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Bi-Criteria Radio Spectrum Sharing With
Subspace-Based Pareto Tracing
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Jason B. Coder , and Andrew M. Dienstfrey

Abstract— Radio spectrum is a scarce resource. To meet
demands, new wireless technologies must operate in shared spec-
trum over unlicensed bands (coexist). We consider coexistence
of Long-Term Evolution (LTE) License-Assisted Access (LAA)
with incumbent Wi-Fi systems. Our scenario consists of multiple
LAA and Wi-Fi links sharing an unlicensed band; we aim
to simultaneously optimize performance of both coexistence
systems. To do this, we present a technique to continuously
estimate the Pareto frontier of parameter sets (traces) which
approximately maximize all convex combinations of network
throughputs over network parameters. We use a dimensionality
reduction approach known as active subspaces to determine
that this near-optimal parameter set is primarily composed of
two physically relevant parameters. A choice of two-dimensional
subspace enables visualizations augmenting explainability and
the reduced-dimension convex problem results in approximations
which dominate random grid search.

Index Terms— LTE, LAA, Wi-Fi, wireless coexistence, active
subspace, Pareto trace.

I. INTRODUCTION

AS WIRELESS communications evolve and proliferate
into our daily lives, the demand for radio spectrum

grows dramatically. To accommodate this growth, wire-
less device protocols are beginning to transition from a
predominantly-licensed spectrum to a shared approach in
which use of the unlicensed spectrum bands is increasing
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rapidly. The main bottleneck of this approach, however,
is balancing new network paradigms with incumbent networks,
such as Wi-Fi.

Previously, unlicensed bands were dominated by Wi-Fi
traffic and, occasionally, used by commercial cellular carriers
for offloading data that would otherwise have been com-
municated via Long-Term Evolution (LTE) in the licensed
spectrum. In order to address spectrum scarcity in new oper-
ating paradigms, mobile network operators are choosing to
operate in unlicensed bands (such as LAA) in addition to
data offloading [2]. Even though operating LAA in unlicensed
bands improves spectral-usage efficiency, it could have a
significant influence on Wi-Fi operation and thereby create
a number of challenges for spectrum sharing. Understanding
and addressing these challenges calls for a deep dive into the
operations and parameter selection of both networks in the
medium access control (MAC) and physical (PHY) layers.

There have been many investigations of fairness in spectrum
sharing among LAA and Wi-Fi networks [3]–[5]. Critically,
these works do not consider optimizing key performance
indicators (KPIs). In contrast to [3]–[5], the authors in [6]
and [7] maximize LAA throughput and total network sum
rate, respectively, over contention window sizes of both net-
works while guaranteeing the Wi-Fi throughput satisfies a
threshold. Ignoring the constraint on Wi-Fi throughput, the
authors in [8] maximize the overall network throughput over
the same variables—contention window size of both networks.
These studies [6]–[8], however, optimize only a single MAC
layer parameter and do not consider optimizing over a set of
MAC and PHY layer parameters. A multi-criteria optimization
problem was formulated in [9] to satisfy the quality of service
requirements of LAA eNodeBs by investigating the trade-off
between the co-channel interference in the licensed band and
the Wi-Fi collision probability in the unlicensed band. The
line of work in [9] is further expanded in [10]. Considering
both PHY and MAC layer parameters, [10] maximizes the
weighted sum rate of an LAA network subject to Wi-Fi
throughput constraint with respect to the fraction of time
that LAA is active. However, Wi-Fi throughput was not
simultaneously optimized in [9] nor [10]. For a scenario
with both LTE base stations and Wi-Fi APs connected to
a central controller, [11] and [12] maximized the overall
throughput subject to constraints that Wi-Fi throughput does
not degrade significantly. Their results were compared to the
case that the unlicensed spectrum was not shared with LTE
devices such that Wi-Fi and LTE-U operated on separate and
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non-overlapping channels. The issue of efficient coexistence of
LTE operators in the unlicensed bands through an optimization
framework is considered in [13] using stochastic geometry.
However, this study considers a scenario where an operator
would like to optimize performance but has no constraints
on the performance of other operators (cost). Moreover, the
overall network throughput maximization is not discussed
in [13].

In its most general form, the spectrum sharing problem can
be modeled as a bi-criteria optimization problem where the
KPIs of all operators, in a heterogeneous network that coexists
on the unlicensed band, are maximized simultaneously. In this
context, we explore optimal trade-offs between Wi-Fi and
LAA throughputs that are simultaneously maximized over an
aggregate of PHY and MAC layer parameters. This motivates a
bi-criteria optimization formalism in which the input space has
high-dimensionality [1]. The model we investigated in [1], and
in this paper as well, uses 17 MAC and PHY layer variables
to characterize the LAA and Wi-Fi coexistence performance.

Previous experience suggests that not all of these vari-
ables are equally important in determining the quality of
network KPIs. To address this difficulty, we use a mathe-
matical formalism known as active subspaces to determine
parameter combinations that change KPI values the most on
average—and those that do not [14]. The sets of parame-
ter combinations defined by the active subspaces inform
KPI approximations and visualizations over a low-dimension
subspace—simplifying and regularizing the bi-criteria opti-
mization. Here, we expand our investigation in [1] and study
the impact of these parameters via analytical models and
simulation results. This approach explores the system behavior
and provides deep insights into related spectrum sharing
and communication systems—LAA and Wi-Fi coexistence is
merely an example in this work.

In this more detailed theoretical exposition of the ini-
tial work in [1], we take the model exploration further by
exploring and comparing against additional traces through
parameter space summarized in Section IV-B. We also incor-
porate an improved space filling sampling scheme over the
reduced dimension subspace to improve the quadratic surro-
gates informing the resulting traces in Section IV-C. Moreover,
we compare eigenspaces of two alternative approaches to
the subspace dimension reduction in Section V to emphasize
degeneracy in the fit of convex quadratics over the full dimen-
sional parameter space. Lastly, we emphasize improvements
in the stability of the proposed quadratic trace formulated
over the reduced dimension subspace versus a full dimensional
quadratic trace in Section V.

We incorporate active subspace dimension reduction into the
bi-criteria optimization framework to analyze, interpret, and
explain the shared spectrum coexistence problem. The set of
maximizing arguments quantify the inherent trade-off between
LAA and Wi-Fi throughputs. The dimension reduction supple-
ments a trade-off analysis of network throughputs by comput-
ing a Pareto trace. The Pareto trace provides a continuous
approximation of Pareto optimal (non-dominated) points in a
common domain of a bi-criteria problem [15], [16]—resulting
in a parameter manifold consisting of near-best trade-offs

between differing throughputs. Facilitated by the dimension
reduction, our work provides a continuous description of this
parameter manifold that quantifies high-quality performance
of both networks.

This work differs from those previously mentioned by
facilitating new interpretations and explanations of results.
The main contributions of this paper can be summarized as
follows:

• We incorporate active subspace dimension reduction into
a bi-criteria optimization problem for radio spectrum
sharing which simplifies and regularizes a bi-criteria
optimization.

• We provide ridge approximations (defined in Section IV)
of the KPIs in a coexistence scenario over an unlicensed
band.

• We determine two parameter combinations that are most
important in changing the quality of network KPIs versus
those which are not. Picking two sets of parameter
combinations lead to visualizations over a low-dimension
parameter subspace (augmenting explainability of the
approximations).

• We calculate convex quadratic ridge approximations of
network throughputs that inform a continuous quadratic
trace describing the trade-off between near-optimal net-
work throughput combinations. This offers a continuous
description of a parameter manifold that quantifies high
quality performance of both networks as opposed to a set
of point-wise approximations of optimal values.

• We demonstrate that the resulting quadratic trace defined
in terms of the low-dimensional mixed active subspace is
more stable than the comparable quadratic trace defined
over the original (high-dimensional) variables. In this
sense, the subspace-based dimension reduction facilitates
a regularization of the Pareto trace.

The paper is organized as follows: Section II describes
the system model and presents the problem formulation.
Section III formalizes solutions to the problem statement and
introduces the concept of a Pareto trace. Section IV introduces
active subspaces and offers technical considerations for quan-
tifying spectrum sharing as a continuous Pareto trace of near
Pareto optimal parameters. Simulation results are shown and
discussed in Section V. Finally, we conclude with an overview
of the results and remarks about future work.

Notation: Standard math-font letters are used to denote
scalars. Boldface capital and boldface lower-case letters denote
matrices and vectors, respectively. All vectors, e.g., u, v ∈
R

K , are assumed to be tall (column) vectors with K entries
and all expressions correspond to standard matrix vector
multiplication with the transpose of matrix A is denoted
by AT. For example, matrix Q, vector a, and scalar c represent
a matrix-vector format for general quadratic polynomials as
f(θ) = θ�Qθ + a�θ + c. The operator � represents the
Hadamard product and the operator (·)k represents the k-th
index of a vector—i.e., (u � v)k = (u)k(v)k. Given a
vector of probabilities p, complementary probabilities are
represented by the operator ·� such that p� = 1− p where 1
is an appropriately sized vector of ones. The gradient ∇ and
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Fig. 1. System model consists of multiple LAA and Wi-Fi links sharing an
unlicensed band.

Hessian ∇2 are taken with respect to model parameters θ,
if not otherwise decorated by a label. Finally, L refers to
the set LAA variables while W refers to the set of Wi-Fi
variables. When necessary, K is used as a placeholder to
relate operators or quantities applied analogously to either set.
Parameters which are varied or examined for the purposes
of model exploration, optimization, and transformation are
denoted using the Greek alphabet.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink coexistence scenario where two
mobile network operators (MNOs) operate over the same
shared unlicensed industrial, scientific, and medical (ISM)
radio band. We are primarily focused on the operation of
cellular base stations in the unlicensed bands. However, LTE
base stations may have permission to utilize a licensed band as
well. We assume the MNOs use time sharing to simultaneously
operate in the unlicensed band and we aim to analyze compet-
ing trade-offs in throughputs of the Wi-Fi and LAA systems.
A network throughput is a function of both MAC and PHY
layer parameters. In this section, we introduce the parameters
defining the network topology, MAC layer protocols, the PHY
layer, and briefly discuss the relation of these variables to
network throughput.

A. Network Topology

We consider a coexistence scenario in which the LAA
network consists of L Evolved Node B (eNodeBs) indexed
by the set L, i ∈ L = {1, 2, . . . , L}, while the Wi-Fi network
is composed of W access points (APs) indexed by the set
W , j ∈ W = {1, 2, . . . , W}, as depicted in Figure 1. Note
that our proposed subspace-based Pareto tracing approach
could be applied to many types of communication systems
(or alternative applications), but LTE is used here as an
example. The eNodeBs and APs are randomly distributed
over a rectangular area while LAA user equipment (UEs)
and Wi-Fi clients/stations (STAs) are, respectively, distributed

around each eNodeB and AP independently and uniformly.
Each transmission node serves one single antenna UE/STA.
We assume (i) both Wi-Fi and LAA are in the saturated
traffic condition, i.e., at least one packet is waiting to be sent,
(ii) there are neither hidden nodes nor false alarm/miss detec-
tion problems in the network,1 (iii) the channel knowledge
is ideal, i.e., perfect channel sensing is assumed among the
links, so the only source of unsuccessful transmission (packet
failure) is collision, (iv) a successful transmission happens
if only one link transmits at a time, i.e., exclusive channel
access (ECA) model [17] is considered which is consistent
with the IEEE 802.11 channel access protocols, and (v) each
link is subject to Rayleigh fading and Log-normal shadowing.

B. MAC Layer Protocols

While Wi-Fi systems count on a contention-based medium
access with a random back off process, called Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) [18],
[19], LTE-LAA networks use a listen before talk (LBT)
channel access mechanism as a means of sharing the band with
Wi-Fi. Among different LAA-LBT schemes, the Category 4
(Cat 4) LBT—which is based on the same Wi-Fi CSMA/CA
scheme and is well-suited in a coexistence scenario [2]—
is considered in this paper. The medium access key feature
in both Wi-Fi and LAA involves the station accessing the
medium to sense the channel by performing clear channel
assessment prior to transmitting. The station only transmits if
the medium is determined to be idle. Otherwise, the transmit-
ting station refrains from transmitting data until it senses the
channel is available. Although LAA and Wi-Fi technologies
follow similar channel access procedures, they utilize different
carrier sense schemes, different channel sensing threshold
levels, and different channel contention parameters, leading
to different unlicensed channel access probabilities and thus,
different throughputs.

Conforming with the analytical model in [20], [21], the
probability of either network transmitting a packet in a ran-
domly chosen time slot can be expressed as

pk =
2(1− 2 ck)

(1− 2ck)(1 + ωk) + ckωk(1 − (2ck)μk)
, (1)

where k is representative of an index from either L or W ,
ck denotes the probability of collision experienced by the k-
th transmission node, and ωk and μk indicate the minimum
contention window size and the maximum back-off stage,
respectively, of the k-th transmission node on the unlicensed
channel.

To simplify notation, we aggregate the stationary transmis-
sion probability model (1) into entries of a vector p. With this
notation, the Wi-Fi stationary transmission probability of AP
j ∈ W is considered (p)j : (cj , ωj, μj) �→ pj(cj ; ωj, μj) such

that pW
Δ= p(cW ; ωW , μW) ∈ R

W represent the set of all
Wi-Fi probabilities for all APs. The Wi-Fi probabilities depend

1We assume perfect spectrum sensing in both systems. The impact of
imperfect sensing is beyond the scope of this paper and investigating the
effect of sensing errors is an important topic for future work.
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explicitly on cW ∈ R
W and parameters ωW , μW ∈ R

W . Sim-

ilarly, for the LAA eNodeB’s, we assign pL
Δ= p(cL; ωL, μL)

such that pL, cL, ωL, μL ∈ R
L. Note, for brevity, we are drop-

ping the explicit dependencies, pk(ck; ωk, μk), and supplement
with an index-set subscript, pK, to indicate the length of the
vector-valued map as the cardinality of K in addition to the
network association when K is eitherW or L. Moreover, these
explicit dependencies are coupled with a set of complementary
probabilities, p�

K = 1K − pK, resulting in a set of equations
which must be made consistent.

We write the LAA overall probability of transmission as
1 − ∏

i∈L(p�
L)i and similarly for Wi-Fi 1 − ∏

j∈W (p�
W)j .

In a complementary fashion, the collision probability of the
transmitting Wi-Fi AP j ∈ W and LAA eNodeB i ∈ L on a
shared unlicensed band are expressed as entries

(cW)j = 1− 1
(p�

W)j

∏
k∈W

(p�
W)k

∏
i∈L

(p�
L)i, (2)

and

(cL)i = 1− 1
(p�

L)i

∏
k∈L

(p�
L)k

∏
j∈W

(p�
W)j . (3)

respectively, stored in the vectors cW ∈ R
W and cL ∈ R

L.
Notice, (2) and (3) are expressions dependent on both pL and
pW given parameters ωW , μW , ωL, μL. Consequently, (2)
and (3) represent a coupling of probabilities subject to 0 ≤
pK, cK ≤ 1.

The probability of a successful transmission for the Wi-Fi
AP j (resp. LAA eNodeB i) on the unlicensed band is
the j-th entry of pW � c�

W (resp. i-th entry of pL � c�
L).

Additionally, the average duration to support one successful
transmission in the unlicensed band can be calculated as pT

T t,
as in [22]. The variable pT contains probabilities of an LAA
and a Wi-Fi successful transmissions, and a collision among
the Wi-Fi transmissions, among the LAA transmissions, and
between the Wi-Fi and the LAA transmissions. Lastly, entries
of t are composed of the time that the unlicensed chan-
nel is being occupied by: an LAA successful transmission,
a Wi-Fi successful transmission, a collision among the Wi-Fi
transmissions, a collision among the LAA transmissions, and
a collision between the Wi-Fi and the LAA transmissions.
The vector pT is computed based on pW , cW , pL, cL—as
in [22]—and the vector t is dictated by an access mechanism
which in this paper the basic access mechanism is considered,
as in [20], [23].

C. Physical Layer Parameters and Data Rates

To calculate network throughput, we also need to introduce
data rates parametrized by physical layer parameters. The
achievable physical data rate of the L or W operators is a
function of link signal-to-noise ratio (SNR) that depends on
changes with the link distances and propagation model; we
refer to [22] for a detailed discussion of these relationships.
The link distances and propagation model depend on parame-
ters identified in Table I. The table summarizes entries of θ
representing the set of parameters that can be varied to study
the model behavior along with entries of x as the remaining

fixed scenario parameters. We write the parametrized SNR
as SNR(θ; x) while the data rate is expressed as log2(1 +
SNRK(θ; x)).

D. Parametrized Model

We parametrize MAC layer parameters by assuming com-
mon minimum contention window sizes and maximum
back-off stages for each network. In other words, ωW =
θ11W , ωL = θ21L, μW = θ31W , and μL = θ41L for
parameters θk ∈ R. Note that the channel access of each
network depends upon these (θ)1 through (θ)4 parameters.
It is conceivable that we may consider each independently
for a total of 2(L + W ) parameters as entries in a vector θ.
However, we opt for a simplification to four total parameters—
two common parameters per network. These parametrizations
result in subsequent dependencies as pK(θ) and cK(θ) for
either network K which now depend on variations in θ. Thus,
in general, we consider μK(θ) and ωK(θ) where K is either
W or L and θ ∈ R

D is a vector of all parameters—the first
four defined as MAC parameters and the remaining parameters
described below and in Table I.

We also append the physical parameters to the MAC para-
meter vector by reassigning θ as a vector representing the
full set of parameters that can be varied to study the model
behavior. These additional PHY parameters are summarized
with appropriate bounds and description as the remaining
entries of θ in Table I. Any remaining physical parameters
are held fixed and constitute a scenario for a particular model
evaluation. We aggregate these remaining scenario parameters
into a vector x, summarized in Table I.

The LAA and Wi-Fi throughputs, indicated respectively by
fL and fW , are functions of D total MAC and PHY layer
parameters in a vector θ conditioned on fixed values in a
vector x,

fL : R
D × {x} → R : (θ, x) �→ fL(θ; x), (4)

and

fW : R
D × {x} → R : (θ, x) �→ fW(θ; x). (5)

Given a set of consistent probabilities for parameters θ, the
throughputs are computed as

fK(θ; x) = TK log2(1 + SNRK(θ; x))
pT
K(θ)c�

K(θ)
T avg(θ)

(6)

for arbitrary K representing either L orW where TK indicates
the (Wi-Fi or LAA) operator payload duration and T avg(θ) =
pT
T (θ)t denotes the average time duration to achieve a success-

ful transmission in the network K [22]. This numerical study
and choice of model considers D = 17. However, parameters
and models will be further generalized as part of on-going
research efforts.

E. Problem Formulation

The problem of interest is to maximize a convex combi-
nation of network throughputs for the fixed scenario x over
the MAC and PHY parameters θ in a bi-criteria optimization.
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A Pareto front is defined by the following optimization
problem:

maximize
θ∈D⊂RD

τfL(θ; x) + (1 − τ)fW(θ; x), (7)

for all τ ∈ [0, 1] where D is the parameter domain defined by
the ranges in Table I. We refer to τ = 0 and τ = 1 as left and
right solutions, respectively. The goal is to quantify a smooth
trajectory θ(τ ; x) through MAC and PHY parameter space,
or trace [16], such that the convex combination of throughputs
is maximized over a map θ : [0, 1]×{x} → D. Note that the
objective function in (7) is a combination of both through-
puts, thus approximation requires global information such as
channel state information. We consider a cooperative scenario,
as in [24]–[27], in which the information of both networks
can be exchangeable—i.e., the throughput information of both
systems can be obtained by each network. In Section III we
formalize this notion of a trace.

III. PARETO TRACING

We refer to (7) as a maximization of the convex total
objective or scalarization [16]. In this case, we have a single
degree of freedom to manipulate the scalarization parametrized
by τ ∈ [0, 1] such that ϕτ (θ; x) = (1 − τ)fW (θ; x) +
τfL(θ; x). In order to satisfy the necessary conditions for
a (locally) Pareto optimal solution, we must determine θ ∈ R

D

critical for ϕτ . This condition, also known as stationarity,
requires ∇ϕτ (θ; x) = (1 − τ)∇fW (θ; x) + τ∇fL(θ; x) =
0. Moreover, θ is a locally unique Pareto optimal solution
if ∇2ϕτ (θ; x) = (1 − τ)∇2fW(θ; x) + τ∇2fL(θ; x) is
symmetric negative definite [15], [16].

In order to find a continuous (in τ ) solution to (7) we first
examine the aforementioned necessary conditions. Provided
the set of all Pareto optimal solutions to (7) is convex, we can
continuously parametrize this set as τ �→ θ(τ) for all τ ∈ [0, 1]
(dropping scenario parameters x for brevity). As an analogy,
consider τ as pseudo-time describing an analogous trajectory
through parameter space, i.e., launching from one maximizing
argument to another. This interpretation is facilitated by the
following Proposition:

Proposition 1 ([1], [16]): Given full rank ∇2ϕτ (θ(τ)) ∈
R

D×D, the one-dimensional immersed submanifold parame-
trized by θ(τ) ∈ R

D for all τ ∈ [0, 1] is necessarily Pareto
optimal such that

∇2ϕτ (θ(τ))θ̇(τ) = ∇fW(θ(τ)) −∇fL(θ(τ)).

Proof: Differentiating the stationarity condition by com-
posing in pseudo-time, ∇ϕτ ◦ θ(τ) = 0, results in

0 =
d

dτ
(∇ϕτ ◦ θ(τ))

=
d

dτ
(1 − τ) (∇fW ◦ θ(τ)) +

d

dτ
τ (∇fL ◦ θ(τ))

= −∇fW ◦ θ(τ) + (1 − τ)
(∇2

θfW ◦ θ(τ)
)
θ̇(τ)

+ ∇fL ◦ θ(τ) + τ
(∇2

θfL ◦ θ(τ)
)
θ̇(τ)

= ∇2ϕτ (θ(τ))θ̇(τ) − (∇fW ◦ θ(τ)−∇fL ◦ θ(τ)) .

Then, the flowout along necessary Pareto optimal solutions
constitutes an immersed submanifold of R

D nowhere tangent

to the integral curve generated by the system of differential
equations (See [28], Thm. 9.20)—i.e., assuming ∇2ϕτ (θ(τ))
is full rank,∇2ϕτ (θ(τ))−1 (∇fW(θ(τ)) −∇fL(θ(τ))) is the
infinitesimal generator of a submanifold in R

D of locally
Pareto optimal solutions contained in the flowout. �

We note that the system of equations in Prop. 1, proposed
in [16], constitutes a set of necessary conditions for optimality.
The utility of Prop. 1 offers an interpretation that the solution
set (if it exists) constitutes elements of a submanifold in R

D.
This formalism establishes a theoretical foundation for the
use of manifold learning or splines over sets of points that
are approximately Pareto optimal. Our future research efforts
are motivated by drawing comparisons and complementary
analysis with the aforementioned methods—Prop. 1 serves as
the theoretical motivation and interpretation for such efforts.

Suppose fW and fL are well approximated by convex
quadratics as surrogates,

−fL(θ; x) ≈ θTQLθ + aT
Lθ + cL (8)

and

−fW(θ; x) ≈ θTQWθ + aT
Wθ + cW , (9)

such that QL, QW ∈ SD
++, aL, aW ∈ R

D , and cL, cW ∈
R where SD

++ denotes the collection of D-by-D symmetric
positive definite matrices—note the change in sign convention.
In this case, the Pareto trace defined in Prop. 1 can be solved
in closed form,

θ(τ ; x) =
1
2

[τQL + (1− τ)QW ]−1 [(τ − 1)aW − τaL] ,

(10)

referred to in this context as a quadratic trace. The chal-
lenge in our context given the possibility of degeneracy in
quadratic Hessians associated with fW and fL is: how can
we assess conditions informing (10) or regularize the solve to
guarantee these conditions? We offer an approach that assess
these conditions by regularization through subspace-based
dimension reduction to inform convex quadratic surrogates as
approximations satisfying Prop. 1.

Naively, for arbitrary dimension D and number of sam-
ples N , we can also pose a convex optimization problem over
the cone of positive semi-definite matrices,

minimize
Q ∈ SD

+ , a ∈ R
D, c ∈ R

1
2

N∑
n=1

(
c+θT

na+θT
nQθn − fn

)2

.

(11)

Approximations resulting from problem (11) allow us to
compute the quadratic trace (10) as a global data-driven
surrogate given {(θn, fn)} of paired parameters and function
responses where fn represents the throughput response—
modeled or measured—for either network; e.g., fn =
fW(θn; x) or fn = fL(θn; x). Solutions to problem (11) are
described as a fit CVX ({(θn, fn)}). Following an approx-
imation to (11), the global quadratic Pareto trace is pred-
icated on the rank of the minimizing arguments Q—in
particular, the rank of the convex combination of matrices
given by independent solutions to (11) using data for either
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TABLE I

MAC AND PHY PARAMETERS INFLUENCING THROUGHPUTS

throughput, i.e., {QL, aL, cL} = CVX ({(θn, fL(θn; x))})
and {QW , aW , cW} = CVX ({(θn, fW(θn; x))}). Note that
in (11) we relax the condition of strict positive definiteness to
account for potentially degenerate quadratics—which can act
as alternative models suggesting low-dimensional approxima-
tions [14], [29], [30]—ensuring the solution space of (11) is
closed [15]. Efficient solutions (fits) to problem (11) can be
computed with “CVX,” an open-source package for defining
and solving convex programs [31], [32].

Evidently, from equation (10) we see that the stability
of the quadratic trace depends on the condition number
of τQL + (1 − τ)QW . In other words, subsequent fits
CVX ({(θn, fK(θn; x))}) dependent on various data sets as
input may result in perturbations to the coefficient matri-
ces QK for either throughput.2 Consequently, the other-
wise unknown (and potentially variable) conditioning of QK
may result in instabilities of the quadratic trace subject to
small perturbations—despite a reliable constrained optimiza-
tion (11). We desire solutions that are stable (better con-
ditioned) against variations in the quadratic surrogate when

2Notice also that the fits CVX ({(θn, fK(θn; x))}) depend on the fixed
scenario x and consequently any subsequent reference to these approximations
should reflect this dependency.

presented with new or perturbed data. In this work, we study
numerical experiments in section V emphasizing a significant
improvement in stability after dimension reduction. Formaliz-
ing improvements in stability induced by dimension reduction
is a topic for future research.

IV. ACTIVE SUBSPACES

Following the development in [14], we introduce a
dimension-reduction method to approximate the functions
in (7). This dimension-reduction technique draws from active
subspace analysis to identify linear subspaces of parameters
that lead to significant changes in a function. To describe
the details of the active subspaces approach, we introduce
a scalar-valued function fK : D ⊂ R

D → R defined on a
compact domain D. Again, where K denotes either throughput
functions fL or fW and dropping scenario parameters for
brevity.

The main results of the section rely on an eigendecompo-
sition of the symmetric positive semi-definite matrix CK ∈
R

D×D defined as

CK =
∫
D
∇fK(θ)∇fT

K(θ)dθ. (12)
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In the throughput maximization application discussed in this
article, the compact domain D is a D-dimensional rectangle
constructed from the Cartesian product of lower and upper
bounds, (θ�)i ≤ θi ≤ (θu)i for all i = 1, . . . , D. We also
assume a uniform measure for integration over D. Additional
discussion is available in [1].

If rank(CK) = r < D, its eigendecomposition
CK = WKΛKW T

K with orthogonal WK satisfies ΛK =
diag(λ1, . . . , λD) with λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 =
· · · = λD = 0. This defines two sets of important
W r,K = [w1 . . . wr]K ∈ R

D×r and unimportant W⊥
r,K =

[wr+1 . . . wD]K ∈ R
D×(D−r) directions over the domain.

The column span of W r,K and W⊥
r,K constitute the active

and inactive subspaces, respectively. Note that (12) depends
on a single scalar-valued response and, therefore, the active
subspaces potentially differ for the separate throughputs in (4)
and (5).

What do we mean by important directions? Using the
eigenvectors wj ∈ R

D, we can simplify wT
j CKwj to obtain

an expression for the eigenvalues,

λj =
∫
D

(
wT

j∇fK(θ)
)2

dθ. (13)

In other words, the j-th eigenvalue can be interpreted as the
mean squared directional derivative of fK in the direction of
wj ∈ R

D denoted E[df2
K[wj]] [1], [14]. Thus, the ordering

of the eigenpairs {(λj , wj)}Dj=1 indicate directions wj over
which the function fK changes more, on average, up to the
r + 1, . . . , D directions that do not change the function at
all [14]. In fact, either throughput response from (4) or (5)
is referred to as a ridge function over θ’s if and only if the
directional derivatives are zero over all w ∈ Null(W T

r,K).
We formalize this interpretation in the following:

Proposition 2 ([14]): Given wj for j = r+1, . . . , D as the
trailing eigenvectors of CK, the paired eigenvalues λj = 0 if
and only if fK does not change over span{wr+1, . . . , wD}.

Proof: An alternative presentation of the result is offered
for completeness. ( =⇒ ) Take a linear combination of any
two eigenvectors wi and wj with identically zero eigenvalues,
λi and λj , for any i, j ∈ {r + 1, . . . , D}. Then, for arbitrary
a, b ∈ R, θ ∈ D, and differentiable function fK : D → R,

|E[df2
K[awi + bwj ]]| (i)

= |E[(adfK[wi] + bdfK[wj ])2]|
(ii)
= |2ab||E[dfK[wi]dfK[wj ]]|

(iii)

≤ |2ab| (E[df2
K[wi]]E[df2

K[wj ]]
)1/2

(iv)
= |2ab|√λiλj

(v)
= 0.

The differentiability of fK implies continuity so that
E[df2

K[awi + bwj ]] = 0 =⇒ dfK(θ)[awi + bwj] = 0 for
all θ. Equality (i) follows from the linearity of the differential
over directions. Equality (ii) is a simplification of the expanded
quadratic that follows by assumption—i.e., E[df2

K[wi]] =
E[df2

K[wj ]] = λi = λj = 0 for wi, wj ∈ Null(CK). Inequal-
ity (iii) is Cauchy-Schwarz for a Hilbert space of square
integrable (measurable) functions. Equality (iv) follows from

expression (13) and equality (v) follows from assumption.
Finally, by recursively assigning wi ←− awi+bwj and taking
the next eigenvector from the set to be wj , we can repeat the
above for all remaining eigenvectors. The converse ( ⇐= )
follows directly from (13) and linearity of the differential. �

Naturally, if the trailing eigenvalues are merely small as
opposed to zero, then the function changes much less over the
inactive directions with smaller directional derivatives. This
lends itself to a framework for reduced-dimension approxima-
tion of the function such that we only approximate changes
in the function over the first r active directions and take the
approximation to be constant over the trailing D − r inactive
directions [14]. Such an approximation to fK is called a
ridge approximation by a function hK referred to as the ridge
profile [33], i.e.,

fK(θ) ≈ hK(W T
r,Kθ). (14)

In the event that the trailing eigenvalues of CK are zero, then
the approximation is exact for a particular hK [14].

In either case, approximation or an exact ridge profile,
the possibility of reducing dimension by projection to fewer,
r < D, active coordinates γ = W T

r,Kθ ∈ R
r can enable

higher-order polynomial approximations for a given data set
of coordinate-output pairs and an ability to visualize the
approximation. For example, we can visualize the approx-
imation by projection to the active coordinates when r is
chosen to be 1 or 2 based on the decay and gaps in the
eigenvalues. These subsequent visualizations are referred to
as shadow plots [29] or graphs {(W T

r,Kθn, fK(θn))}Nn=1 for
N samples {θn} drawn uniformly. A strong decay leading
to a small sum of trailing eigenvalues implies an improved
approximation over relatively few important directions while
larger gaps in eigenvalues imply an improved approximation to
the low-dimensional subspace [14]. Identifying if this structure
exists depends on the decay and gaps in eigenvalues. We can
subsequently exploit any reduced dimensional visualization
and approximation to simplify our problem (7). However,
we must reconcile that our problem of interest involves two
separate computations of throughput, fL and fW . These con-
siderations are addressed in subsection IV-A. Computational
considerations (parameter scalings and selection of r) are
discussed in [1]. We present algorithm 1 from [1] again
for completeness. Additionally, convergence guarantees and
error bounds on the subspace approximations resulting from
Algorithm 1 are discussed at length in [14] (Thm. 3.13).

A. Subspace Mixing

Independently approximating active subspaces for the objec-
tives fL and fW generally results in different subspaces
of the shared parameter domain. The next challenge is to
define a common subspace that, while not active for each
objective, is nevertheless sufficient to capture variability of
both KPI simultaneously. Assume that we can reduce impor-
tant parameter combinations to a common dimension r of
potentially distinct subspaces. These subspaces are spanned
by the column spaces of W r,L and W r,W chosen as the first
r eigenvectors resulting from separate approximations of (12)
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Algorithm 1 Monte Carlo Approximation of Throughput
Active Subspaces Using Forward Differences
Require: Forward maps fL and fW , small coordinate perturbation

δ ≥ 0, fixed scenario parameters x, parameter bounds θ�, θu ∈
R

D, and the number of Monte Carlo samples N .
1: Generate N i.i.d. uniform samples, {θ̃n}N

n=1 ∼ UD[−1, 1].
2: Compute M , M−1, and b according to a uniform distribution of

log-scale parameters given θ� and θu.
3: for n = 1 to N do
4: Transform the uniform log-scale sample to the original scale

θn = exp(M−1(θ̃n − b)) where the exponential is taken
component-wise.

5: Evaluate forward maps (fL)n = fL(θn; x) and (fW )n =
fW(θn ; x).

6: for i = 1 to D do
7: Transform the i-th coordinate perturbation to the original

input scale θδ = exp(M−1(θ̃n + δei − b)), where ei is
the i-th column of the D-by-D identity matrix.

8: Approximate the i-th entry of the gradient (i-th partial) at the
n-th sample as

(∇̃fL)n,i =
fL(θδ; x) − (fL)n

δ
,

similarly for (∇̃fW )n,i.
9: end for

10: end for
11: Compute the average of the outer product of approximate gradi-

ents as

C̃L =
1

N

N�

n=1

(∇̃fL)n,: ⊗ (∇̃fL)n,:,

similarly for C̃W , where the tensor (outer) product is taken over
the i-th index replaced by:.

12: Compute the eigenvalue decompositions

C̃L = W̃ LΛ̃LW̃
T

L and C̃W = W̃ WΛ̃WW̃
T

W

ordered by decreasing eigenvalues.
13: Observe the eigenvalue decay and associated gaps to inform a

reasonable choice of r.
14: return The first r columns of W̃ L and W̃ W , denoted W̃ r,L

and W̃ r,W .

for LAA and Wi-Fi throughputs, respectively. The challenge
is to appropriately “mix” the subspaces so we may formulate
a solution to (7) over a common dimension reduction.

One method to find an appropriate subspace mix is to
take the union of both subspaces. However, if r ≥ 2 and
Range(W r,L) ∩ Range(W r,W) = {0} then the com-
bined subspace dimension is inflated. This inflation betrays
the goals of dimension reduction and, furthermore, hinders
prospects for visualization. We use interpolation between
the two subspaces to overcome these difficulties and retain
the common reduction to an r-dimensional subspace. The
space of all r-dimensional subspaces in R

D is the r(D −
r)-dimension Grassmann manifold (Grassmannian) denoted
Gr(r, D) [34]. Utilizing the analytic form of a geodesic
over the Grassmannian [34], we can smoothly interpolate
from one subspace to another—an interpolation that is,
in general, non-linear. This is particularly useful because
the distance [34] between any two subspaces along such
a path, [U r] : R → Gr(r, D) : s �→ [U r(s)] for all s ∈

[0, 1], minimizes the distance between the two subspaces
Range(W r,L), Range(W r,W) ∈ Gr(r, D) defining the geo-
desic. That is, the geodesic [U r(s)] minimizes the distance
between Range(W r,L) and Range(W r,W) while still consti-
tuting an r-dimensional subspace in R

D.
In an effort to improve the ridge approximations while

retaining the ability to visualize the response and trace of
the convex quadratic polynomial, we fix r = 2 and mix the
subspaces according to a quadratic approximation with corre-
sponding coefficients of determination R2

L and R2
W . These are

computed over the Grassmannian geodesic using representa-
tive subspace coordinates and throughput (coordinate-output)
pairs, i.e.,

R2
K(s) = 1−

∑N
n=1(fK(θn)− hK(UT

r (s)θn))2∑N
n=1(fK(θn)− 1/N

∑N
n=1 fK(θn))2

(15)

for either network represented by K and quadratic ridge pro-
files hK. Moreover, the dimension reduction down to r = 2 is
anticipated to help regularize fits hK and provide more stable
approximations resulting from a quadratic trace. We select a
criterion to mix subspaces achieving a balanced approximation
when r = 2. This offers the subproblem,

maximize
s∈[0,1]

min{R2
L(s), R2

W (s)}, (16)

where the separate throughput coefficients of determination
are parametrized over a consistent set of subspace coordinates
γn = UT

2 (s)θn for all n = 1, . . . , N and quadratic ridge
profiles hK.

B. Tracing Ridge Profiles

After approximating W r,L and W r,W we must make an
informed decision to take the union of subspaces or compute a
new subspace Range(U r) against some criteria parametrized
over the Grassmannian geodesic. Then we may restate the
original problem with a common dimension reduction, γ =
UT

r θ, utilizing updated approximations over r < D mixed
active coordinates,

maximize
γ∈Y

τhL(γ; x) + (1− τ)hW (γ; x), (17)

for all τ ∈ [0, 1]. Although somewhat intuitive, we formalize
stationarity of (17) as a Corollary (again, dropping the scenario
variables for clarity):

Corollary 1: If hL and hW are ridge functions over a
mutual r-subspace Range(U r), U r ∈ R

D×r such that
UT

r U r = Ir , then the necessary conditions of Prop. 1 map to
subspace coordinates.

Proof: By assumption, fK(θ) = h(UT
r θ) for either

objective K. Consequently, the gradient of fK with respect
to parameters θ is spanned by the subspace Range(U r),
∇θfK = U r∇γhK =⇒ UT

r∇θfK = ∇γhK. Similarly,
the Hessian becomes ∇2

θfK = U r∇2
γhKUT

r . Rewriting the
necessary conditions per Prop. 1 such that

∇2
θϕt(θ(τ)) = U r

(
(1 − τ)∇2

γhW(τ) + τ∇2
γhL(τ)

)
UT

r ,

and assigning ∇2
γ ϕ̃(τ) = (1 − τ)∇2

γhW(τ) + τ∇2
γhL(τ)

implies U r∇2
γ ϕ̃(τ)UT

r θ̇(τ) = ∇θfW(τ) − ∇θfL(τ). For
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active coordinates γ(τ) = UT
r θ(τ), the necessary conditions

simplify given UT
r∇θfK = ∇γhK such that ∇2

γ ϕ̃(τ)γ̇(τ) =
∇γhW(τ)−∇γhL(τ) and according to pseudo-time derivative
that commutes with matrix multiplication γ̇(τ) = UT

r θ̇(τ). �
Once again, this optimization problem involves a closed and
bounded feasible domain of parameter values Y = {γ ∈
R

r : γ = UT
r θ, θ ∈ D} that remains convex for convex

D and a new subspace Range(U r)—for hypercube D, Y
is referred to as a zonotope [14], [35]. The utility of the
dimension reduction is the ability to formulate a continuous
trace of the Pareto front [16]—involving the inverse of a
convex combination of Hessians—in fewer dimensions. In the
context of a low-dimensional quadratic trace, the ridge approx-
imations are hK(γ; x) = γTQKγ + aT

Kγ + cK given by

CVX
(
{(UT

r θn, fK(θn; x))}
)

for corresponding network K.
Consequently, the resulting active coordinate trace is given by
replacing θ(τ ; x) with the parametrization γ(τ ; x) in (10) for
all γ(τ ; x) ∈ Y . This is supplemented by visualization in the
case r = 1 or r = 2 providing empirical evidence of convexity
and the ability to visualize the resulting trace—a powerful tool
for facilitating exploration, explainability, and comparison.

However, given the transformation to active coordinates,
we are now afforded the flexibility of selecting from an infinite
number of inactive coordinates orthogonal to the quadratic
trace of (17). Precisely, restricting approximations to an r-
dimensional subspace defines a submanifold of approximately
Pareto optimal solutionsM⊆ R

D given as the product man-
ifold M = γ([0, 1]; x) × Zγ where γ([0, 1]; x) is the image
of the quadratic trace over active coordinates and Zγ = {ζ ∈
R

D−r : Urγ+U⊥
r ζ ∈ D}. This offers a parametrization over

a (D − r + 1)-submanifold of approximately Pareto optimal
solutions,

θ(τ, ζ; x) = U rγ(τ ; x) + U⊥
r ζ, (18)

for all ζ ∈ Zγ(τ ;x). Provided we remain off the boundary of
M such that we are only interested in a trace over the interior
of D, we can formulate a geodesic over M of near Pareto
optimal solutions,

θ(τ ; x) = U rγ(τ ; x) + U⊥
r ζ(τ), (19)

where ζ(τ) is a straight-line segment over the flat portion
of the submanifold M. It is conceivable to parametrize this
line segment as the convex combination ζ(τ) = τζ1 +
(1−τ)ζ0 where ζ0 = argmax

ζ∈Zγ(0;x)

(
fW(U rγ(0; x) + U⊥

r ζ; x)
)

and ζ1 = argmax
ζ∈Zγ(1;x)

(
fL(U rγ(1; x) + U⊥

r ζ; x)
)

are the left

(τ = 0) and right (τ = 1) inactive solutions, respectively.
However, the subsequent inactive geodesic is expected to
change throughputs significantly less—resulting in marginal
improvements corresponding to inaccuracies induced by a
choice of convex quadratic ridge profile.

Lastly, we write the image of throughputs over specific
choices of the map θ(τ ; x) as planar curves through Pareto
space (fronts) P = {f ∈ R

2 : f = (fW , fL) ◦ θ, θ ∈ D}
containing the true (unknown) Pareto front. In this study,
we consider three choices for attempting to approximate the

Pareto front: (i) the geodesic front

{f(τ ; x) ∈ R
2 : f (τ ; x) = (fW , fL) ◦ θ(τ ; x)} (20)

per (19), (ii) the linear front

{f(τ ; x) ∈ R
2 : f(τ ; x) = (fW , fL) ◦ �(τ ; x)} (21)

where �(τ ; x) = (1 − τ)θ0 + τθ1 defined by approximated
left solution θ0 (resp. right solution θ1) to (7) using a state-
of-the-art interior point solver defining �(τ ; x) as a geodesic
over Euclidean Pareto manifold, and (iii) the conditional front{

f(τ ; x) ∈ R
2 : f(τ ; x)

=
∫
Zγ(τ;x)

(fW , fL) ◦ θ(t, ζ; x)dV (ζ|γ(τ ; x))
}

(22)

for conditional integral measure over inactive coordinates,
dV (ζ|γ(τ ; x)). Additionally, the Pareto front approximations
summarized in (17)-(19) can be contrasted with a “brute
force” procedure which approximates (5) using a state-of-the-
art interior point solver over discrete values of τ ∈ [0, 1]. The
resulting approximations and visualizations are compared in
Section V.

C. Stretch Sampling

Projection of randomly sampled points {θn} to subspace
coordinates suffers from a concentration of distances phe-
nomenon. This is demonstrated empirically, for our case,
in Fig. 2. Generally, for otherwise unknown (random) sub-
space, we anticipate—with high probability—that distances
between our random samples will uniformly scale by a fac-
tor of

√
r/D for a random projection to subspace coordi-

nates [36], [37]. Hence, given an otherwise unknown set of
subspaces to be mixed resulting from Algorithm 1, we desire
a procedure to systematically improve samples that may con-
centrate over the reduced dimension subspace.

To inform a supplementary space-filling design that pro-
duces additional samples for CVX

(
{(UT

r θn, fK(θn; x))}
)

such that r ≤ 2, we implement a heuristic procedure referred
to as stretch sampling. In brief, we systematically sample
active coordinates supplemented by random draws over corre-
sponding inactive coordinates, Zγ . Given data {θn} and a
basis for the mixed subspace U r, we consider the bound-
ary of the convex hull of all projected samples {UT

r θn}
and zonotope boundary ∂Y . Utilizing linear interpolation of
an ordered (clockwise or counterclockwise) set of vertices
from either boundary, we take a chosen number of points
to uniformly discretize—e.g., compute 25 points per bound-
ary via piecewise linear interpolation of the ordered set of
vertices over separate boundaries. The uniformly sampled
boundary points define a Delaunay triangulation, and we
return corresponding Voronoi centers not contained in the
interior of the projected-data convex hull (exterior Voronoi
centers) as new samples that are stretched beyond the extent of
the projected data. These new samples—aggregated with the
original data—fill out the remainder of the zonotope while
inactive coordinates are drawn randomly from Zγ [14] at
each new sample. The result produces improved sampling to
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Fig. 2. Stretch sampling a two-dimensional zonotope. The boundary of the
zonotope Y (solid black curve) is depicted along with the boundary of the
convex hull of data (dashed-black curve) and N = 10, 000 projected random
samples (black dots). Axes correspond to independent active coordinates. The
resulting triangulation (gray mesh) is informed by 25 uniformly sampled
points per boundary and exterior Voronoi centers (gray dots) constitute the
new stretch samples used to improve the ridge approximations.

mitigate concerns of extrapolating surrogates over the reduced
dimension subspace. A visualization of the new samples using
25 points per boundary is shown in Fig. 2.

V. SIMULATION AND RESULTS

We demonstrate the ideas proposed in Section IV on the
LAA-Wi-Fi coexistence scenario described in Section II to
maximize both throughputs simultaneously per (7) and sub-
sequent simplification (17). We apply active subspaces to
simplify the bi-criteria optimization problem (7) by focusing
on a reduced set of mixed MAC and PHY layer parameter
combinations informing a manifold of near Pareto optimal
solutions (18). In particular, we contrast the geodesic trace (19)
with a simple linear interpolation of left and right approx-
imations to (7) computed with a state-of-the-art interior-
point solver over the full dimensional space—informing (20)
and (21), respectively. We also visualize a conditional approxi-
mation of the Pareto front by taking the conditional average of
throughput responses over inactive coordinates subordinate to
Zγ using (18)—computed as a Monte Carlo approximation
of (22). The subsequent visualization of the Monte Carlo
approximation of (22) emphasizes the expected range of
throughput values captured, on average, over the near-optimal
Pareto manifold (18). Table I lists the scenario parameters and
parameter bounds (feasible region) used by the model for all
computations and optimizations.

The baseline for all comparisons is a random grid search
with solutions defined by sorting random evaluations (Pareto
sort) to identify non-dominated designs in the random set [38].
These random samples are readily obtained from the ran-
dom function evaluations utilized in Algorithm 1. The sorted
random grid search is also supplemented by a “brute force”
approximation of successive solutions to (7) with state-of-
the-art interior-point solver over a uniform discretization of
τ ∈ [0, 1]—referred to as the “common approach” in [39].

The numerical experiment utilizes N = 10, 000 samples
resulting in N(m+1) = 180, 000 total function evaluations to
compute forward differences with δ = 10−6. The eigenvalues
resulting from Algorithm 1 indicate a steady decay devoid of
dramatically different gaps in eigenvalues (see Fig. 3). This is
contrasted with the resulting decay of eigenvlaues associated
with the principal Hessian directions [30] and quadratic active
subspace approximations [29], both defined with respect to
full-dimensional fits of throughputs (11), CVX ({(θn, fn)}).
Interestingly, the dimension reductions informed by the convex
quadratic fits admit stronger decays in trailing eigenvalues (in
both cases). This indicates a bias resulting from the choice of
convex quadratic model over full-dimensional parameter space
in contrast to the unbiased estimates of finite differences in
Algorithm 1 [14].

Despite the steady decay in eigenvalues resulting from
Algortihm 1, the separate active subspaces for corre-
sponding throughputs informed relatively accurate degree-
2 to degree-5 polynomial approximations—computed utilizing

sets of coordinate-output pairs {(W̃ T

r,Lθ̃n, (fL)n)}Nn=1 and

{(W̃ T

r,W θ̃n, (fW)n)}Nn=1—with varying coefficients of deter-
mination between 0.83 − 0.98 for both throughputs when
r = 1 or r = 2.

The univariate subproblem in (16) can be visualized and,
in this experiment, achieved a unique maximizing argument
s∗ ∈ [0, 1] resulting in a mixed subspace with orthonormal
basis given by two columns in a matrix U r(s∗) = [u1 u2]
over which separate quadratic ridge functions obtained roughly
equal accuracy as approximations to their respective through-
puts. The coefficients of determination varied monotonically
and intersected over the Grassmannian parametrization. Con-
sequently, the subproblem (16) results in an approximately
equal criteria for the accuracy of the quadratic ridge profiles
hW and hL, i.e., R2

L(s∗) ≈ R2
W(s∗) ≈ 0.86.

Fig 4 depicts the condition numbers of convex combina-
tions of quadratic Hessians resulting from a full-dimensional
fit (11), i.e., r = D, and the chosen (r = 2)-dimensional sub-
space over the quadratic trace. Examining Fig. 4, we observe
that the condition number over the two-dimensional subspace
is more than two orders of magnitude lower than the full
dimensional fit—achieving near optimal conditioning in the
middle of the trace. We also note that at least some portion
of the 2-dimensional trace passes through the domain while
the full-dimensional trace does not. Consequently, the implicit
regularization over the mixed subspace informed by subprob-
lem (16) gives a more stable (and feasible) quadratic trace
than simply solving (11) in full-dimensional space. The convex
quadratic ridge approximations, Pareto trace approximations,
non-dominated designs from the set of N = 10, 000 random
parameters, along with projected random samples and mixed
subspace zonotope are shown in Fig. 5. The Pareto front
approximation resulting from various traces are shown with
the non-dominated designs in Fig. 6.

Observing Fig. 5, we depict traces and approximations over
the two-dimensional subspace along with corresponding con-
vex quadratic approximations and the data constituting N =
10, 000 projected samples augmented by stretch sampling. The
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Fig. 3. Comparison of the eigenvalue decay for Wi-Fi and LAA throughputs. The eigenvalues resulting from Algorithm 1 are shown as the blue stem plot
(solid blue dots) corresponding to N = 10, 000 Monte Carlo samples. This is contrasted with eigenvalues of the convex quadratic Hessian (yellow circles)
computed using the N = 10, 000 unperturbed random function evaluations defining the convex problem (11) over the full-dimensional parameter space.
Additionally, the eigenvalues of the active subspaces resulting from the full-dimensional convex quadratic fit as a surrogate (blue circles) is contrasted to the
unbiased finite difference approach (solid blue dots).

Fig. 4. Condition number of convex combinations of quadratic Hessians.
The convex combination resulting from (11) over the full dimensional
space (orange) is contrasted with the significantly improved conditioning over
the mixed two-dimensional subspace (blue). Results are depicted at 100 points
along the corresponding quadratic traces (10). Black crosses indicate points
along the trace that do not pass through the domain.

red curve corresponds to the quadratic trace (19) while the blue
curve corresponds to the linear trace projected to the subspace
for the purposes of visualization and comparison. As a ground
truth, we depict the collection of projected non-dominated
designs (black circles) resulting from sorting the full data
set—effectively this may be viewed as a Pareto optimality
solution obtained via random grid search. The non-dominated
designs are determined from the full set of N = 10, 000 ran-
dom samples sorted according to [38]. Note, it is not clear
through this visualization that the non-dominated designs
constitute elements of an alternative continuous approximation
of the Pareto front—perhaps represented by an alternative
low-dimensional manifold informed by a machine learning
procedure.

In Fig. 6, we depict the corresponding throughput evalu-
ations from conditional inactive samples over the quadratic
trace as red dots along with associated Monte Carlo approxi-
mation of the conditional Pareto front (22). In other words,
the solid-red line (overlapping the cloud of red dots) con-
nects conditional averages of throughputs over 25 inactive
samples along a corresponding discretization of 15 active
coordinates over the subspace-based quadratic trace in Fig. 5.
The visualization emphasizes that the throughputs change
significantly less over the inactive coordinates in contrast to
the range of values observed over the trace. Contrasting the red
dots (conditional samples) and solid-red curve (approximated
conditional front) to the colored scatter (averaged throughput
response) paired with all random evaluations emphasizes that
the near-Pareto optimal manifold (18) satisfies, on average,
an averaged (summed) thoughput, (i.e., τ = 0.5) which is
approximately greater than or equal to seven. The conditional
front (22) moves approximately through the non-dominated
designs of a random grid search. Hence, we have supplemented
with a near-optimal (predominately flat) Pareto manifold (18)
which is regularized as a solution over a low-dimension
subspace, and nearly captures the non-dominated designs from
a random grid search, on average.

However, there are infinite θ in the original parameter
space that correspond to points along the quadratic trace
with a subset depicted in Fig. 5 (solid-red curve and dots)—
i.e., infinitely many D − r inactive coordinate values that
may change throughputs albeit significantly less (roughly an
additional 15%−20%) than the two mixed active coordinates,
γ1 = uT

1 θ̃ and γ2 = uT
2 θ̃. To reconcile the choice of

infinitely many inactive coordinates, we consider a discretiza-
tion of 15 points along the geodesic trace (19) (curvature
and discretization depicted in Fig. 5) and associated Pareto
front approximation (20) (red-dashed line in Fig. 6). This
is contrasted with τ discretized uniformly to approximate
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Fig. 5. Pareto trace of convex quadratic ridge profiles. The quadratic Pareto trace (red curve and dots) is overlaid on a shadow plot over the mixed coordinates
(colored scatter) with the projected bounds and vertices (zonotope) of the domain (black dots and lines), Y . The quadratic approximations (colored contours)
are contrasted against the true function evaluations represented by the colors of the scatter. Also depicted is the projection of the non-dominated domain values
from the N = 10, 000 random samples (black circles). The active coordinate trace (red dots and curve) begins at the upper left-most boundary with near
maximum quadratic Wi-Fi throughput and we move (smoothly) along a trajectory to the lower left-most boundary obtaining near maximum quadratic LAA
throughput—maintaining an approximately best trade-off over the entire curve restricted to Y . This is contrasted with a linear interpolation of full dimensional
left (τ = 0) and right (τ = 1) approximations to (7) (blue dots and curve) and 15 successive approximations to (7) with uniform discretization of τ ∈ [0, 1]
(blue circles) as the “brute force” solution.

Fig. 6. Approximation of the Pareto front resulting from the quadratic
trace. The conditional Pareto front (solid-red curve) is contrasted with the
non-dominated random throughput values (black circles) and scatter of N =
10, 000 random responses colored according to the averaged throughput
(τ = 0.5) response. The solid-red curve is a Monte Carlo approximation
of the conditional Pareto front (22) with corresponding evaluations (overlaid
red dots) used to compute conditional means. The dashed-red curve and
coincident dots represent a discretization over geodesic (19) between left
(τ = 0) and right (τ = 1) inactive maximizing arguments on the manifold of
approximately Pareto optimal solutions (18). Also shown is the linear Pareto
front (21) through the full parameter space (blue curve and coincident dots)
and a set of 15 successive maximizations (7) over a uniform discretization of
τ ∈ [0, 1] (blue circles) as the “brute force” solution.

15 successive optimizations solved in the full dimensional
space (7) (blue circles) and the linear trace (21) (blue line
and dots). There is reasonable agreement in the solutions
produced by all three approaches. However, the geodesic
trace (19) produces marginally better solutions from strict
Wi-Fi optimization until the interesting intermediate design
region (over τ ∈ [0, 0.5]). The naive approach of aggregat-
ing successive optimizations (7) over uniform discretization
of τ struggles to identify any intermediate combinations of

throughputs with solutions clustering towards one maximum
or the other—a recognized issue in bi-criteria problems [39]
remedied by our alternative parameterizations (20) and (21).
Interestingly, and unexpectedly, the linear submanifold and
subsequent front (21) perform comparatively well. This may
suggest that the curved portion of the Pareto optimal manifold
only affords minor improvements and an alternative Pareto
manifold of near-optimal solutions could be built from a
tubular neighborhood of the line segment interpolating left and
right approximations to (7).

We additionally facilitate a comparison between multiple
techniques of Pareto trace estimation in Fig. 6. In particular,
the subspace-based quadratic trace (red-dashed curve) obtains
larger pairs of throughput values than the random grid search
(black circles) and fills out the front better than the brute
force approach (blue circles). Indeed, the continuous traces
from (20)-(21) all outperform the 10,000 non-dominated ran-
dom values computed per [37] while the conditional front (22)
serves as an approximation of these non-dominated (Pareto
sort) random values. Additionally, the “brute force” state-
of-the-art interior point solutions cluster on either edge of
the Pareto front. The red-dashed curve does better than the
majority of the linearly interpolated left and right interior-point
solves (linear front, blue curve) although these curves are
similar.

There is some bias in the approximation of the conditional
front (solid-red curve) in Fig. 6 that is not a least-squares
curve of non-dominated throughput values (black circles)
potentially due in part to the quadratic ridge approximations
or regularization by virtue of simplifying over a subspace.
However, this issue is reconciled by constructing the geodesic
trace (19) (with corresponding Pareto front as the dashed-red
curve in Fig. 6) that dominates the random grid search
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(black circles in Fig. 6) and the majority of the linear trace
(blue curve in Fig. 6). We expect further refinements to
these approximations (higher-order polynomials), increased
subspace dimension, or numerical integration of the ODE in
Prop. 1 with simplifications per Cor. 1 will further improve
the near-optimal Pareto manifold and subsequent traces.

VI. CONCLUSION & FUTURE WORK

We have proposed a technique to simultaneously opti-
mize the performance of two MNOs sharing limited unli-
censed spectrum resources. An exploratory analysis utilizing
an example of LAA coexistence with Wi-Fi network iden-
tified a common subspace-based dimension reduction of a
basic model of network behavior. This enabled visualizations
and low-dimensional approximations that led to a continuous
approximation of the Pareto frontier for the bi-criteria problem
of maximizing all convex combinations of network through-
puts over MAC and PHY parameters. Such a result simplifies
and regularizes the search for parameters that enable high qual-
ity performance of both networks, particularly compared to
approaches that do not operate on a reduced parameter space.
Analysis of the LAA-Wi-Fi example revealed an explain-
able and interpretable solution to an otherwise challenging
problem—devoid of any known convexity until subsequent
exploration.

Future work will incorporate alternative low-dimensional
approximations including both cases of Grassmannian mix-
ing and subspace unions to improve the trace. Additionally,
these considerations for alternative subspace approximations
will investigate the possibility of a dynamic subspace for
application to dynamic environments interested in optimal
control and further improvement in the Pareto trace approx-
imation. We will also study alternative methods of subspace
and non-linear dimension reduction to accelerate reinforce-
ment learning over the various near-optimal Pareto manifolds.
Future approaches will enable spectrum sharing for a variety
of wireless communications models over unlicensed bands
by simplifying the design of wireless network operation and
architecture—ultimately quantifying model parameter combi-
nations giving near-optimal KPI trade-offs.
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