ¼ π. N2D ¼ 100,
200, 400, 800 for the colored lines (top to bottom), corresponding
to k0=kF ¼ 1.51, 1.26, 1.07, 0.90. N3D is chosen such that
k0=k3DF ¼ k0=k2DF at these atom numbers. Inset: illustration of the
initial state before and after laser excitation in 2D and 3D.
Colored circles denote Fermi seas of different atomic levels and
striped areas denote an overlap of two Fermi seas. Blue circles of
radius k0 labeled Γ show the states reachable by a spontaneous
decay process.
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density of states. This results in a higher mean occupation
fraction in 2D and, consequently, stronger Pauli blocking
than in 3D for the same k0=kF. Second, the initial laser
excitation imparts a momentum kick to the atoms in 3D that
displaces the excited population away from the unexcited
ground-state Fermi sea, facilitating decay to unoccupied
states (inset of Fig. 2). In contrast, in 2D for laser excitation
along the strongly confined direction, the motional states
are unaffected, enhancing the probability to decay to an
already occupied state.
Interplay of dipolar interactions with Pauli blocking.—

In Fig. 3 we study how γnoninteff (dashed lines) is modified by
dipolar induced cooperative effects using the full ME (solid
lines) as a function of the pulse area θ for a balanced gas,
N0 ¼ N1. At θ ¼ π, interactions have no effect on γeff due to
the absence of initial coherences. However, for smaller θ and
increasing N, there is an intricate competition between
interactions and Pauli blocking. Note the modifications from
θ affect exclusively the e → g0 transition. On the one hand,
lowering θ results in a higher population in the g0 ground
state ∼ cos2ðθ=2Þ, which increases Pauli blocking of the
e → g0 decay channel for noninteracting atoms. On the other
hand, interaction effects become stronger at low θ, leading to
an enhanced normalized superradiant decay that scales as
∼ cos2ðθ=2Þ [47]. Importantly, the superradiant enhance-
ment also scales with N. This interplay leads to dominant
Pauli blocking and thus lower decay rates at low atom
numbers and dominant cooperatively enhanced emission and
faster radiative decay at high densities as θ decreases.

To demonstrate the importance of including atomic
motion and its interplay with quantum statistics, we also
compare the ME in momentum space to the usual frozen
atom approximation (FA) [27–38], which is derived for
atoms assumed to be at fixed positions in real space. We
show the resulting γeff for a θ ¼ π=2 excitation as a
function of the atom number N and temperature T=TF
in Fig. 3(b). The FA properly captures the superradiantly
enhanced decay rate due to dipolar interactions. However,
its inability to account for Pauli blocking results in incorrect
predictions in the quantum degenerate regime and an
incorrect scaling of the decay rate with N.
Finally, Figs. 3(c) and 3(d) explore the role of the

imbalance N1=N0 of the initial populations of the two
ground states on the effective decay rate. For noninteracting
atoms it is highly advantageous to only excite a small
fraction of atoms [24] to maximize Pauli blocking. This is
demonstrated in Fig. 3(c), which shows the decay rate
γnoninteff =Γ at T=TF ¼ 0.1 for θ ¼ π, predicting the largest
suppression in the N1 ≫ N0 regime. Interestingly, for the
2D system, even in the presence of superradiance as θ → 0,
it is possible to minimize interaction effects while main-
taining significant Pauli suppression (∼66%) by choosing
N1 ≫ N0 as shown in Fig. 3(d). This is because only theN0

atoms feature coherences and experience dipolar inter-
actions at early times.
Comparison with experiment.—We compare our predic-

tions to experimental measurements done on the 1S0 − 3P1

transition in fermionic 87Sr. The 7.5 KHz natural linewidth
of this transition allows us to spectroscopically resolve the
multilevel structure and to track the excited-state popula-
tion dynamics in a time-resolved fashion. We consider an
array of two-dimensional pancakes (inset of Fig. 4),
realized by confining the initially 3D Fermi gas in a deep
optical lattice along z. The extension of the theory and

(a) (b)

(c) (d)

FIG. 3. Interplay of dipolar interactions and Pauli blocking
in 2D. (a) γeffðθÞ=γnoninteff ðπÞ comparing the full ME (solid) to the
noninteracting part (dashed) at T=TF ¼ 0.1 for different
N ¼ N0 ¼ N1. (b) Decay rate γeff=Γ at θ ¼ π=2 vs N at different
temperatures comparing the full ME (solid) to the frozen atom
approximation (dash-dotted lines). (c) Decay rate γnoninteff ðπÞ vs N0

andN1. (d) Interaction effects quantified by γeff=γnoninteff for θ → 0 vs
N0,N1. (c),(d)InthermalequilibriumforT0 ¼ T1 andT=TF;1 ¼ 0.1.

(a) (b)

FIG. 4. Decay rates in stacked pancakes geometry. (a) Scaling
of the decay rate γeff with N comparing the balanced case
(dotted), N0 ¼ N1 ¼ N, to the highly imbalanced case (solid),
N0 ¼ 200, N1 ¼ N, for a θ ¼ π pulse. The gray shading denotes
the fixed N ¼ 1500 used in (b) γeff=Γ vs θ. Temperatures
indicated in the legend in (b), in the imbalanced case T0 ¼ T1

and T=TF given with respect to TF;1. Points with error bars are
experimental data taken under the same conditions as the solid
green lines.
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details on the experimental preparation and measurement
protocol are provided in the Supplemental Material [47].
Figure 4 shows experimental data available for the

highly imbalanced scenario, demonstrating agreement with
our predictions within errors (green points and lines).
Figure 4(a) shows the effective decay rate γeff=Γ as a
function of the atom number, pulse area, and temperature,
comparing a balanced (dotted) to the imbalanced case (solid)
for a π pulse excitation. For N ∼ 4 × 103 and T=TF ¼ 0.1
corresponding to peak densities of 1014 cm−3, we predict
up to a factor of 2 enhancement in the atomic lifetime.
In Fig. 4(b) we demonstrate the strong interaction effects
present for balanced gases when preparing initial coherences
due to superradiance. In contrast, we emphasize the weak
dependence on θ in the imbalanced case, which demon-
strates the lack of significant cooperative effects.
Outlook.—We theoretically predict enhanced lifetimes

attributable to Pauli blocking. This prediction is supported
by experimental observation of excited-state populations in
imbalanced multilevel 2D Fermi gases. The good agree-
ment of our theory treatment, which neglects many-body
correlations, and the experimental observations support the
validity of our treatment in the investigated regime and
motivates further experimental work. Important future
directions include the preparation of a deeply degenerate
Fermi gas in 2D, where the differences between balanced
and imbalanced cases become rather striking, as well as the
exploration of conditions where the interplay of quantum
statistics and correlations could modify more dramatically
the radiative decay dynamics.
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