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We investigate the conformational properties of ‘ideal’ nanogel particles having a lattice network topology
by molecular dynamics simulations to quantify the influence of polymer topology on the solution properties
of this type of branched molecular architecture. In particular, we calculate the mass scaling of the radius
of gyration (Rg) and the hydrodynamic radius, as well as, the intrinsic viscosity with the variation of the
degree of branching, the length of the chains between the branched points, and the average mesh size within
these nanogel particles under good solvent conditions. We find competing trends between the molecular
characteristics, where an increase in mesh size or degree of branching results in the emergence of particle-like
characteristics, while an increase in the chain length enhances the linear polymer-like characteristics. This
crossover between these limiting behaviors is also apparent in our calculation of the form factor, P (q), for
these structures. Specifically, a primary scattering peak emerges, characterizing the overall nanogel particle
size. Moreover, a distinct power-law regime emerges in P (q) at length scales larger than the chain size, but
smaller than the Rg of the nanogel particle, and the Rg mass scaling exponent progressively approaches zero
as the mesh size increases, the same scaling as for an infinite network of Gaussian chains. The ‘fuzzy sphere’
model does not capture this feature, and we propose an extension to this popular model. These structural
features become more pronounced for values of molecular parameters that enhance the localization of the
branching segments within the nanogel particle.

I. INTRODUCTION

The versatile role of gels as a building block in a wide
variety of biological1,2 and chemical systems, such as
scaffolds for tissue engineering,3–5 medical applications6

and personal care products7,8 has attracted considerable
attention in the last decades. The unique physical prop-
erties of gels that make them attractive in applications
ultimately arise from their structure, i.e., a crosslinked
polymer network immersed in a solvent.9,10 While such
materials have been the subject of experimental and
theoretical investigations for more than half a century,
their rational design and characterization remains chal-
lenging. This is particularly true for nanogel particles
because the size of the polymer network becomes com-
parable to the size of the polymer chains which compose
it. One example where nanogel particles have become
indispensable is drug delivery,11–13 where a hydropho-
bic drug is often formulated together with a small net-
work of polymer chains (nanogel particle) into an amor-
phous solid dispersion. The use of nanogel particles as
a drug delivery vehicle needs to satisfy the following
conditions: (i) tunable particle size for the enhanced
permeability and retention effect; (ii) carrier and en-
capsulation stability to prevent premature drug release
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before approaching the target site; (iii) payload release
should be triggered by external stimuli in the target cell
environment. All these applications are highly depen-
dent on the structure of nanogel particles, which can be
tuned through variation of the polymer network topol-
ogy. Understanding how these structural characteris-
tics influence nanogel particles’ configurational proper-
ties should aid in designing nanogel particles for the
desired application.

One of the main challenges in the design of macro-
gels and nanogel particles is that often there is little
understanding of how the microscopic structure of such
materials impacts the (nano)gel’s properties.14–18 Direct
knowledge of the (nano)gel structure mostly originates
from scattering (neutron or x-rays) experiments,19–22

but the conclusions remain qualitative since there is a
degeneracy of different types of structure that may ex-
hibit similar scattering form factors P (q). The classi-
cal model of infinite ideal networks of Gaussian chains
is well known, however, it is also generally appreci-
ated that the neglect of excluded volume interactions
in this model to property predictions differs from real
macroscopic networks.23–29 The modeling of gels by
computer simulation can provide a unique window in
microscopic structure of gels over a wide range of gel
molecular topologies and evaluate different theoretical
models.15–18,30,31 Primirary focus in the development of
these computational models has been on the nature of
swelling in these branched polymers. However, there are
two main limitations of the existing computer models
of (nano)gels. First, a phenomenological methodology
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is often utilized to mimic the synthesis of a specific gel
system bounded by the assumptions and observations of
experimentalists. Second, most studies that utilize such
models confine over a narrow set of molecular parame-
ters due to immerse parameter space that define the gel
structure. While these models have provided significant
insights, the original challenge of establishing general
guidelines in the optimum design of nanogel particles
remains unresolved.

In our study, we develop a general nanogel particle
model to gauge the contribution of different molecu-
lar parameters on its conformational properties, thus
avoiding potential nuances originating by mimicking the
random processes of assembly occurring in the course
of synthesis. Specifically, we focus on nanogel parti-
cles that have the following features: regular (the el-
ementary building block is the same throughout the
nanogel structure), compactness (the nanogel is dom-
inated by the formation of loops), and perfect topolog-
ical regularity of structure, i.e., there are no ‘defects’.
Previous studies of (nano)gels with these features have
primarily utilized the lattice-like connectivity to study
the network elasticity and phase transitions in these
structures.31 For the purposes of our study, we focus on
the star polymer arranged on a cubic lattice. The rea-
son behind these choices is threefold: (a) the structures
in our study can be used as reference points since these
structures do not depend on phenomenological random
processes and thus there is less ambiguity in the char-
acter of these structures, (b) there is an increased in-
terest in the synthesis of ‘ideal networks’ as bulk gel
materials,32–35 and (c) as part of future work we will
study the effects of ‘defects’ in the nanogel structure by
utilizing the nanogel model of our current study as a
reference model.

The present paper focuses on the conformational
properties of ‘ideal’ nanogel particles, which can be
viewed as branched polymers having a compact struc-
ture. In particular, we calculate mass scaling of the
radius of gyration and the hydrodynamic radius, as well
as, the intrinsic viscosity over a wide range of molecular
masses and molecular architectures. To better under-
stand the structure of these nanogel particles, we also
calculate the form factor and compare our results with
the ‘fuzzy sphere’ model,36 we also propose an exten-
sion to improve the description of the form factor for
the internal structure of nanogel particles. Our results
provide insights into the nature of nanogel particles and
their conformational properties, and we identify condi-
tions for the emergence of gel-like characteristics.

The paper is organized as follows. Section II contains
details of the coarse-grained nanogel particle model and
the simulation methods. The results are presented in
section III, where we investigate the influence of topol-
ogy on the conformational properties of the nanogel
particles in subsection III A, the scattering profiles that
these structures exhibit in subsection III B, comparison
with the ‘fuzzy sphere’ model in subsection III C, and a
brief comparison with perfect gels is in subsection III D.

FIG. 1. Schematic of the molecular architecture of the
nanogel particle, along with two screenshots of the initial
configuration of two nanogel particles having different de-
grees of branching, f , and a mesh size of Nb = 3.

Finally, we draw our conclusions in Sec. IV.

II. METHODS AND MODELS

A. Model and molecular dynamics

We employ a bead-spring model suspended in an im-
plicit solvent. All particles are assigned the same mass
m, size σ, and strength of interaction ε; we set ε and σ
as the units of energy and length. The segmental inter-
actions are described by the cut-and-shifted Lennard-
Jones (LJ) potential with a cutoff distance rc = 21/6 σ,
corresponding to an athermal solvent. The segments
along a chain are connected with their neighbors via
a stiff harmonic spring, VH(r) = k(r − l0)2, where
l0 = 0.99σ is the equilibrium length of the spring, and
k = 2500 ε/σ2 is the spring constant.

The repeating structural unit of the polymer network
studied here is a branched structure having the form of
a regular star polymer. A regular star polymer has a
core particle, which is connected with the free end of
f chains (or arms) composed of M segments. Thus,
the total number of interaction centers per star poly-
mer is Mw,star = fM + 1. A regular polymer network is
composed by star polymers placed in a cubic lattice and
with two or more of their free ends bonded with the free
ends of the neighboring stars, the number of branched
points (or star polymers) in each direction are labelled
as Nx, Ny, and Nz, see Fig. 1. The molecular mass
of a nanogel particle is Mw = (NxNyNz)Mw,star. We
use the quantity Nb to characterize the size of the mesh
as a whole, since we focus on nanogel particles having
Nb = Nx = Ny = Nz. We note that by “mesh size”
is typically refered in the literacture to the average size
of the compartment created by the polymer chains that
form the mesh. For the purposes of our current study,
we instead refer to “mesh size” as the size of the whole
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mesh. We note that every star polymer unit at the inte-
rior of the nanogel is fully bonded with its neighbors and
thus the only dangling polymer chains are located at the
exterior of the nanogel structure. This type of nanogel
particles is dominated by both branches and loops. We
also note that nanogels particles having f = 4 result
in the formation of fewer but larger loops compared to
f = 6 nanogel particles, see Fig. 1.

The systems were equilibrated at constant tempera-
ture kBT/ε = 1.0 conditions, maintained by a Nosé-
Hoover thermostat. Typical simulations equilibrate for
5000 τ and data is accumulated over a 150 000 τ inter-
val, where τ = σ(m/ε)1/2 is the MD time unit; the time
step used was ∆ t / τ = 0.005.

B. Path-integration package, ZENO

Hydordynamic radius and intrinsic viscosity calcu-
lations are based on the use of path-integration al-
gorithm ZENO, which calculates hydrodynamic, elec-
trical, and shape properties of polymer and parti-
cle suspensions,37–39 and has been used in many real
systems.40,41 The computational method used by ZENO
for calculating Rh, as well other hydrodynamic proper-
ties, involves placing a polymeric structure inside an en-
closing sphere and then launching random walks from
the surface of the sphere. The fraction of walks that
hit the molecule as opposed to walks ending in infinity
can be directly related to Rh. We repeat this process
for 104 distinct molecular conformations and then con-
struct distributions of Rh for each molecular topology
and Mw. We also determine the mean and the standard
deviation for these distributions. Through an extension
of the process just described,38 which considers both
where the launched trajectories initiate on the probing
sphere and where they end when they hit the polymer,
other basic polymer characterization properties can be
estimated from ZENO such as the intrinsic conductiv-
ity of conducting particles and the intrinsic viscosity due
to the mathematical similarities between electrical and
hydrodynamical properties.38,42

III. RESULTS AND DISCUSSION

We first obtain the mass scaling behavior of the aver-
age radius of gyration (Rg), hydrodynamic radius (Rh),
and intrinsic viscosity ([η]) of nanogel particles in ather-
mal solvent with the variation of size of the overall
mesh structure, chain length, and degree of branching.
Following this analysis, we make comparisons between
nanogel particles and linear chains. Subsequently, we
calculate the form factor for these structures and iden-
tify the conditions at which particle-like features start
to emerge in the scattering profiles. We also compare
the ‘fuzzy sphere’ model and propose an extension to
improve the description of the form factor of nanogel
particles’ internal structure.

A. Conformational properties of nanogel particles

Before we discuss the findings of our computational
investigation of ideal nanogel particles, we briefly revisit
the scaling of their average size in solution (e.g., radius
of gyration, Rg) with increasing molecular mass Mw of
basic classes of polymers: Linear and random branched
polymers. In particular, Rg scales as Mν

w in athermal
solvents with ν ≈ 10/17 ≈ 0.588 and ν = 1/2 for self-
avoiding walks and lattice animals in three dimensions,
respectively,43–46 and near the θ-point in solution at
which attractive interactions between the polymer seg-
ments compensate the repulsive binary excluded volume
interactions we have ν = 1/2 for linear chains47 and
ν ≈ 2/5 for randomly branched polymers in the high
mass limit.48–50 A basic feature of randomly branched
polymers in good (athermal) solvents (‘lattice animals’)
is that the number of branching points tends to grow
linearly with the polymer mass so that such polymers
can be thought of as imperfect sheet-like polymers, i.e.,
having a topological dimensionality of two.50 Polymers
having different topologies than linear chains and ran-
domly branched polymers raise the question of how their
scaling characteristics relate to polymers having a dif-
ferent topological structure.

We first investigate nanogel particles without alter-
ing their topology by keeping fixed size of the mesh
as a whole, Nb, and the degree of branching, f . The
length of the chains connecting the branching points,
M , is the only parameter that we vary. The result-
ing average radius of gyration, Rg, was found to scale
as Rg ∼ M0.588±0.03

w for all the molecular masses and
values of f of nanogel particles explored in our study,
see Fig. 2a. This is understandable since the scal-
ing exponent is the same as the known value for self-
avoiding random walks. The degree of branching for
nanogel particles having M = 15 is still important since
it influences the prefactor of the scaling relation, i.e.,
Rg(f = 4)/Rg(f = 6) ≈ 1.22 of equivalent Mw for
M = 15. For the hydrodynamic radius, Rh, we find
a mass scaling exponent of Rh ∼ M0.63

w . The ratio
Rh/Rg is often used to characterize the molecular shape
of an object, where Rh/Rg ≈ 1.28 for a perfect sphere,
Rh/Rg ≈ 0.8 for random walk, and Rh/Rg → 0 for
infinite long rod. The molecular shape of the nanogel
particles having fixed Nb and f is found Rh/Rg ≈ 1.18
for f = 4 and Rh/Rg ≈ 1.22 for f = 6, implying that
the overall molecular shape of these nanogel particles
is rather compact, and thus it is not influenced by M
variation.

Next, we focus on the mass scaling of the nanogel
particles having f and M fixed, but with increasing Nb.

Overall, we find Rg to scale as Rg ∼M
1/3
w through the

whole Mw range, see Fig. 3a. We note that a deviation is
observed for Nb = 1, which is reasonable since the struc-
ture becomes then a star polymer instead of a polymer
network. This scaling exponent found as the mesh size
increases indicates the emergence of particle-like charac-
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FIG. 2. (a) Radius of gyration, Rg, and (b) hydrody-
namic radius, Rh, of regular polymer networks with number
of branches f = 4 (circles) and f = 6 (squares) as a function
of molecular mass, Mw. All nanogel particles have the same
mesh size, Nb = 4, and so Mw increases by increasing the
chain length M . The uncertainty estimates correspond to
two standard deviations.

teristics. The effect of f in the Rg mass scaling appears
to be small in the example presented in Fig. 3a, but we
will discuss this in more detail below. Near identical
behavior is found in our calculations for Rh, Fig. 3b.

The Rg mass scaling exponent of the nanogel particle
depends on the manner in which Mw is increased. On
the one hand, we observe the emergence of particle-like
characteristics ν ≈ 1/3 as the mesh size increases, while,
on the other hand, we find polymer-like characteristics
ν ≈ 0.588 as the nanogel topology remains invariant and
M increases. This duality in the mass scaling exponent
reflects the dual nature of nanogel particles, where their
properties range from a (soft) particle to polymer-like
characteristics.

To better understand this behavior of Rg, we com-
pare them to the average radius of gyration of a linear
chain, Rg,linear. A branched polymer structure, such as a
star polymer or a bottlebrush polymer, is more compact
than a linear chain.48,51,52 Thus, we expect a nanogel
particle, whose properties are greatly influenced by its

FIG. 3. (a) Radius of gyration, Rg, and (b) hydrodynamic
radius, Rh, of regular polymer networks having M = 15 and
number of branches f = 4 (circles) and f = 6 (squares) as
a function of molecular mass, Mw, by increasing the size of
the mesh as a whole, Nb. The highlighted regions outline
structures that do not contain loop structures, i.e., Nb = 1,
corresponding to regular star polymers. The uncertainty
estimates correspond to two standard deviations.

branches and loops, to exhibit a high degree of compact-
ness compared to a linear chain. One possible approach
to describe in quantitative terms this effect was intro-
duced by Zimm and Stockmayer53,54 by defining a geo-
metric shrinking factor as the ratio of the average radius
of gyration of the polymer structure of interest over the
average radius of gyration of linear chain, Rg/Rg,linear,
of the same Mw. As expected, we find that an in-
crease in the mesh size results in a significant decrease
in Rg/Rg,linear, see Fig. 4. The rate of this decrease is
found to follow a power-law Rg/Rg,linear ∼ (1/Mw)α,
where α = 0.26 for f = 6 and α = 0.23 for f = 4.
Interestingly, the degree of branching results in a de-
crease of Rg/Rg,linear in nanogel particles having small
mesh size, Nb . 5, where the nanogel particle resembles
more a regularly branched polymer (star, comb, knot-
ted ring) than a polymer network. Indeed, Rg/Rg,linear

for Nb = 2 and f = 4 nanogel particles exhibit approx-
imately the same degree of compactness as with that
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FIG. 4. Ratio of average radius of gyration of nanogel
particle over the average radius of gyration of a linear chain,
Rg/Rg,linear, with the same molecular mass, Mw. Results of
unknotted ring polymers are also presented.

of unknotted ring polymers, which is a polymer struc-
ture of a single loop without any branches. This de-
crease in Rg/Rg,linear becomes smaller as the mesh size
increases and for Nb & 10 the difference becomes negli-
gible (Fig. 4), suggesting that at this point, the nanogel
particle becomes rather compact and can be effectively
described by Gaussian statistics. An increase of M does
not influence Rg/Rg,linear, which is consistent with our
findings above.

The size and compactness of nanogel particles also
influence the hydrodynamic solution properties. The
viscosity of a dilute dispersion of particles can be devel-
oped in a power series in the particle volume fraction
(φ) as,

η(dispersion) = η(dispersing fluid){1 + [η]φ+O(φ2)}.
(1)

The first coefficient in φ is independent of interparticle
interaction and is conventionally called the “intrinsic
viscosity”, [η], and is defined in the limit of the particle
concentration in the solution c→ 0 as,

[η] = lim
c→0

η − ηs
c ηs

, (2)

where η and ηs are the solution and solvent viscosity.
The intrinsic viscosity is a useful metric to character-
ize how a molecular structure influences the hydrody-
namic properties of the solution, especially in the dilute
regime55–57 and solution properties are often described
in reduced concentration, e.g., c[η]. For the purposes
of the current study, we use the path-integration al-
gorithm ZENO, which calculates hydrodynamic, elec-
trical, and shape properties of the polymer and parti-
cle suspensions, as described in the subsection II B. In
practice, the molecular mass dependence of the intrin-
sic viscosity is represented by the Mark-Houwink equa-
tion, [η] = KMα

w ,43,58,59 where K and α are material-

FIG. 5. Intrinsic viscosity, [η], of ideal nanogel particles
as a function of the molecular mass, Mw. Results for linear
chains and unknotted ring polymers are also presented. The
dashed lines are power-laws as guides for the eye. The light
blue highlighted region outlines nanogel particles having a
mesh size of Nb = 1, corresponding to star polymers.

specific parameters. The exponent α becomes α ≈ 0.71
and α ≈ 0.5 for linear polymer chains in good and θ-
solvent conditions, respectively. This is supported by
experimental60,61 and simulation studies,62 as well as
the calculations in the current study, see Fig. 5. How-
ever, deviation from this is expected for molecular struc-
tures that differ from linear polymer chains. For exam-
ple, α ≈ 2 for perfectly rod-like polymers like Tobacco
mosaic virus,63 and typical values of α for rather stiff
polymers are typically somewhat larger than 1. ‘Semi-
flexible’ polymers exhibit α values close but greater than
0.8.64

Nanogel particles exhibit significantly smaller [η] than
the corresponding value for linear chains at the same
Mw, providing a measure of their compact nature. We
also find that the mass scaling exponent α exhibits dif-
ferent values depending on how the molecular mass of
the nanogel increases. We find α ≈ 0.8 by increasing M ,
Fig. 5. This suggests that the nanogel particles increase
the viscosity of the solution as a function of Mw in a
fashion similar to polymers with some intrinsic stiffness,
although linear polymer chains tend to have a larger
overall molecular size, see Fig. 4. A possible explana-
tion is that an increase of M in conjunction with the
mesh structure of the nanogel particle influence the spa-
tial distribution of the nanogel’s segments in a way that
would more efficiently alter the dynamic properties of
the solution. However, we find that α becomes relatively
small for nanogel particles having M fixed where Nb is
increasing, Fig. 5. We had not initially expected this
trend, which accords with the mass scaling of the size
of an perfect infinite network of Gaussian chains, i.e., no
excluded volume interactions.27 In particular, the size of
such networks depends only on average size of an indi-
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vidual chain within the network even if there are infinite
number of such links in the network. This same trend is
reflected in the equilibrium size of the nanogel particles,
see Fig. 5. For comparison, [η] = 5/2 for rigid spheres
at infinite dilution,65 where [η] is constant irrespective
of the molecular mass of the spheres, and [η] takes a
slightly larger values for cube-like objects, e.g., for rigid
cubes with sharp edges [η] ≈ 3.04.57,66 This observa-
tion suggests that the nanogel particles with increasing
their mesh size behave similarly to rigid spheres and
cubes. Interestingly, comb polymers having long side
chains, i.e., ’bottlebrush polymers’, have also been ob-
served to exhibit vanishing small α values,60 suggesting
that branched polymers that form densely filled, non-
draining, rigid sphere-like conformation, exhibit vanish-
ing small α values.

We note that when Nb < 3 the structure of the
nanogel particle resembles more a swollen randomly
branched polymer, i.e., lattice animal. Thus, it is no
surprise that [η] values become comparable to [η] values
of linear polymer chains and unknotted ring polymers.
Overall, these trends suggest that an increase in M will
significantly increase the viscosity of the solution while
an increase in Nb will not significantly influence it. An
increase in the degree of branching suppresses [η], but
does not influence the mass scaling exponent. These
simple design rules should be useful in applications.

B. Nanogel Form Factor

To probe the structure of nanogel particles, we fo-
cus on calculating the spatial correlations between the
polymer segments. The form structure factor, P (q), is
a suitable property for this purpose and describes the
mean correlations in the positions of a collection of point
particles distributed in space. P (q) is defined as:

P (q) =
1

Mw

〈
Mw∑
j=1

Mw∑
k=1

exp [−iq · (rj − rk)]

〉
, (3)

where i =
√
−1, q = |q| is the wave number, rj is the

position of particle j, 〈〉 denote the time average.
We start with some general comments on the calcula-

tion of P (q) and about the common scattering features
of these systems. At small q-values corresponding to
length scales much larger than the size of a nanogel or a
polymer structure, q σ < 2π/Rg, P (q) rapidly increases
and reaches a plateau P (q) ≈ Mw. At high q-values, a
scattering peak is anticipated at q σ ≈ 7 corresponding
to the segment-segment distance (not shown here). At
length scales larger than segment size but smaller than
the size of the polymer chains composing the nanogel
particles, i.e., π/M < q σ < 7, a power-law behavior
is expected that will describe the conformation of these
polymer chains. The behavior of P (q) in length scales
larger than the polymer chains but smaller than the
nanogel particle will provide information on the molec-
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FIG. 6. The form factor P (q) of ideal nanogel particles
having Nb = 4 and f = 4 at different values of M : contin-
uous line M = 5, dashed line M = 15, and dot-dashed line
M = 60. The arrows indicate the average Rg of the nanogel
particles.

ular topology of these particles. In other words, it pro-
vides information about the nature of the chain network,
which is the central focus of the current study.

The scattering profiles of nanogel particles with a
small mesh size, Nb . 5 at different values of M vari-
ation exhibits a power-law scaling of q−1.6 for q σ >
2π/Rg. This power-law scaling behavior indicates that
the polymer chains composing the nanogel structure
adopt conformations that lie between a rod (P (q) ∼
q−1) and a Gaussian chain P (q) ∼ q−2, see Fig. 6. An
increase in M increases Rg, as discussed above, and as a
consequence the region at which P (q) ∼ q−1.5 expands
to smaller q-values. The absence of other scattering fea-
tures suggests that nanogel particles of small mesh size
do not exhibit particle-like characteristics.

We find a different type of behavior for nanogel par-
ticles having M fixed and increasing the mesh size of
the nanogel particle. At intermediate length scales,
π/(2M) . q σ . π/M , a power-law regime emerges
that is distinct from the power-law behavior of the linear
chains. At these length scales, P (q) reflects the confor-
mation of multiple chains forming an empty compart-
ment in the nanogel structure. This feature is absent
in P (q) profiles of smaller in size nanogel particles, sug-
gesting a ‘critical’ threshold for this type of structures
to be identified by scattering experiments. The scaling
exponent, µ, in this regime decreases towards zero (an
exponent of zero corresponds to a perfect plateau) with
increasing the mesh size and for nanogel particles having
M = 15 as µ ∼ N−1.28b , see inset of Fig. 7.

At length scales larger than Rg, we find a sharp
increase in P (q), followed by P (q) eventually reach-
ing a plateau, at which the size of the nanogel parti-
cle that probing becomes much smaller in comparison
to length scales associated with the scattering. How-
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b as a guide for the eye.

ever, nanogel particles having a large enough mesh size
Nb & 5 start to exhibit a scattering peak in P (q) at
length scales close to q σ ∼ Rg. The location of this
peak scales as qpeakσ ∼M0.56

w , which is consistent with
the mass scaling behavior found for Rg. We also find
that Rgqpeak ≈ 1.35, suggesting that if this ratio is de-
termined for a particular structure then experimental-
ists could extract the particle’s Rg from scattering.

An increase in M enhances the polymer-like charac-
teristics, resulting in less sharp boundaries of the gel
particle with the solution and thus, the peak observed
in the scattering profiles should become diminished. We
quantify this effect by noting that the height of the pre-
peak and the height of the first minimum in P (q) as q in-
creases follow a power-law behavior, P (qpeak) ∼ M−1.7w

and P (qmin) ∼M−1.9w (Fig. 8), respectively. This means
that as M increases then the difference in height be-
tween the first minimum and the peak normalized by
the height of the plateau as q → 0 becomes smaller, i.e.,
[P (qpeak)− P (qmin)] /P (q → 0) → 0 as M increases,
see inset of Fig. 8. We also note that the scaling ex-
ponent characterizing the nanogel particle at interme-
diate length scales remains independent of M , provided
M > 10. For M = 5 the chains are not long enough to
explore more efficiently the configurational space.

C. ‘Fuzzy sphere’ model and an extension

One of the most widely used descriptions of the
nanogels/microgel ‘particles’ is the ‘fuzzy sphere’ model,
in which the particles are described by a dense homoge-
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a mesh size of Nb = 8 and degree of branching f = 4. Re-
sults of nanogel particles having chain lengths, M , are also
presented. The black dotted lines are power-laws with an
exponents of −1.9 and −1.7 are a guide for the eye. Inset:
Difference between the height of the first peak and the height
of the first minimum normalized by the plateau in P (q) at
infinite length scales, ∆P = [P (qpeak)− P (qmin)] /P (q → 0),
as a function of chain length, M .

neous core and an outer loose corona.36 The form factor
expression based on the ‘fuzzy sphere’ model is given
by,

P f(q,R, σs)/Pf(q → 0, R, σs) =

=

{
3 [sin(qR)− qR cos(qR)]

(qR)3
exp

[
− (qσs)

2

2

]}2

, (4)

where R is the size of the particle, σs is the smearing
parameter corresponding to about half the thickness of
the fuzzy shell. A Lorentzian function is also incorpo-
rated in the fits to account for the network polymer
fluctuations,

L(q) =
I(0)

1 + (ξq)2
(5)

where ξ is the average correlation length of the nanogel
particle’s network, and the amplitude of the long wave-
length contribution of the network fluctuations to the
intensity I(0). Despite the simple description of the
scattering profile by the ‘fuzzy sphere’ model, it has well
reproduced the scattering profile of microgels that lack
an ordered internal structure, e.g., random crosslinking
and entangled chains.15,16,36

A comparison between the fuzzy sphere model and
the scattering profiles obtained by our simulation model
reveals that the fuzzy sphere model does a satisfactory
job in describing P (q) at length scales larger than the
nanogel particle size and around the primary peak, see
Fig. 9. However, this oversimplified model fails to de-
scribe the behavior of P (q) at length scales smaller than
2π/qpeak. In other words, this model fails to describe the
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FIG. 9. Form factor, P (q), of nanogel particles having a
mesh size Nb = 8, degree of branching f = 4, and chain
length M = 15 (circles) and M = 60 (squares); the latter is
scaled by a factor of 100 for clarity. The lines are fits based
on the ‘fuzzy sphere’ and ‘extended fuzzy sphere’ models.

internal structure of the nanogel particle, evidenced by
the emergence of the power-law at intermediate length
scales as we discussed above, Fig. 7. This limitation is
not surprising given the highly coarse-grained nature of
this popular model.

To improve upon the ‘fuzzy sphere’ model, we note
that an additional term is required to capture the inter-
nal structure of the nanogel particle, which resembles a
smaller version of the nanogel particle. Based on this
observation, we propose the following expression for the
fitting of the form factors in our model,

P (q)/P (q → 0) = Pf(q,R1, σs,1)+sPf(q,R2, σs,2)+L(q)
(6)

where s is a fit parameter. The first term of this ‘ex-
tended fuzzy sphere’ model describes the nanogel parti-
cle as a whole having an effective size of R1 ≈ Rg. The
second term describes the inner structure of the nanogel
particle where a second length scale R2 corresponds to a
smaller length scale typically on the order of the size of
the repeating structural unit of the nanogel, i.e., star
polymer, or smaller. Even though this expression is
a highly coarse-grained model of the nanogel particle,
it provides a considerably improved description of the
nanogel particle’s internal structure, Fig. 9, because it
addresses the existence of the internal nanogel structure.

D. Ideal nanogel particles and gels

Now that we have an understanding of the structure
of ideal nanogel particles, we briefly discuss them with
the structure of ideal macro-gels. It has been reported
in the literature that tetra-PEG gels exhibit a near-
ideal polymer network topology, i.e., they contain only
a small number of pendant chains, trapped entangle-

10
-2

10
-1

q (Å
-1

)

10
-1

10
0

I 
(q

) 
(c

m
-1

)

40 mg/ml
80 mg/ml
160 mg/ml

FIG. 10. Small angle neutron scattering (SANS) profiles of
tetra-poly(ethylene glycol) (PEG) gels at three different con-
centrations. The gels were made of 10 kDa precursor chains
at (40, 80, and 160) mg/ml concentrations. The dashed lines
are fits with a Lorentzian function, see Eq. 5. The data are
reproduced from F. Horkay, K. Nishi, and M. Shibayama, J.
Chem. Phys. 146, 164905 (2017) with the permission of the
AIP Publishing.

ments, and elastically ineffective loops, and the elas-
tic response of tetra-PEG gels is well described by the
phantom network model. SANS measurements made on
tetra-PEG gels showed that the shape of the SANS pro-
files resembled that of polymer solutions and could be
described by the Lorentzian function, see Fig. 10. These
findings were interpreted as providing evidence for the
absence of network non-uniformities.67 This means that
as the polymer network becomes much larger than the
size of the polymer chains, then the contribution of these
non-uniformities start to diminish.

IV. CONCLUSIONS

In summary, we studied the conformational prop-
erties of ideal nanogel particles in athermal solutions
using molecular dynamics simulations. In particular,
we calculated the mass scaling exponents of the ra-
dius of gyration and the hydrodynamic radius, as well
as, the intrinsic viscosity with the variation of the de-
gree of branching, the length of the chains between the
branched points, and the size of the mesh as a whole.
We find competing trends between the molecular char-
acteristics, where an increase in mesh size or degree of
branching results in the emergence of particle-like char-
acteristics while an increase in the chain length enhances
the polymer-like characteristics. This crossover between
these two limiting behaviors is also apparent in the cal-
culation of the form factor, P (q), for these structures.
Specifically, a primary scattering peak emerges, char-
acterizing the overall nanogel particle size. Moreover,
a distinct power-law regime emerges in P (q) at length
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scales larger than the chain size but smaller than the
Rg of the nanogel particle and the scaling exponent for
this power-law regime goes to zero as the mesh size in-
creases. The ‘fuzzy sphere’ model does not capture the
latter feature, and we propose an extension of this pop-
ular model to address this shortcoming. Overall, we
find that the structural features that characterize these
structures become more pronounced when the choice of
molecular parameters leads to the localization of the
branching segments within the nanogel particle, hav-
ing an ideal network structure. Overall, we find that
the character of the nanogel is sensitive to the num-
ber of branched points in its structure, where nearly
all particle-like characteristics have emerged at Nb & 6.
On the other hand, the polymer chain length enchances
the polymer character of the nanogel particle, but at a
slower pace compared to Nb. In subsequent work, we
will study nanogel particles where there are many bro-
ken bonds since this type of network is characteristic of
many real nanogel particles and macroscopic networks.
Unsurprisingly, such networks have a much more open,
fractal structure and the mass scaling of this type of
nanogel particle is altered in comparison to the ‘closed’
nanogel particles studied in the present work which are
free of such bonding ‘defects’.
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