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Abstract:  
Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 Mbp of sequence, corrects 
thousands of structural errors, and unlocks the most complex regions of the genome to clinical and functional study. Here 
we demonstrate how the new reference universally improves read mapping and variant calling for 3,202 and 17 globally 
diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of novel variants 
per sample—a new frontier for evolutionary and biomedical discovery. Simultaneously, the new reference eliminates tens 
of thousands of spurious variants per sample, including a 12-fold reduction in 269 medically relevant genes. The vast 
improvement in variant discovery coupled with population and functional genomic resources position CHM13 to replace 
GRCh38 as the prevailing reference for human genetics. 
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Please add figures here: 
 
https://docs.google.com/presentation/d/1zK4-
x_EN79TTlVl3wUeufPLXSss2irG2ZDLaTE6f_5U/edit#slide=id.gd12e9ba5d8_0_1 
 
One Sentence Summary: The T2T-CHM13 reference genome universally improves read mapping and variant analysis.  
 
Main Text: 
 

Introduction 
 
For the past twenty years, the reference human genome has served as the bedrock of human genetics and genomics [1–3]. 
One of the central applications of the reference human genome, and reference genomes in general, has been to serve as a 
substrate for comparative analyses and population genomics. More than one million human genomes have been sequenced 
to study genetic diversity and clinical relationships, and nearly all of them have been analyzed by aligning the sequencing 
reads from the donors to the reference genome, e.g. [4–6]. Even when the donor genomes are assembled de novo 
independent of any reference genome, the assembled sequences will nearly always be compared to a reference genome to 
catalog and characterize variation by leveraging the deep catalog of available annotations [7,8]. Consequently, genomics 
benefits tremendously from the availability of a high-quality reference genome, ideally without gaps or errors that may 
obscure important variation and regulatory relationships. 
 
The current human reference genome, GRCh38, is used for countless applications, with rich resources available to 
visualize and annotate the sequence across cell types and disease states [3,9–12]. However, despite decades of effort to 
construct and refine the sequence, the reference human genome suffers from several major limitations that hinder 
comprehensive analysis. Most immediately, GRCh38 contains more than 100 million nucleotides that either remain 
entirely unresolved ('N' characters), such as the p-arms of the acrocentric chromosomes, or are represented with artificial 
models, such as the centromeric satellite arrays [13]. Furthermore, GRCh38 possesses 11.5 Mbp of unplaced and 
unlocalized sequences that are represented outside of the primary chromosomes [3,14]. These sequences are difficult to 
study, and many genomic analyses exclude these sequences to avoid identifying false variants and false regulatory 
relationships [6]. Relatedly, reports have persisted of major artifacts that arise when identifying variants relative to 
GRCh38, such as an apparent imbalance between insertions and deletions [15–17]. Overall, these errors and omissions in 
GRCh38 introduce biases in genomic analyses, particularly in the case of centromeres, satellites, and other complex 
regions. 
 
Another major concern is how the reference genome may influence the analysis of variation across large cohorts for 
population and clinical genomics. Several large studies, such as the 1000 Genomes Project [18] and gnomAD [6], have 
provided valuable information about the extent of genetic diversity within and between human populations. For example, 
many analyses of Mendelian diseases and complex diseases use these catalogs of single nucleotide variants (SNVs), small 
indels, and structural variants (SVs) to rank and prioritize potential causal variants, using allele frequencies and other 
information to prioritize variants [19–21]. When evaluating these resources, the overall quality and representation of the 
human reference genome are important, if often overlooked, factors. Any gaps or errors in the sequence will obscure 
variation, as well as its contribution to the heritability of human phenotypes and disease. In addition to major omissions 
such as centromeric sequences or acrocentric chromosome arms, the current reference genome possesses errors and biases 
distributed across the chromosomes, including within genes of known medical relevance [22,23]. Furthermore, GRCh38 
was assembled from multiple donors using clone-based sequencing, which creates an excess of artificial haplotype 
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structures that can subtly bias analyses [1,24]. Over the years, there have been some attempts to replace rare alleles from 
these haplotypes with more common alleles, but hundreds of thousands of artificial haplotypes and rare alleles remain to 
this day [25,26]. Increasing the continuity, quality, and representativeness of the reference genome is therefore crucial for 
improving genetic diagnosis, as well as for gaining a fundamental understanding of the complex relationship between 
genetic and phenotypic variation. 
  
The recently assembled Telomere-to-Telomere (T2T) CHM13 assembly addresses many of the limitations of the current 
reference [27]. Specifically, the T2T-CHM13v1.0 assembly adds nearly 200 megabases of novel sequence and corrects 
many of the errors present in GRCh38. Here we demonstrate the impact of the CHM13 reference on variant discovery and 
genotyping in a globally-diverse cohort. This includes all 3,202 samples from the recently expanded 1000 Genomes 
Project sequenced with short reads [28] along with 17 samples from diverse populations sequenced with long reads 
[8,27,29]. From these data, we document universal improvements in read mapping and variant calling with major 
implications for population and clinical genomics including more than 2 million additional variants found in non-syntenic 
regions, XXX megabases of corrections found within syntenic regions, and 306 medically-important genes showing 
improved variant calls and interpretation. When combined with the other cellular and genomic resources available for 
CHM13, this genome assembly is poised to replace GRCh38 as the predominant reference for human genetics. 
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Results 
 
I. Structural comparisons of GRCh38 and CHM13 
 

 
 
Introducing the T2T-CHM13 genome 
 
The T2T-CHM13 reference genome was primarily assembled from Pacific Biosciences (PacBio) High Fidelity (HiFi) 
reads augmented with Oxford Nanopore Technology (ONT) reads to close gaps and resolve complex repeats [27]. The 
resulting T2T-CHM13v1.0 assembly was subsequently validated and polished to exceedingly high quality, with a 
consensus accuracy estimated to be between Phred Q67 and Q73 [27] and with zero known structural defects. This 
assembly is highly contiguous, with only five unresolved regions from the most highly repetitive ribosomal DNA (rDNA) 
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arrays, representing only 9.9 Mbp of sequence out of >3.0 Gbp of fully resolved sequence. The 1.0 assembly adds or 
revises 229 Mbp of sequence compared to GRCh38, defined as regions of the T2T-CHM13 assembly that do not linearly 
align to GRCh38 over a 1 Mbp interval (i.e., are non-syntenic). Furthermore, 189 Mbp of sequence are not covered by any 
primary alignments from GRCh38 and, therefore, are completely novel to the CHM13 assembly. A summary diagram of 
the syntenic/non-syntenic regions and their associated annotations are presented in Fig. 1A for chromosomes 1 and 21, 
and a detailed report of all chromosomes are presented in Fig. S1.1. Note that the subsequent T2T-CHM13v1.1 assembly 
further resolves the rDNA regions using model sequences of the array elements, although for this study we analyze the 
prior 1.0 assembly, which does not contain these representations. 
 
The bulk of the non-syntenic sequence within T2T-CHM13 comprises centromeric satellites (180 Mbp), segmental 
duplications (SDs; 68 Mbp), and rDNAs (10 Mbp). These novel sequences could prove challenging for variant analysis, 
especially variants identified using short-read sequencing, although compared to GRCh38, we report an overall increase 
of 14.9 Mbp of additional unique sequence considering k-mers of length 50, 23.5 Mbp of unique sequences considering k-
mers of length 100, and 39.5 Mbp of unique sequences considering k-mers of length 300, enabling confident mapping for 
short-read paired-end sequences or longer reads (Figs. 1B, S1.2, and S1.3). In terms of highly-repetitive 

sequence, more than 106 Mbp of additional sequence was identified in CHM13 that 

require sequences of more than 300 bp to uniquely map compared to GRCh38. 

Concomitantly, there was a decrease in long, exactly duplicated sequences (≥5 kbp) shared 
across chromosomes (excluding sequence pairs within centromeres) from GRCh38 to CHM13 (Figs. S1.4 and1.5). The 
former had 28 large shared interchromosomal sequences, primarily consisting of pairs of sub-telomeric sequence, with an 
additional 42 pairs involving at least one unplaced contig. All of these exactly matching sequence pairs, save one between 
two subtelomeres, are lost in T2T-CHM13 as small but important differences between repetitive elements are resolved for 
the first time. T2T-CHM13 contains another 81 sequence pairs of long repeats of which 77 are shared between acrocentric 
centromeres. 
 
T2T-CHM13 accurately represents the haplotype structure of human genomes 
 
The human reference genome serves as the standard to which other genomes are compared, and is typically perceived as a 
haploid representation of an arbitrary genome from the population [25]. In contrast with CHM13, which derives from a 
single hydatidiform mole, the Human Genome Project constructed the current reference genome via the tiling of 
sequences obtained from bacterial artificial chromosomes (BACs) and other clones with lengths ranging from ~50-150 
kbp [24], which derives from multiple donor individuals. GRCh38 and its predecessors thus comprise mosaics of many 
haplotypes, albeit with a single library (RP11) contributing the majority [24]. 
 
To further characterize this aspect of GRCh38 and its implications for population studies, we performed local ancestry 
inference for both GRCh38 and CHM13 through comparison to haplotypes from the 1000 Genomes Project (see 
Methods; Fig. 1A; Fig. S1.6). Continental superpopulation-level ancestry was inferred for 72.9% of GRCh38 clones 
based on majority votes of nearest-neighbor haplotypes. For the remaining 27.1% of clones, no single superpopulation 
achieved a majority of nearest neighbors, and ancestry thus remained ambiguous. This ambiguity occurs primarily for 
short clones with few informative SNPs (Fig. S1.7), but also for some longer clones with potential admixed ancestry. In 
accordance with Green et al. [24], we inferred that library RP11, which comprises 72.6% of the genome, is derived from 
an individual of admixed African-American ancestry, with 56.0% and 28.1% of its component clones assigned to African 
and European local ancestries, respectively. The second most abundant library, CTD (5.5% of the genome), consists of 
clones of predominantly (86.3%) East Asian local ancestries, while the remaining libraries are derived from individuals of 
predominantly European ancestries. In contrast, CHM13 exhibits European ancestries nearly genome-wide (Fig. S1.8). In 
addition, GRCh38 and CHM13 harbor 26.7 Mbp and 51.0 Mbp, respectively, of putative Neanderthal-introgressed 
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sequences that originate from ancient interbreeding between the hominin groups approximately 60 thousand years ago 
[24]. The excess of introgressed sequence in CHM13, even when restricting to the same genomic intervals, is consistent 
with its greater proportion of non-African ancestry. 
 
We hypothesized that the mosaic nature of GRCh38 would generate abnormal haplotype structures at clone boundaries, 
producing many combinations of alleles that are rare or absent from the human population. Indeed, some previous patches 
of the reference genome sought to correct abnormal haplotype structures in cases where they were noticed due to their 
impacts on genes of clinical importance (e.g., ABO and SLC39A4) [3]. Such artificial haplotypes would mimic rare 
recombinant haplotypes that are private to any given sample, but at an abundance and genomic scale that is 
unrepresentative of any living human. To test this hypothesis, we identified pairs of common (minor-allele frequency > 
10%) autosomal SNPs that segregate in perfect linkage disequilibrium (LD; R2 = 1) in the 2,504 unrelated individuals of 
the 1000 Genomes Project and queried their allelic states in both GRCh38 and CHM13 (see Methods). 
 
In accordance with our expectations, we identified numerous haplotype transitions in GRCh38 that are absent from the 
1000 Genomes samples, with 18,813 pairs of LD-discordant SNP alleles distributed in 1,390 narrow non-overlapping 
clusters (median length = 3,703 bp) throughout the genome (Fig. 1C). Such rare haplotype transitions are comparatively 
scarce in CHM13, with only 209 pairs of common high-LD SNPs (50 non-overlapping clusters) possessing allelic 
combinations that are absent from the 1000 Genomes sample (Fig. 1D). Based on a leave-one-out analysis, we confirmed 
that CHM13 possesses a similar number of LD-discordant haplotypes as phased "haploid" samples from the 1000 
Genomes Project, whereas GRCh38 vastly exceeds this range (Fig. 1E). By intersecting the GRCh38 results with the 
tiling path of BAC clones, we found that 88.9% (16,733 of 18,813) of discordant SNP pairs straddle the documented 
boundaries of adjacent clones (Fig. S1.9). Of these, 45.9% (7,686 of 16,733) of the clone pairs derived from different 
BAC libraries, whereas the remainder likely largely reflects random sampling of distinct homologous chromosomes from 
the same donor individual. Our analysis thus highlights the artificial haplotype structure of GRCh38 and suggests that 
CHM13 accurately reflects haplotype patterns observed in contemporary human populations. 
 
Identification of systematic errors in GRCh38, including collapsed duplications and falsely-duplicated regions 
 
Genome assemblies often suffer from errors at complex genomic regions such as SDs. In the case of GRCh38, targeted 
sequencing of BAC clones have been performed to fix these loci [3,16,30–33], but problems persist. To systematically 
identify errors in GRCh38 that could produce spurious variant calls, we leveraged the fact that CHM13 is a haploid-
derived cell line that should produce only homozygous variants when its sequence is aligned to GRCh38; thus, any 
apparent heterozygous variants can be attributed to (1) mutations accrued in the cell line; (2) sequencing errors; or (3) read 
mapping errors. In the last case, assembly errors or copy-number polymorphism of SDs could produce a contiguous 
stretch of heterozygous variants, which would confound paralog-specific variants (PSVs) as polymorphisms. Mapping 
PacBio HiFi reads from the CHM13 cell line [27] as well as Illumina-like simulated reads (150 bp) obtained from the 
CHM13 reference to GRCh38, we identified 368,574 heterozygous SNVs within autosomes and chromosome X, of which 
56,413 (15.3%) were shared among both datasets, evidencing that each technology is distinctively informative due to 
mappability differences (Fig. S1.10, Table S1.1).  
 
To home in on variants likely deriving from collapsed duplications, we delineated ‘clusters’ of heterozygous calls (see 
Methods) and identified 908 putative problematic regions (541 supported by both technologies) comprising 20.82 Mbp 
(Fig. 1) with a majority intersecting SDs (668/908; 73.6%) and centromere-associated regions (542/908; 59.7%) [34]. 
Variants flagged as excessively heterozygous in the population by gnomAD [6] were significantly enriched in these 
regions (10,000 permutations, empirical p-value = 1x10-4) representing 26.7% (78,034/292,514) of our CHM13 
heterozygous variants—suggesting that these variants arise in genome screens and represent false positives—whilst 
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341/908 regions (37.55%) overlap with known GRCh38 issues (Fig. 1A, Fig. S1.1). We next ‘lifted over’ 821 of these 
908 putative problematic regions to the T2T-CHM13 assembly and used human copy-number estimates (n=268 
individuals from the Simons Genome Diversity Project (SGDP)) [35,36] to conservatively identify 203 loci (8.04 Mbp) 
evidencing erroneous missing copies in GRCh38 (Fig. S1.10). These regions impact 308 gene features with 14 of the total 
48 protein-coding genes fully contained within a problematic region, indicating that complete gene homologs are hidden 
from population variation analyses as is the case of DUSP22, a gene shown to play a role in immune regulation [37] (Fig. 
S1.11). Additionally, we identified 30 SNPs with known phenotype association (GWAS Catalog) within problematic 
regions. Finally, we evaluated the status of these regions in the T2T-CHM13 reference by following a similar approach as 
for GRCh38, obtaining 314,871 heterozygous variants clustered in 442 regions (Table S1.2). This revealed that 185 of the 
203 problematic regions in GRCh38 no longer exhibit clusters of heterozygous variants in CHM13, enabling accurate 
variant calling in 46 protein-coding genes. We did identify eight putative collapsed duplications in CHM13 based on the 
presence of heterozygous variant clusters and reduced copy number in CHM13, but closer inspection revealed that all but 
one locus represented rare low copy number regions in CHM13. The remaining collapsed duplication localizes to an 
rDNA array corrected in the most recent version of T2T-CHM13v1.1 [Cite polishing paper]. 
 
Conversely, we found that the CHM13 reference fixed regions falsely duplicated in GRCh38. We identified 12 regions 
affecting 1.2 Mbp and 74 genes (including 22 protein coding genes) with duplications in GRCh38, but not in T2T-
CHM13 or in 268 genomes from SGDP [36] (Fig. S1.11; Table S1.3). In contrast, only four regions affecting 18 kbp and 
one 142 kbp region have duplications in CHM13 that are not in GRCh38 and rarely (<1%) in SGDP. Inspecting the T2T-
CHM13 assembly, we deemed these loci to be in fact rare duplications with strong support from mapped HiFi reads. The 
five largest duplications in GRCh38, affecting 15 protein-coding genes on the q arm of chromosome 21, have the falsely 
duplicated sequence in BAC clones misplaced between many gaps on the heterochromatic p-arm of chromosome 21. Of 
the seven false duplications outside chromosome 21, two are in short contigs between gaps, two are adjacent to a gap, two 
are on unlocalized “random” contigs, and one is a tandem duplication (Table S1.4). A list of falsely duplicated gene pairs 
in GRCh38 corrected in T2T-CHM13 is in Table S1.5. Using T2T-CHM13 as a reference provides an authoritative fix of 
these false duplications, enabling improved variant calling for short- and long-read technologies, including improved 
accuracy in medically relevant genes, as we demonstrate below. 
 
Liftover of clinically relevant and trait-associated variation from GRCh38 to CHM13 

In transitioning to a new reference genome, it is imperative to document the locations of known genetic variation of 
biological and clinical relevance with respect to the updated coordinate system. To this end, we sought to lift over 802,674 
unique variants in the ClinVar database and 736,178,420 variants from the NCBI dbSNP database (including 151,876 
NHGRI-EBI GWAS Catalog variants) from the GRCh38 reference to the CHM13 reference. Unambiguous liftover was 
successful for 789,909 (98.4%) ClinVar variants, 718,683,909 (97.6%) NCBI dbSNP variants, and 103,879 (68.4%) 
GWAS Catalog SNPs (Fig. 1A, Supplementary Table X), which we provide as a resource for the scientific community, 
along with lists of all variants that failed liftover and the associated reasons. Critically, this resource includes 138,300 of 
138,927 (99.5%) of Clinvar variants that were annotated as “pathogenic” or “likely pathogenic”. 

Of the 12,765 ClinVar variants that failed to lift over, 9,794 (76.7%) are cases in which the reference and alternative allele 
are exchanged in CHM13 versus GRCh38, along with an additional 1,581 liftover failures caused by scenarios where 
CHM13 possessed a third allele that matched neither the reference nor alternative allele of the respective variant. Of the 
remaining 1,390 ClinVar variants that failed to lift over, 844 overlap documented insertions or deletions that distinguish 
the GRCh38 and CHM13 assemblies. The remaining 546 variants (<0.1% of all variants) lie within regions of poor 
alignment between the GRCh38 and CHM13 assemblies (Fig. 1F). It should be noted that 98.5% of the GWAS Catalog 
variants that failed to liftover were cases in which the position of the variant exists in the CHM13 assembly, but the 
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reference allele in CHM13 does not match the reference allele in GRCh38. The modes of liftover failure for dbSNP 
variants and GWAS Catalog variants follow similar distributions and are presented in Supplementary Table X. 

II. Improvements to Short Read Mapping and Variant Calling 
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Remapping the 1000 Genomes dataset 
 
To investigate how the T2T-CHM13 assembly impacts short-read variant calling, we realigned and reprocessed all 3,202 
samples from the recently expanded 1000 Genomes Project cohort [28] using the NHGRI AnVIL Platform (Schatz et al. 
2021). In this collection, each sample is sequenced to at least 30x coverage using paired-end Illumina sequencing, with 
samples from 26 diverse populations across 5 major continental superpopulations (Fig. S2.1). Most samples are unrelated, 
although the expanded collection includes 602 complete trios that we use to estimate the rate of inaccurate (non-
Mendelian) variants below. We matched the previously used analysis pipeline for GRCh38 [28] as closely as possible so 
that any major differences would be because of the change in reference genome rather than because of technical 
differences in the analysis software used (Supplemental).  
 
On average, an additional 7.4 × 106 (0.97%) of properly paired reads map to T2T-CHM13 rather than GRCh38 using bwa 
mem (Li 2013), even when considering the alt and decoy sequences used by the original analysis project. Interestingly, 
even though more reads align to T2T-CHM13, the observed per-read mismatch rate after alignment to T2T-CHM13 is 
20% to 25% smaller for all continental populations, although African samples continue to present the highest mismatch 
rate (Fig. 2a). This is expected since the observed mismatch rate counts both genuine sequencing errors, which will be 
largely consistent across all samples, and any true biological differences between the read and the reference genome, 
which vary substantially by the ancestry of the sample. Relatedly, several other mapping characteristics were also 
improved using CHM13, such as a decline in the number of mis-oriented pairs in the paired-end sequencing (Fig. 2a). 
Finally, by considering the alignment coverage across 500bp bins across the respective genomes, we observed improved 
coverage uniformity within every sample using T2T-CHM13 rather than GRCh38. For example, within gene regions, we 
noted a 4-fold decrease in the standard deviation of the coverage (Fig. 2a), and observed similar improvements in other 
types of genomic regions among all population groups (Fig. 2X). Overall, these improvements in error rates, mapping 
characteristics, and coverage uniformity demonstrate how T2T-CHM13 is a superior reference genome for short read 
alignment for all populations and superpopulations.  
 
Population-specific variant counts and allele frequencies  
 
From these alignments, we next evaluated SNV and small indel variant calls with the widely-used GATK Haplotype 
Caller, which uses a joint genotyping approach to optimize accuracy across large populations [38]. Again, we matched the 
pipeline used in the prior study, albeit with newer versions of some of the tools, to minimize any differences due to 
software discrepancies so that we could focus on differences due to the change in reference genome. Across all samples, 
we found 57,315,786 high-quality ("PASS") variants relative to T2T-CHM13 compared to 59,051,733 relative to 
GRCh38, and noted a decrease in the number of variant calls per individual (Fig. 2b). We performed all subsequent 
analyses using these high-quality variants, as the PASS filter successfully removed a number of spurious variants (Fig. 
S2.6), particularly in complex regions (Fig S2.7). As with the improvement to the per-read mismatch rate, we attribute 
this to improvements in the number of rare alleles, consensus errors, and structural errors in CHM13 versus GRCh38. This 
conclusion is supported by the observation that the number of heterozygous variants per sample is more similar (Fig. 2c) 
across reference genomes as opposed to homozygous variants (Fig. 2d). This discrepancy is especially pronounced in 
non-African samples, which have substantially more homozygous variants relative to GRCh38 than CHM13. This is 
likely because ~70% of the GRCh38 sequence comes from an individual with African-American ancestry, which will 
have more rare and private variants [18]. 
 
Further investigating this relationship, we computed the allele frequencies of variants from unrelated samples from each 
of the 5 continental superpopulations (Fig. 2e). The distributions were nearly equivalent over most 

of the allele frequency spectrum, but substantial differences were observed in rare 
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variants (AF < 0.05), perfectly heterozygous variants (AF ≅ 0.5), and ultra-common 

variants (AF > 0.95). The most numerous difference in allele frequency was within the 

ultra-common variants, in which all non-African superpopulations showed an excess of ~150,000 
variants in GRCh38, while the African superpopulation showed an excess of 2,364 variants in T2T-CHM13 (Fig. 2f). This 
category of variants is driven by a striking difference in the number of variants observed to have 100% allele frequency on 
GRCh38 compared to T2T-CHM13 (Fig. 2g). Such variants are representative of positions where the reference genome 
itself is the only sample observed to contain the corresponding allele, so that 100% of other samples show an alternative 
allele. As a result, these "variants" will not be reported when the same reads are mapped to a different genome that does 
not have this private allele. The increase in the number of rare variants relative to T2T-CHM13 is also explained by the 
haplotype structure of GRCh38: other than variants with AF equal to 1.0, variants observed as ultra-common in GRCh38 
will most often present as rare variants in T2T-CHM13 with an allele frequency of 1.0 minus the rate observed in 
GRCh38. Moreover, the reduction in perfectly heterozygous variants is largely explained by the corrections to collapsed 
segmental duplications, as these regions are highly enriched for heterozygous paralog-specific variants (PSVs) caused by 
the false pileup of reads from the duplicated regions to a single location (Fig. 2h). Collectively, the decrease 

in variants with AF=1 and AF≅ 0.5 largely explains the decrease in the overall number of 

variants observed per sample and across the entire population. 
 

Mendelian violations 
 
As an additional quality control for the variant calls, we performed a Mendelian concordance analysis using the 602 trios 
represented in the 1000 Genomes Project cohort. From this, we found a statistically significant decrease in both the 
number of low-quality variants (median=890,701 (GRCh38) vs 682,609.5 (T2T-CHM13), p-value < 2.225 × 10-308, paired 
t-test) (Figure 2i) and the number of Mendelian violations (median=8,879 (GRCh38) vs 7,484.5 (T2T-CHM13), p-value 
= 1.402 × 10-223, paired t-test) (Figure 2j) when aligned to T2T-CHM13 as compared to GRCh38. In addition to providing 
an estimate of the error rate of the variant calls in this callset, this improvement will have broad implications for clinical 
genetics focused on de novo or somatic mutation analysis, such as in the analysis of autism spectrum disorders [39] or 
many forms of cancer [40]. 
 
Visibility and concordance of SNVs when using different reference genomes for variant discovery 
 
Finally, to determine the impact of using the T2T-CHM13 reference for variant calling and then annotating the results 
using resources available for GRCh38, we used the Picard LiftoverVCF tool to lift single-sample (HG002) and multi-
sample (1000 Genomes Project samples, or “1KG”) T2T-CHM13-based SNV calls over to the GRCh38 reference, and 
then compared the lifted variants to variant calls that were directly made using GRCh38. When lifted to GRCh38, the 
T2T-derived single-sample callset for HG002 did not include 30.4% (1,051,004) of the 3,460,148 GRCh38-derived SNV 
calls made using the GRCh38 reference. This was largely due to the 946,126 sites in HG002 that are homozygous for the 
CHM13 allele, and therefore are called only when using GRCh38 as the reference. Likewise, the set of SNVs called 
against T2T-CHM13 and then lifted to GRCh38 contained an additional 721,547 SNVs, which were not called against 
GRCh38, and this was due largely to the 672,341 SNVs for which HG002 is homozygous for the GRCh38 allele. When 
we compare only SNV sites for which HG002 has alleles, which are variant with respect to both reference genomes, the 
set of SNVs detected against T2T-CHM13 and then lifted to GRCh38 contains 95.8% of the SNV sites detected using 
GRCh38, and 98.0% of the SNV sites lifted from CHM13 are contained within the GRCh38 set. 
 
While the difference in visibility of a single sample’s variants with respect to the two reference sequences is significant, 
variant calls for larger multi-sample sets are less affected since large sets of samples are more likely to contain detectable 
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variants with respect to both references in places where the two references exhibit different alleles. The 1KG multi-sample 
callset lacks far fewer of the GRCh38 calls due to the absence of an alternate allele with respect to T2T-CHM13: only 
13,001 SNVs of the 106,581,271 GRCh38 1KG SNV calls were not detected with the T2T-CHM13 reference for this 
reason. Conversely, 12,124 1KG SNVs that were originally called using T2T-CHM13 were not detected when using 
GRCh38 due to a lack of 1KG samples with an allele that differs from the GRCh38 allele.  
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III. Improvements to Long Read Mapping and Variant Calling  
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Improvements to long-read mapping 
 
Next, we investigated the effects of using T2T-CHM13 as a reference genome for alignment and large structural variant 
(SV) calling from genomic long reads from both PacBio HiFi and ONT long reads. To study this, we aligned reads and 
called SVs from long reads in seventeen samples of diverse ancestry from the Human Pangenome Reference Consortium 
(HPRC+) [27] and the Genome-in-a-Bottle Consortium (GIAB) [29], including two trios (Table 3.1). All of these samples 
had HiFi data available, and fourteen of them had also been sequenced with ONT (Fig. 3a), with mean read lengths of 
18.1kbp and 21.9kbp, respectively (Fig. S3.1). 
 
We first aligned all long reads to both T2T-CHM13 and GRCh38 with both Winnowmap [41] and minimap2 [42] so that 
we could compare alignment statistics and use these alignments for subsequent SV calling. Similar to the short read 
results, the number of reads mapped did not substantially change because most of the novel sequence in T2T-CHM13 had 
some available model sequences in GRCh38 (Fig. S3.2). However, aligning to T2T-CHM13 reduced the observed per-
read mapping error rates across by 5% to 40% across the four combinations of sequencing technology and aligner because 
of the correction of errors in GRCh38 and the addition of improved mapping targets, similar to what we observe for short 
reads (Fig. 3b). Next, to study coverage uniformity, we measured the average coverage across each 500bp bin on a per-
sample basis, and computed the standard deviation of the coverage among all bins. Across all aligners and technologies, 
the median standard deviation of the per-bin coverage was reduced by more than a factor of three, indicating more stable 
mapping to T2T-CHM13 (Fig. 3b). This difference in coverage uniformity was particularly present in satellite repeats and 
other regions of GRCh38 not syntenic with T2T-CHM13 (Fig. S3.3). 
 
Improvements to SV calling  
 
We next used our optimized SV-calling pipeline including Sniffles [43], Iris, and Jasmine [44] to call SVs in all 17 
samples and consolidate them into a cohort-level callset in each reference from HiFi data. From these results, we observe 
a reduction from 5,147 to 2,260 SVs with 100% allele frequency when calling variants relative to T2T-CHM13 instead of 
GRCh38 (Fig. 3c). Previous studies [16,17] have noted the excess of such SV calls when using GRCh38 as a reference 
and attributed them to structural errors, so the use of a complete and accurate reference genome sequence reduces the 
number of such variants. In addition, the number of insertions and deletions are more balanced when calling against T2T-
CHM13, whereas GRCh38 had a bias towards insertions caused by missing or incomplete sequence (Fig. 3d). In T2T-
CHM13, there is a small bias towards deletions, which is especially prominent in highly repetitive regions such as 
centromeres and satellite repeats (Fig. S3.8). The variants we observe relative to T2T-CHM13 are enriched in the 
centromeres and telomeres (Fig. 3f), likely because of a combination of repetitive sequence which is difficult to align to 
and greater recombination rates [17]. We observe similar trends among SVs unique to single samples (Fig. S3.11) 
 
Relatedly, we similarly observe better insertion/deletion balance for large SVs >500 bp detected by Bionano Optical 
Mapping data in HG002 against the T2T-CHM13 reference, with an increase in deletions from 1,199 to 1,379 and a 
decrease in insertions from 2,771 to 1,431 on GRCh38 and T2T-CHM13, respectively (Fig. S3.14). Using the CHM13 
reference for Bionano also enables improved SV calling around gaps in GRCh38 that are closed in CHM13 (Fig. S3.15).  
 
De novo SV analysis 
 
To investigate our ability to detect de novo variants in CHM13 and to quantify our false positive rate, we called SVs in 
both of our trio datasets using a combination of HiFi and ONT data and identified SVs only present in the child of the trio 
and supported by both technologies, about 40 variants per trio (Fig. 3e). We then manually inspected the variants, and 
found a few strongly-supported variants in each trio with consistent coverage and alignment breakpoints, while the other 
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candidates had less reliable alignments as seen in previous reports [44]. In HG002, we detected 6 strongly-supported 
candidate de novo SVs which were previously reported [29,44]. In HG005, we detected a novel strongly-supported 
candidate de novo SV relative to both T2T-CHM13 and GRCh38, a 1571bp deletion at chr17:49401990 in T2T-CHM13 
(Fig. S3.9).  
 
Novel SVs 
 
The improved accuracy and completeness of the T2T-CHM13 genome enables us to better resolve complex regions where 
reads are unable to align to GRCh38. Within non-syntenic regions, we find a total of 27,055 SVs (Fig. 3d), the majority of 
which were insertions (10,912) and deletions (15,998). The allele frequency and size distribution for these variants follow 
the characteristics of the syntenic regions, with rare variants (Fig. S3.10) and small indels (Fig. S3.7) being the most 
abundant. However, we also note some non-syntenic regions with relatively few or no SVs identified, especially within 
the interior of the newly resolved p-arms of the acrocentric chromosomes (Fig. 3f). We attribute the reduction in variant 
density largely to the mappability of the reads, which are difficult to place in the most complex regions of the genome. We 
expect this will improve in time as read lengths and alignment algorithms continue to improve. 
 
Furthermore, within syntenic regions we also observe notable improvements to alignment and variant calling accuracy. 
For example, in T2T-CHM13 we observe a deletion in all of the samples in the HG002 trio of an exon of the olfactory 
receptor gene AC134980.2 (Fig. 3g), while the reads from those samples are largely unable to align to the surrounding 
region in GRCh38 (Figure 3h). At the same time, reads from that region in African samples (Fig. S3.13) align to both 
references. The difference in alignment among different samples is likely due to the region being highly polymorphic for 
copy number variation; GRCh38 contains a fair representation of that region in African samples, while that region in T2T-
CHM13 more closely resembles European samples (Fig. S3.12). This highlights the need for reference genomes 
consisting of individuals with similar ancestry to samples being studied, and motivates efforts to produce similarly 
complete genome assemblies for many diverse individuals. 
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IV. Detailed analysis of novel regions / Evolutionary Genomics 
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Variants within newly accessible and corrected regions 
 
The T2T-CHM13 genome contains 229 Mbp of sequence that is non-syntenic to GRCh38, which contains 207 genes (Fig. 
4a). Within these regions, we report a total of 2,050,129 PASS variants across all 1000 Genomes samples from short 
reads. 73-78% of the SNVs in each sample match variants found in each sample’s respective PacBio HiFi long read data 
using the leading PEPPER-Margin-DeepVariant algorithm (51,306-74,122 matching SNVs and genotypes per sample) 
[45]. Long reads discover over 10 times more SNVs per sample than short reads in these regions, with 447,742-615,085 
(41-43%) of SNVs matching between HiFi and ONT. We further define higher-confidence regions by excluding regions 
with abnormal coverage in any long-read sample, which effectively excludes difficult to map regions and copy number 
variable regions. Within these regions, 14 Mbp remain, and SNVs from HiFi and ONT long reads are 91-95% concordant 
(21,835-28,237 variants). 95-96% (14,575-18,949) of short-read SNVs are found in HiFi long-read calls, though 37-40% 
of HiFi SNVs are still missing from the short-read calls (Supplemental Table S4.1).  
 
As these broadly-defined non-syntenic regions include inversions and other large structural changes between GRCh38 and 
T2T-CHM13 that won’t necessarily alter many of the variants contained within, we also considered novel sequences, 
defined as segments of the T2T-CHM13 genome that do not align to GRCh38 using Winnowmap [41]. Within these novel 
sequences, we report a total of 1,445,506 PASS variants in 1000 Genomes samples from short reads across 189 Mbp (Fig. 
4a). Because these novel sequences are more enriched for highly repetitive sequences, concordance is slightly lower, such 
that 64-69% of the SNVs in each sample match variants found in each sample’s respective PacBio HiFi long read data 
(24,371-36,501 matching SNVs and genotypes per sample), and 339,783-473,074 (38-40%) of SNVs matching between 
HiFi and ONT. When removing difficult to map and copy number variable regions as above, 3 Mbp remain, and 84-88% 
of the SNVs in each sample match variants found in each sample’s PacBio HiFi long-read data (2,938-3,811 matching 
SNVs and genotypes per sample), and 5,544-8,298 (81-90%) of SNVs match between HiFi and ONT (Supplemental 
Table S4.1).  
 
We noted that homologs of GRCh38 collapsed duplications (137 regions and 6.8 Mbp) are associated with these T2T-
CHM13 non-syntenic and/or novel regions, representing potentially corrected sequences in this new assembly. To assess 
if these corrected complex regions in T2T-CHM13 improve our ability to identify variation, we evaluated the concordance 
of variants generated from sequencing and variant calling from short-read Illumina and PacBio HiFi sequencing datasets 
of two trios from the GIAB and Personal Genome Project. Within corrected false duplications (1.2 Mbp), we saw 
dramatically improved recall for Illumina data compared with HiFi in T2T-CHM13 (57.4-68.3%) versus GRCh38 (1.1-
1.8%), as well as improved precision in T2T-CHM13 (98.5-99.3%) versus GRCh38 (76.5-95.8%). We also compared 
variant calling in a subset of the GRCh38 collapsed duplications (CN<10; ~910 kbp) and observed similar recall for 
Illumina data in T2T-CHM13 (20.1-28.3%) and GRCh38 (21.5-25.4%), but with significantly improved precision in the 
variants identified (98.1-99.7% in T2T-CHM13 vs. 64.3-67.3% in GRCh38). This is likely due to 5-9x more variants 
discovered at these loci in GRCh38 that represent PSVs or misassigned alleles from the missing paralog (Supplemental 
Table S4.2). This shows that, even though we have reduced ability to discover variants in these SDs with short read 
Illumina data, variants that can be identified are now reliably genotyped in this new assembly.  
 
Allele frequency differentiation across populations in newly accessible regions 
 
The CHM13 assembly adds more than 100 Mb of accurately resolved sequence not represented in CHM13 — equivalent 
to an additional chromosome. Although some of this new sequence remains difficult to access with short reads (e.g., 
rDNA arrays, highly repetitive regions), much of it represents new sequences available for variant calling. Interestingly, 
many of the short-read variants are within XXX kbp of known clinically relevant genes (Figure 4c) 
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Using short-read variant genotypes generated with the 1000 Genomes cohort, we applied a frequency differentiation-
based method to identify signatures of positive selection within novel regions of the CHM13 assembly. This method, 
Ohana [46], models individuals as possessing ancestry from k ancestry components and tests whether individual variant 
allele frequencies are better explained by this genome-wide null model, or by an alternative model where frequencies are 
allowed to vary in one population by consequence of positive selection or demographic forces.  
 
Using this method to investigate continental-scale patterns (k = 8), we identified 5,154 unique SNPs and indels across all 
ancestry components that exhibited strong deviation from genome-wide patterns of allele frequency differentiation (99.9th 
percentile of distribution for each ancestry component; see Methods; Supplementary Fig. X). These included 814 
variants overlapping with annotated genes, and 151 that intersected with annotated exons. Some of the most highly 
differentiated variants include <SNPs overlapping with olfactory receptor genes on chromosome 7; explanation of why 
this locus was previously inaccessible>. These variants reach intermediate allele frequencies in the ancestry component 
corresponding to the Peruvian (PEL), Mexican (MXL), and Colombian (CLM) populations, but are nearly absent in other 
populations (allele frequencies: 0.29 in PEL; 0.005 in South Asia; absent elsewhere; Fig. 4A).  
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V. Impact of CHM13 on Clinical Genomics 
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Potentially clinically-relevant variants in CHM13 
 
A deleterious variant in a reference genome can mislead the interpretation of a clinical variant identified in a patient 
because it may not be flagged as such using standard analysis tools. The GRCh38 reference genome is known to contain 
such variants that likely affect gene expression, protein structure, or protein function [25], though systematic efforts have 
sought to identify and remove these alleles [3]. To determine loss-of-function of variants exist in T2T-CHM13, we 
aligned the assembly to GRCh38 using dipcall [47] to identify and functionally annotate nucleotide differences [48] (Fig. 
5A). This identified 210 putative loss-of-function variants (defined as variants impacting protein-coding regions and 
predicted splice sites) impacting 189 genes, 31 of which 31 are clinically relevant [23]. These results are in line with 
previous work showing that the average diploid human genome contains ~450 putative loss-of-function variants impacting 
~200-300 genes using low-coverage Illumina sequencing (before stringent filtering) [49]. Of these 210 variants, 158 have 
been identified in at least one individual from the 1000 Genomes Project with most variants relatively common in human 
populations (median allele frequency of 0.47), suggesting they are functionally tolerated. The remaining variants not 
found in 1000 Genomes individuals comprise larger indels, which are more difficult to identify using 1000 Genomes 
Illumina data, and CHM13-rare or -unique alleles. We curated those impacting medically-relevant genes and found seven 
that likely derived from duplicate paralogs; one 100-bp insertion also found in long reads of HG002; a stop gain in a final 
exon in one gnomAD sample; and an insertion in a homopolymer in a VNTR in CEL, which may be an error in the 
assembly. Understanding that the published T2T-CHM13 assembly represents a human genome harboring potentially 
functional or rare variants that in turn would affect the ability to call variants at those sites, we have made available this 
list of variants to aid in clinical interpretation of sequencing results (Table S5.1). 
 
Improvements in CHM13 impacting medically relevant genes 
 
We sought to understand how changing from GRCh38 to the CHM13 reference might impact variants identified in a 
previously compiled [23] set of 4,964 medically relevant genes residing on human autosomes and chromosome X 
(representing 4,924 genes in T2T-CHM13 via liftover; Table S5.2). Of these genes, 28 map to newly-accessible regions 
in CHM13 (novel and/or non-syntenic). Focusing on genes impacted by rare or erroneous structural alleles that could 
affect variant discovery or interpretation (e.g., collapsed duplications, false duplications, and rare haplotype boundaries), 
we found over half as many medically relevant genes at these loci in CHM13 (n=306) versus GRCh38 (n=756 including 
14 with no CHM13 liftover) (Fig. 5B). Of these genes, 28 fall within regions flagged as erroneous in GRCh38 by the 
Genome Reference Consortium (GRC). The majority of impacted clinically relevant genes overlap SVs that exist in all 13 
HiFi-sequenced individuals, likely representing rare alleles or errors in the reference (see above), including 13 of the 14 
GRCh38 genes with no CHM13 liftover. One interesting example, TNNT3, which encodes Troponin T3, fast skeletal type 
implicated in forms of arthrogryposis [50], was impacted by both a 24-kbp inversion and 22-kbp upstream deletion that 
also ablates LINC01150 in all individuals using GRCh38 (Fig. 5C). The GRC determined that a problem existed with the 
GRCh38 reference in this region (GRC issue HG-28). Comparison of this region in CHM13 instead shows a complex 
rearrangement with the 22-kbp region upstream of TNNT3 inversely transposed in the new assembly to the proximal side 
of the gene. Besides potentially affecting interpretations of gene regulation, this structural correction of the reference 
places TNNT3 >20 kbp closer to its genetically-linked partner TNNI2 [51]. Other genes have VNTRs that are collapsed in 
GRCh38, such as one expanded by 17 kbp in most individuals in the medically relevant gene GPI. MUC3A was also 
flagged with a whole-gene amplification in all individuals, which we identified as residing within a falsely-collapsed SD 
in GRCh38, further evidencing that finding (Fig. 1A).  
 
When intersecting erroneous duplicated and collapsed regions in GRCh38 (Table S1.1), we find 17 medically relevant 
genes residing in these loci, including KCNE1 (false duplication) and KCNJ18 (collapsed duplication) (Fig. 5D and E). 
Examining the falsely-duplicated KCNE1, we find that coverage is much lower than normal on GRCh38 for short and 
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long reads and that most variants are missed because many reads incorrectly map to the false duplication (KCNE1B on the 
p arm of chromosome 21). The kmer-based copy number of this region in all 266 SGDP genomes supports the CHM13 
copy number, and this region was not falsely duplicated in GRCh37 either [23]. As for KCNJ18, which resides within a 
GRCh38 collapsed duplication at chromosome 17p11.2 and includes nine "pathogenic" or "likely pathogenic" variants in 
ClinVar related to thyrotoxic periodic paralysis [52], we find increased coverage across HG002 Illumina, PacBio HiFi, 
and ONT sequences in GRCh38 relative to CHM13. Across the 49 kbp SD containing KCNJ18, we discovered 
considerably fewer variants in CHM13 (n=2566) vs. GRCh38 (n=3476) in each 1000 Genomes Illumina dataset, likely 
due to false heterozygous calls from PSVs (Fig. S5.1 and S5.2). 
 
To verify this, we compared the distributions of minor-allele frequencies and observed a shift in variant proportions, with 
a relative decrease in intermediate and a relative increase in rare alleles for KCNJ18 and KCNJ12 (another collapsed 
duplication residing distally at chromosome 17p11.2) in CHM13 compared with GRCh38 (p=0.08885 and 0.03102, 
respectively; Mann-Whitney U test with continuity correction). We used liftover to define precisely alternative assignment 
of variants across homologous sites at each loci, including the missing paralog KCNJ17 (previously-missing copy located 
in a centromere-associated region on chromosome 17p in CHM13 denoted KCNJ18-1) (Fig. 5F) and observed that even 
true variants (i.e., non-PSVs) had discordant allele counts in KCNJ18 and KCNJ12 between the two references. Examples 
of such variants impacting the CDS of these genes are highlighted in Fig. 5F and labeled as 1-7, representing different 
categories: (1) false positives in KCNJ12 and/or KCNJ18 on GRCh38 resulting from PSVs in KCNJ17, which are 
corrected in CHM13; (2) and (4) variants erroneously detected in KCNJ12 and KCNJ18 on GRCh38 that actually are 
variants in KCNJ17; (3) false positives in KCNJ12 and/or KCNJ18 on GRCh38 resulting from PSVs in KCNJ17 that also 
hide true variants in KCNJ17, KCNJ12, and/or KCNJ18; (5) variants not detected in KCNJ12 or KCNJ18 on GRCh38, 
likely due to skewed allele balance from mis-mapped reads; (6) and (7) variants erroneously detected in KCNJ12 and/or 
KCNJ18 on GRCh38 that actually are variants in KCNJ17 with the allele detected in fewer haplotypes on GRCh38, likely 
due to skewed allele balance from mis-mapped reads. There are also more complex sites, such as the last base in Fig. 5F 
labeled with an asterisk, in which the reference base for KCNJ18 changes to C in CHM13 in addition to novel alleles 
identified in KCNJ17. In summary, T2T-CHM13’s improved representation of this gene and other collapsed duplications 
not only eliminates false positives but also improves detection and genotyping of true variants. 
 
Clinical gene benchmark 
 
Finally, to determine how the T2T-CHM13 genome improved our ability to assay variation broadly, we used a curated 
diploid assembly to develop a new benchmark for 269 challenging medically relevant genes in GIAB Ashkenazi son 
HG002 [23], with comparable benchmark regions on GRCh38 and T2T-CHM13. We tested three short- and long-read 
variant callsets against this benchmark: Illumina-BWA-MEM-GATK, HiFi-PEPPER-DeepVariant, and ONT-PEPPER-
DeepVariant.  
 
Both numbers of false positives and false negatives substantially decrease for all three callsets when using CHM13 as a 
reference instead of GRCh38 (Fig. 5G). False positives for HiFi decrease by a factor of 10 in these genes due primarily to 
adding missing sequences similar to KMT2C and removal of false duplications of CBS, CRYAA, KCNE1, and H19 
(Supplementary Fig IGV?). As demonstrated above, these genes and others are better represented in CHM13 than 
GRCh38 for a diverse set of individuals, so performance should be higher across diverse ancestries. The number of true 
positives also decreases by a much smaller amount than the errors, about xx %, due to a smaller number of homozygous 
variants, as seen in individuals of European ancestry in Fig. 2. This benchmarking demonstrates concrete performance 
gains in specific medically relevant genes resulting from the highly accurate assembly of a single individual. 



 
 

21 

Discussion 
 
Persistent errors in the human reference genome, ranging from collapsed duplications to missing sequences, have silently 
plagued human genetics for decades. The strong and arguably misguided assumption that most genomic analyses make 
about the correctness of the reference genome has led to spurious clinical findings and mistaken disease-associated 
variants. Here, we show that the T2T-CHM13 reference genome universally improves genome analyses for all 
populations by correcting major structural defects and adding missing sequences to GRCh38. In particular, we show that 
the T2T-CH13 assembly (1) revealed millions of additional variants and the existence of new copies of medically relevant 
genes (e.g., KCNJ17) within the 240 Mbp and 189 Mbp of non-syntenic and novel sequence in T2T-CHM13; (2) 
eliminated tens of thousands of spurious variants and incorrect genotypes per samples, including within medically-
relevant genes (e.g., KCNJ18) by expanding 185 loci (6.84 Mbp) that were falsely collapsed in GRCh38; (3) improved 
genotyping by eliminating 12 loci (1.2 Mbp) that were falsely duplicated in GRCh38 (4) yielded more comprehensive SV 
calling genomewide, with a greatly improved insertions/deletion balance by correcting collapsed tandem repeats. Overall, 
the T2T-CH13 assembly reduced false positive and false negative SNVs from short and long reads by as much as 12-fold 
in challenging, medically relevant genes. The T2T-CHM13 reference also accurately represents the haplotype structure of 
human genomes, eliminating 1390 artificial recombinant haplotypes in GRCh38 that occurred as artifacts of BAC clone 
boundaries. These improvements will broadly enable new discoveries and refined analysis across all of human genetics 
and genomics.  
 
Given these advances, we anticipate a rapid transition to the T2T-CHM13 genome. On a practical level, improvements to 
large genome segments, such as entire p-arms of the acrocentric chromosomes, and discovering new clinically relevant 
genes and diseases causing variants justify the labor and cost required to incorporate T2T-CHM13 into basic science and 
clinical genomic studies. On a technical level, T2T-CHM13 simplifies genome analysis and interpretation because it 
consists of 23 complete linear sequences and is free of "patch" or alternate sequences. In contrast, GRCH38 has 195 
different contigs (with names such as chr14_GL000009v2_random and chrUn_GL000195v1) that are often excluded 
since it is challenging how to interpret results in these regions. The reduced contig set of T2T-CHM13 also facilitates 
interpretation and is directly compatible with essentially all of the most commonly used analysis tools (e.g., bwa, GATK, 
bedtools, samtools, bcftools, etc). To promote this transition, we provide variant calls and several other annotations for 
CHM13 within the UCSC Genome Browser and the NHGRI AnVIL as a resource for the human genomics and medical 
communities. 
 
Finally, our work also underscores the need for additional T2T genomes. Most urgently, the CHM13 genome is 
karyotypically female and lacks a Y chromosome, so our analysis relied on the draft representation of chrY from 
GRCh38. We expect a T2T representation of chrY within the very near future, at which time we will study how including 
this sequence improves mapping and variant analysis of karyotypically male samples. Furthermore, many of the new 
regions in T2T-CHM13 are present in all human genomes and enable variant calling with traditional methods from short 
and/or long reads. However, many novel regions exhibit substantial variation within and between populations, including 
satellite DNA [34] and segmental duplications that are polymorphic in copy number and structure [35]. Relatedly, the 
expanded reference provides a basis for calling millions of new variants, but many of these variants are challenging to 
accurately resolve using current sequencing technology and analysis algorithms. Robust variant calling in these regions 
will require many, diverse haplotype-resolved T2T assemblies to construct a pangenome reference, in turn motivating the 
development of new methods for discovering, representing, comparing, and interpreting complex variation, as well as 
benchmarks to evaluate their performance [53,54].  
 
Through our detailed assessment of variant calling at known and novel loci across global population samples, our study 
showcases CHM13-T2T as the preeminent reference for human genetics. The annotation resources provided herein will 
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help facilitate this transition, together expanding knowledge of human genetic diversity by revealing functional variation 
that was hidden from previous view. 
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Supplementary Materials 
 

Section I. Structural Comparisons of GRCh38 and CHM13 
Mappability Analysis 
 
We calculated minimum unique k-mer (MUK) lengths for both CHM13 and GRCh38. MUKs represent the minimum 
distance from a position in the genome needed to identify a unique sequence, either upstream (right-anchored) or 
downstream (left-anchored). To compute these values, all chromosomes of the target genome were concatenated, followed 
by their reverse complements. A suffix array (SA) and longest common prefix (LCP) table were calculated from this 
single sequence using the algorithm and script adapted from Sapling [55]. For each position in the SA, the LCP value plus 
one represents the MUK at that position. If the SA value indicated that the sequence was a reverse complement, the 
unique sequence was right-anchored; otherwise, the sequence was left-anchored. Any minimum unique sequences 
containing an N or overlapping a chromosome end were removed and those positions were marked as having no minimum 
unique sequence. All scripts for recapitulating this analysis can be found at 
https://github.com/msauria/T2T_MUK_Analysis. 
 
Examining the tails of the MUK distribution, e.g. the longest perfect repeats in these genomes, we found that GRCh38 
contained 70 repeated sequences larger than 5 kb while CHM13 had 81 such sequence pairs. Within GRCh38, more than 
half of these pairs (42) occurred between an unplaced contig and centromeric (or immediately adjacent), subtelomeric, or 
another unplaced contig's sequence, accounting for 29, 7, and 6 pairs, respectively. Another 18 sequence pairs in GRCh38 
occurred between subtelomeric regions. Interestingly, 6 sequence pairs represented subtelomeric-centromeric sequences. 
There were two instances of sequences shared between centromeric regions, another between a subtelomeric region and 
the middle of chromosome 6, and a 12 kb sequence occurring on both chromosomes X and 8 in an intron of the gene 
RBPMS. 
 
All but one sequence pair of long perfect repeats were removed in the CHM13 genome assembly as we were able to 
capture minute differences between these sequences using the long-read technology. Of the subtelomeric/centromeric 
mixed pairs, 3 were resolved to the subtelomeric side, 1 to the centromeric side, and 2 had no corresponding mapping in 
CHM13. The centromeric/other pair resolved to chromosome 6. Finally, the chromosome X/6 sequence pair resolved to 
chromosome 6. CHM13 contains 81 long sequence pairs, 77 of which occur between acrocentric centromere pairs, Of the 
remaining 4, 3 overlap a single subtelomeric pairing from GRCh38 and the last pair occurs in the middle of chromosomes 
2 and 22, exactly encompassing an L1HS LINE element. 
 

Generating variant calls with assembly-assembly alignment of CHM13 to GRCh38 

We generated variant calls with dipcall (https://github.com/lh3/dipcall) [47] using the same CHM13-v1.0 assembly 
FASTA as haplotype 1 and haplotype 2 with GRCh38 as a reference, as in the NIST assembly benchmarking pipeline 
(https://github.com/usnistgov/giab-asm-benchmarking). Dipcall generates variant calls using any non-reference support in 
regions greater than or equal to 50 kb with contigs having mapping quality greater than or equal to 5. Dipcall also 
produces a BED which denotes confident regions covered by an alignment greater than or equal to 50 kb with contigs 
having mapping quality greater than or equal to 5 and with no other greater than 10 kb alignments. 
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Identification of missing gene copies in GRCh38 

We simulated Illumina-like reads (400 million PE 150 bp reads) from T2T CHM13 reference v1.0 including the GRCh38 
Y chromosome using Mason (https://github.com/seqan/seqan/tree/master/apps/mason2) and aligned them to GRCh38 (no 
alt or decoys contigs) and CHM13 v1.0 including the GRCh38 Y chromosome using BWA mem. Likewise, previously 
published CHM13 PacBio HiFi reads (~24X) (Ref.) were aligned to GRCh38 using Minimap2 with the -ax map-pb 
setting. We called SNVs in both datasets with GATK v4.1.8.1[38] using minimum MAPQ 30 and default parameters. 
Only PASS variants were used for downstream analyses. Heterozygous variants called by each platform were merged into 
one multi-sample VCF file with bcftools merge, and the number of heterozygous variants per kbp was calculated using 
bedtools coverage. 

For both references, we first defined problematic regions as regions ≥2 kbp with ≥2 heterozygous 

calls in the CHM13 sample. From this, we connected regions separated by ≥5 kbp, and then 

filtered for regions ≥5 kbp in size.  

Focusing on GRCh38-derived problematic regions, we intersected them with previously published RepeatMasker and SDs 
annotations obtained from UCSC Table Browser, as well as known GRC issues obtained from XXX. Additionally, we 
obtained variants flagged with excess of heterozygosity by the 1000 Genomes Project by filtering for InbreedingCoeff 
flag in the 1000 Genomes variants file (Ref). Empirical enrichment of variants with excessive heterozygosity within 
problematic regions was obtained by calculating the number of variants in 10,000 randomly sampled regions of the 
genome using bedtools shuffle. The empirical p-value was calculated as (M+1)/(N+1), where M is the number of 
iterations yielding a number of features greater than observed and N is the number of iterations.  

We lifted problematic regions in GRCh38 to CHM13 using the following approach: (1) coordinates obtained by UCSC 
LiftOver with available liftover were lifted over to CHM13 usingain (Ref) if lifted coordinates size was within 80-120% 
of the original size, (2) Minimap2 longest hit if lifted coordinates size was within 80-120% of the original size, and closest 
hit when more than two options were available, and (3) manual selection and curation of remaining coordinates. To assess 
functional impact, these likely problematic regions were intersected with all gene features in Gencode v36, as well as a 
curated list of medically relevant genes [23]. 

Using available read-depth copy-number estimates in CHM13 reference based [35], we obtained the overall copy-number 
of the lifted regions as the median window copy-number for a "k-merized" version of GRCh38 and CHM13 references, as 
well as 268 individuals from the HGDP dataset (excluding sample LP6005442-DNA_A08). Regions here GRCh38 

copy-number proved to be lower ≤ 1 individuals of the SGDP cohort, were considered 

likely true collapsed duplications in the GRCh38 reference. Additionally, we intersected lifted 
coordinates with CHM13 SDs [35] and centromere annotations [34]. 

 

Identifying false duplications in GRCh38 
To identify falsely duplicated regions in GRCh38, we compared copy number estimates of GRCh38 to copy number 
estimates of 268 genomes from the HGDP dataset using short reads. We first averaged the copy number estimates for 
each genome across 1 kbp windows. For each 1 kbp region, we flagged it as a potential false duplication if the copy 
number in GRCh38 was greater than the copy number in 99% of the other genomes. Flagged regions were assigned a 
value of 1 and unflagged regions were assigned a value of 0. To filter the flagged regions, we used a median filter 
approach with a window size of 3 kbp, where the binary value of each 1 kbp region was replaced with the median value of 
the complete window. We then merged all adjacent flagged regions and reported the start and end coordinates with respect 
to CHM13. To find the corresponding locations of the duplications on GRCh38, we used minimap2 [42] version 2.17-
r941 with parameter -p 0.25. Some regions mapped to more than two locations on GRCh38 due to true segmental 
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duplications in the genome. We curated these regions with more than two alignments, and identified the incorrect region 
as the region that did not have an assembly-assembly alignment from CHM13 or the HG002 haplotype. We identified the 
affected, correct region as the region that aligned most closely to the CHM13 region, which also had reduced HG002 read 
coverage. Upon curation of the regions with only two alignments on GRCh38, we selected as correct the region that was 
on the same chromosome arm as the corresponding CHM13 region. When both regions were on the same chromosome 
arm, we selected as correct the region that was not adjacent to or between gaps in GRCh38. One false duplication was a 
tandem duplication, and we arbitrarily selected one copy as correct. Upon curation, we also removed one small 8 kb 
region (chr19:14359000-14367000 on CHM13) that was incorrectly identified as falsely duplicated. 

 

Quantifying artificial haplotype structure of GRCh38 
 
We used PLINK [56] to extract all autosomal SNP pairs with perfect LD (R2 = 1) in the entire 1000 Genomes sample set 
using recently published genotype data from the 30x sequencing by NYGC. By definition, GRCh38 carries the reference 
allele at all sites, so we computed the frequency of REF-REF haplotypes at each of these SNP pairs among the 1000 
Genomes samples. We then used HTSlib to query CHM13 alleles at each corresponding site, again computing the 
frequency of the observed CHM13 haplotypes among the 1000 Genomes sample set. This analysis of CHM13 alleles on 
GRCh38 coordinates was based on the aforementioned variant calls produced by dipcall, restricting to portions of the 
alignment involving only a single contig (i.e., the region defined by the dip.bed output file) and excluding regions within 
10 bp of an indel that distinguishes the two assemblies. All queried genomes were subjected to these same filtering criteria 
to ensure a common baseline for comparison. For the GRCh38 haplotypes that were absent (i.e. frequency = 0) among the 
1000 Genomes sample set, we intersected the intervals defined by the SNP pairs with the clone tiling path used for the 
construction of the GRCh38 reference genome (https://hgdownload-
test.gi.ucsc.edu/goldenPath/hg38/bigZips/hg38.agp.gz), thereby quantifying the number of rare allelic combinations 
explained by transitions between adjacent clones.  
 
To compare these results to samples from the 1000 Genomes Project, we performed a leave-one-out analysis in which for 
each iteration, we randomly selected a single phased “haploid” genome from the 1000 Genomes sample set and re-
computed LD for the full dataset minus that individual. For all SNP pairs in perfect LD (R2 = 1) in the new sample (N = 
2503 individuals), we queried the allelic state of the selected haploid sample in the manner previously described. We 
repeated this analysis for 100 randomly sampled individuals, generating superpopulation-specific distributions of LD-
discordant SNP pairs per haploid genome. We again applied the same filtering criteria as were applied to CHM13 and 
GRCh38 to ensure a fair comparison. 

 

Inference of local ancestry and Neanderthal introgression for GRCh38 and CHM13 

We used RFMix v2.03-r0 [57] (https://github.com/slowkoni/rfmix) to infer the local ancestry of the CHM13 genome. As a 
set of reference samples for ancestry, we used the 2,504 individuals sequenced in the Phase 3 release of the 1000 
Genomes Project [18]. Phased SNP genotypes for this reference set were generated by the 1000 Genomes Consortium 
through alignment to GRCh38 and calling variants against the GRCh38 reference, and included only biallelic SNVs 
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV/). 
We assumed that CHM13 carried the reference allele at sites in the 1000 Genomes dataset that were not called as CHM13 
variants by dipcall (described above). All CHM13 genotypes were represented as phased homozygous diploid genotypes 
(either reference/reference or alt/alt), which resulted in two sets of identical inferred local ancestry segments for each 
haplotype. We obtained a genetic map for GRCh38, originally generated on build 35 of the human reference genome by 
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the HapMap Consortium [58] from the Beagle resource bundle 
(http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/). 

We ran RFMix with default parameters (conditional random field spacing = 50 SNPs; random forest window size = 5 
SNPs), grouping the 1000 Genomes reference panel into superpopulations (African, Ad Mixed American, East Asian, 
European, Southeast Asian). Because males are haploid for variants on the X chromosome, we included only female 
individuals in the reference panel for local ancestry inference for the X chromosome. We excluded from the results 
regions that overlapped with centromeres (UCSC Genome Browser; https://genome.ucsc.edu/cgi-bin/hgTables) or were 
marked as inaccessible for the 1000 Genomes Project 
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_G
RCh38/). The non-pseudoautosomal regions (PARs) of the X chromosome were also inaccessible for this analysis due to 
the absence of variant calls outside the PARs. 

Inspired by related approaches [24,59], we used an alternative strategy for local ancestry inference of GRCh38. By 
restricting analysis to individual clones, our approach avoids strong assumptions about the genetic map, which could 
produce misleading results given the artificial haplotype that we previously described. Specifically, for each clone 
reported in the tiling path, we extracted phased haplotypes of the 1000 Genomes samples from the corresponding genomic 
interval. We then computed the pairwise Hamming distances between each of these reference haplotypes and the 
reference GRCh38 haplotype (represented as an equal-length vector of zeros). We identified the nearest neighbor 
reference haplotypes to GRCh38 as those with the smallest Hamming distance, recording the superpopulation membership 
of each corresponding reference individual. Ancestry of the clone was then assigned as the majority superpopulation of 
the nearest neighbor haplotypes, normalizing by the relative abundances of superpopulations within the entire dataset. 
Clones for which no superpopulation achieved the majority among the nearest neighbors were designated as ambiguous, 
as were clones without SNPs in the 1000 Genomes sample (i.e., occurring within inaccessible regions of the genome). 

For identification of Neanderthal-introgressed haplotypes, we used IBDmix 
(https://github.com/PrincetonUniversity/IBDmix), which detects introgressed archaic sequences in a set of individuals by 
identifying haplotypes that are identical-by-descent to a reference archaic sample [60]. Of the three Neanderthal 
individuals with available high-coverage sequences, we chose the Vindija Neanderthal as our reference archaic individual 
due to its inferred closest relation to the Neanderthal population that admixed with modern humans [61]. Because IBDmix 
identifies introgressed sequences in a set of modern samples, assumed to be from the same population, we additionally 
provided samples from the 1000 Genomes Project as a background set of modern individuals. These samples were 
sequenced to 30x coverage by the New York Genome Center, and variants were called on the GRCh38 reference 
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phase
d/) [28]. 

Because local ancestry analysis indicated that the majority of the CHM13 genome is composed of European ancestries, 
we used European samples as the background set of modern individuals for CHM13. For GRCh38, which comprises 
haplotypes from multiple populations, we identified introgressed segments by pairing it with each of the 1000 Genomes 
superpopulations. In a given local ancestry tract, we only retained introgression calls from the background population 
matching the local ancestry in that region. 

We required Neanderthal-introgressed haplotypes to have a LOD score of at least 4 and a length of at least 50 kb. As with 
the local ancestry segments, we removed introgressed segments within regions deemed inaccessible by the 1000 Genomes 
Project. 

 

 



 
 

S5 

Section II. Improvements to Short Read Mapping and Variant Calling 
 

Short read alignment, coverage analysis, and variant calling of the expanded 1000 Genomes collection 

In order to perform large-scale alignment and variant calling, we used the NHGRI Genomic Data Science Analysis, 
Visualization, and Informatics Lab-Space (AnVIL) [62], which allowed us to analyze nearly 100 terabytes of raw 
sequence data and perform thousands of analyses in just a few days of wall-clock time. Using the AnVIL/Terra platform, 
we aligned the 3,202 samples from the 1000 Genomes Project [28] to the CHM13 reference genome using the functional 
equivalence pipeline standard established by the Centers for Common Disease Genomics project [63] as a framework. For 
CHM13 we used assembled v1.0 (20200921) main chromosome sequences with an addition of chrY, 
chrY_KI270740v1_random, and chrEBV from GRCh38, whereas the prior study of the 1000 Genomes analysis used 
GRCh38 including alt, decoy, random, unknowns, and HLA sequences. For the analysis, we followed the processing of 
the previous pipeline, although we updated certain elements of the pipeline in order to improve efficiency while 
maintaining accuracy. Most notably, we substituted samtools v1.11 [64] for Picard when fixing mate information in the 
BAM file, merging lane-level BAMs, marking duplicates, and coordinate-sorting. Otherwise, we followed the CCDG 
pipeline, including all pertinent parameters: lane-level alignment of the 1KGP FASTQ files to CHM13 using BWA-MEM 
v0.7.17-r1188 [65], fixing mate information in the BAM, coordinate-sorting the BAMs, merging lane-level BAM files to 
sample-level BAM files, marking duplicates, and converting to CRAM format. Though the original pipeline performed 
base quality score recalibration at the BAM level, we forewent this step because the subsequent variant inference part of 
the pipeline utilizes a newer version of GATK framework (4.1.9 for AnVIL vs 3.5.0 for NYGC) 
 
After alignment, we quantified the mapping statistics using samtools stats. In addition to the improvements reported in 
Figure 2a, several other metrics improved such as a decrease in the standard deviation of the insert size, and an 
improvement in the paired-end concordance. Lastly, because of the resolved/introduced repeat sequences in CHM13 we 
observe an increase in the number of reads with a mapping quality value of 0, signalling a repetitive alignment) 
 
We then computed coverage statistics using mosdepth on 500bp non-overlapping genome-wide windows on individual 
sample bam files. For coverage analysis, we only considered autosomal chromosomes for coverage stability analysis, and 
removed from consideration 500bp windows that have 250+ Ns in the respective references (GRCh38: 260,251 windows, 
CHM13: 22,950 windows). We then consider the interquartile range to annotate 500bp windows with outlier/abnormal 
coverage using a threshold of 1.5x IQR. We then intersected these regions against several annotations to evaluate 
coverage uniformity. This included intervals defined by GIAB [HC_smallvar, HC_SV, gene_medical], RepeatMasker 
[r_LINE, r_SINE, r_low_complexity, r_satellite, r_simple], CAT [genic], SD [synteny, synteny_not], superpopulation 
ancestry [a_AFR, a_AMR, a_EAS, a_EUR, a_SAS, a_neanderthal] we computed overlap of every stratification context 
with 500bp windows for which the coverage was computed and retained context-specific windows that had 1+/500 bp 
context overlaps. 
 
To call small variants, we again followed the framework presented by the 1KGP, updating to GATK v4.1.9 [66]. We 
performed raw variant calls using GATK HaplotypeCaller on a per-chromosome basis for each sample. We then 
generated GATK GenomicsDB files on each chromosome, across all 3,202 samples, per interval, with 1kb of padding on 
either side of each interval, performed joint genotyping using GATK GenotypeVCFs, and trimmed the padding on the 
resulting VCFs to produce interval-level joint VCF files across all 3,202 samples [38]. We then used bcftools v1.9 [64] to 
concatenate the interval-level joint VCF files to produce chromosome-level VCF files and to obtain statistics on all VCF 
files. [TODO: more info about recalibration, following the PDF] 
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To identify non-spurious variants, we first filtered these VCF files by the filter field, using only variants labeled as PASS 
by GATK. This eliminated a number of variants in highly repetitive regions, such as in satellite regions (chr9 figure). 
 
For most subsequent analysis, we only considered the 2,598 founder (unrelated) samples in the 1000 Genomes Project. 
Using bcftools v1.9 for most of our analyses, we calculated the number of variants per sample, performed allele frequency 
analysis on autosomes, and performed local ancestry analysis on the population-level VCF files. To identify variants with 
allele frequency of 1.0, we used bcftools v1.12 norm to stratify multiallelic variants and bcftools view. 
 
We also identified Mendelian discordance in all 602 trios using the MendelianViolationEvaluator evaluation module of 
GATK VariantEval. 

 

Comparison of GRCh38/NY Genome Center Pipeline to CHM13/AnVIL Pipeline 

The main differences between the original NYGC pipeline for short-read data processing and AnVIL setup with CHM13 
reference lie in: (i) tool/tool versions and (ii) the starting organization of the sample-specific read data. In contrast to the 
NYGC pipeline which started with sequenced flow-cell- and lane-specific fastq files straight from the sequencing 
instruments, the AnVIL setup started from a composite fastq file downloaded for the European Nucleotide Archive. These 
files were then decomposed into individual flow-cell- and lane-specific fastq files. For subsequent alignment steps AnVIL 
setup mimics the NYGC pipeline (using a newer bwa v0.7.17 vs v0.7.15 in NYGC pipeline), but substitute steps that are 
performed with Picard Tools in the NYGC pipeline (e.g., sorting, merging, deduplication) with the samtools’ analogs. 
AnVIL setup also forgoes alignment recalibration step, as the subsequent variant inference part of the pipeline utilizes a 
newer version of GATK framework (4.1.9 for AnVIL vs 3.5.0 for NYGC), which utilizes elements of alignment 
recalibration workflow directly during the variant inference. AnVIL setup utilized segmentation (1Mbp) of the CHM13 
reference with reciprocal overlapping (extra “extending” margins of 10k) between consecutive segments for 
HaplotypeCaller step, followed by joint genotyping step via GenomicsDB setup. Each genotyped segment-based variant 
file is then trimmed off of the extending 10Kbp extending margins on each segment, and AnVIL pipeline then 
concatenates segments in a sequential manner into chromosomes, and then full genomes. Variant recalibration steps in 
AnVIL setup follows the outline of the NYGC pipeline with the resource files lifted-over from GRCh38 reference onto 
the CHM13, with only unambiguously lifted entries considered. 

To evaluate how the alignment part of the pipeline differs between the AnVIL setup and the original NYGC pipeline we 
have performed GRCh38-based alignment on AnVIL setup for 3 samples. We then computed samtools alignment stats on 
both the original NYGC cram files and on the AnVIL-generated ones. We observed that the produced alignments are 
almost identical across alignment setups, with most differences being very minor and observed in the number of MAPQ0 
alignments (<0.2% reduction), number of reads marked “duplicated” (<0.01% reduction), insert size standard deviation 
(<1.2% reduction), pairs on different chromosomes (<1.2% reduction), etc. 

We further compared the AnVIL small variant inference with the original NYGC setup and observed genome-wide 
variant inference concordance of 98.7% (via bcftools stats). We further confirmed that the difference is driven by the 
GATK v3.5 in NYGC pipeline being updated to GATK 4.1.9 in AnVIL setup: identical versions of GATK ran on 
alignments produced with NYGC vs AnVIL pipeline yielded >99.9% genome-wide concordance. We also observed that 
the proposed segmentation-with-margins GATK variant inferences approach utilized in the AnVIL setup yielded 
absolutely identical results when compared to complete-chromosome based segmentation on 200+ samples with 
CHM13v1.0 reference.  

 
Analysis of visibility of single- and multi-sample SNVs when using different references 
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Analyses of the visibility of SNVs for single and multiple samples were performed on the GATK short read VCF files for 
this project. For single sample results, the calls from HG002 were used, and for the “1KG” calls, the full set of variants for 
3,202 samples were used. To count the number of HG002 SNVs called using GRCh38 as a reference which are not 
callable using the T2T-CHM13 reference, the VCF file of HG002 GRCh38 SNVs was lifted to T2T-CHM13 using Picard 
v2.25.0’s LiftOverVCF tool (Broad Institute, http://broadinstitute.github.io/picard/) with the -
RECOVER_SWAPPED_REF_ALT option. Any SNV whose genotype with respect to T2T-CHM13 was homozygous 
reference, or “0/0”, and whose VCF record contained the Picard-assigned “SwappedAlleles” INFO tag, was counted 
among the 946,126 SNVs that are not callable against T2T-CHM13 due to the lack of a variant allele in HG002. Likewise, 
to calculate the number of HG002 SNVs called using T2T-CHM13 that lift over to GRCh38 positions for which the 
reference allele is not represented in HG002, Picard LiftOverVCF was again run on the T2T-CHM13 VCF with the -
RECOVER_SWAPPED_REF_ALT option. SNVs for which the lifted SNV’s GRCh38 genotype was homozygous 
reference, or “0/0”, and which were assigned the INFO field value “SwappedAlleles”, were counted among the 672,341 
SNVs that are not callable in GRCh38 due to the lack of a variant allele in HG002. To compute similar metrics for the 
1KG SNVs, the VCF files of T2T-CHM13 variant calls without genotypes were lifted from T2T-CHM13 to GRCh38, and 
the GRCh38 variants were similarly lifted from from GRCh38 to T2T-CHM13. Instead of examining genotypes, the lifted 
allele frequencies (the “AF” values in the VCF INFO field) and the unadjusted alternate and total allele counts (“AC” and 
“AN”) were examined using a custom perl script to count variants that were 100% fixed for one or the other reference 
allele. 
 
To compare variants between the called and the lifted sets of variants for a given reference, hap.py version 0.3.9 
(https://github.com/Illumina/hap.py) was run on the complete sets of “PASS” variants from both references, as well as 
VCF files which had been filtered to remove variants that are visible only with respect to the T2T-CHM13 reference, only 
with respect to the GRCh38 reference, or visible with respect to both. 

 

Section III. Improvements to Long Read Alignment and SV Calling in CHM13 
Long read alignment and coverage analysis 

To assess the impact of using CHM13 as a reference on long-read alignment and variant calling, we aligned data from two 
independent sequencing platforms - PacBio High Fidelity (HiFi) Circular Consensus Sequencing and Oxford Nanopore 
(ONT) - to both GRCh38 and CHM13. For the GRCh38 reference, we excluded alternate and decoy sequences because 
current long-read mappers are not alt-aware, but included randoms and unknowns. For the CHM13 reference, we used the 
v1 assembly with the addition of chrY, chrY_KI270740v1_random, and chrEBV from the GRCh38 reference. 

We used HiFi sequencing data from 17 samples and ONT data from a subset of 14 of those samples (Fig. 3a). The 
average read length of HiFi data across the 17 samples was 18,130.2 bp, and the average read length of ONT data across 
the 14 samples for which it was available was 21,912.9 bp (Fig S3.1). Alignments were performed with minimap2 [42] 
and Winnowmap [41], and mapping statistics were compared between the two references using samtools stats (Fig. S3.2). 
The number of reads mapped was similar between the two references across all combinations of technology and aligner. 
However, compared to GRCh38, we observed a lower mapping error rate in CHM13 due to the more accurate and 
complete sequence. At the same time, alignments to CHM13 yielded more reads with a mapping quality of zero due to the 
increased number of resolved repeats which resulted in multiple identical targets for mapping. Finally, there were fewer 
non-primary alignments to CHM13 because the newly resolved sequence enables better end-to-end mapping of long reads 
in primary alignments. 

In addition, we investigated the effect of CHM13 on coverage anomalies by using mosdepth to compute coverage 
statistics across non-overlapping 500bp bins in each reference. Only autosomal chromosomes were considered, and bins 
with 250 or more N’s were removed (260,251 bins in GRCh38 and 22,950 bins in CHM13).  
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We first computed the standard deviation of the per-bin coverage in each combination of reference, technology, aligner, 
and sample and compared the results between references. We observed a similar mean coverage in CHM13 and GRCh38, 
but found a significant reduction in the standard deviation when aligning to CHM13 (Fig. S3.3), indicating alignments 
which are distributed more uniformly across the genome. 

In addition to these genome-wide results, we compared the mean and standard deviation among bins overlapping (≥1 bp) 
with a number of genomic contexts (Fig. S3.3): 

● Satellite Repeats 
● Genes 
● Non-syntenic regions with respect to the other reference 
● Syntenic regions with respect to the other reference 
● Abnormal coverage bins, or bins in which the coverage is outside the range [Median - 1.5 * (Median - Q1), 

Median + 1.5 * (Q3 - Median)] among all bins in the same reference with the same technology, aligner, and 
sample. 

We found that the coverage standard deviation in GRCh38 was particularly elevated relative to CHM13 in satellite 
repeats, non-syntenic regions, and regions of abnormal coverage, likely due to repetitive sequences which are not properly 
characterized in GRCh38. 

Finally, for those bins with abnormal coverage, we counted the number of distinct samples in which it had abnormal 
coverage (Fig. S3.4). We found that many abnormal coverage regions in CHM13 had such coverage in only a single 
sample, which could be caused by rare structural variation which disrupts alignments to certain bins. On the other hand, 
GRCh38 had a higher number of bins which had abnormal coverage in every sample, indicating incorrectly resolved 
repeats or other errors in the reference. 
 
Long read variant calling analysis 
 
To evaluate the impact of CHM13 on structural variant (SV) calling from long reads, we called SVs in all long-read 
samples from the Winnowmap and minimap2 alignments described above. Variants were called separately in each unique 
combination of (sample, reference, technology, aligner) using Sniffles [43] with sensitive parameters - a minimum variant 
length of 20 bp and a minimum read support of two reads. Variants were marked as high-confidence if they were at least 
30bp in length, were supported by min(10, 25% of average coverage) reads, and were annotated with the PRECISE INFO 
field by Sniffles. Then, insertion calls were refined using Iris and duplicate variant calls within the same callset were 
removed using Jasmine [44] with a constant breakpoint distance threshold of 200 bp. The alignments and variant calls 
were computed using the default recommended parameters from our optimized Jasmine-SV pipeline: 
https://github.com/mkirsche/Jasmine/tree/master/pipeline. 
 
To compare SV calling in a large cohort setting between the two references, we constructed cohort-level SV calls with 
Jasmine from HiFi reads separately for each reference. For each reference, we merged each sample’s SV calls derived 
from Winnowmap and minimap2 alignments, and only retained calls which were detected from both sets of alignments. 
Then, we merged the per-sample callsets to obtain a unified cohort-level SV callset. SVs which were not annotated as 
high-confidence in at least one sample in which they were present were discarded, resulting in final callsets of 124,566 
SVs in GRCh38 and 141,193 SVs in CHM13. The cohort-level callset was computing using Jasmine with the default 
recommended parameters. 
 
Using these cohort-level callsets, we computed the allele frequency distribution in each reference (Fig. 3c) as well as the 
number of SVs present in each sample (Fig. S3.5 and S3.6). We also counted the number of insertions and deletions in 
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each reference to compute indel balance (Fig. 3d). To show the effects of SV calls in novel regions on the balance of 
insertions and deletions, we annotated SV calls that were present in non-syntenic regions of CHM13 with respect to 
GRCh38. We also looked specifically at the distributions of SV calls in CHM13 which intersected (1+ bp) a number of 
different genomic contexts, including genes and exons, syntenic and non-syntenic regions (Fig. S3.7), as well as 
centromeres and different classes of repeats (Fig. S3.8). 
 
To evaluate the ability to detect de novo SVs in CHM13 in trio settings, we constructed trio callsets for two different trios 
from the Genome in a Bottle Consortium - the HG002 trio of Ashkenazim ancestry and the HG005 trio of Han Chinese 
ancestry. To construct a callset for each trio, we merged the callsets of the child and both parents derived from all four 
combinations of aligner (Winnowmap and minimap2) and sequencing technology (HiFi and ONT). Then, we discarded 
any variants which were not supported by both technologies with Winnowmap in at least one of the samples in which they 
were present. Similar to the population-level analysis above, we also only retained SVs which were annotated as high-
confidence in at least one sample. This yielded final trio callsets of 56,414 variants in the HG002 trio and 56,449 variants 
in the HG005 trio. We manually inspected all SVs in these sets which were present in only the child of the trio: 36 in 
HG002 and 45 in HG005. Similar analysis in GRCh38 yielded 40 candidates in HG002 and 29 candidates in HG005. In 
both references, these candidate sets included a previously unreported potential de novo variant in HG005, a 1,571 bp 
deletion at chr17:49,401,990 in CHM13 (Fig. S3.9). 
 
Optical mapping assembly and variant calling 

Bionano optical mapping data for HG002/GM24385 was generated using the DLS chemistry and Bionano Saphyr system, 
available at https://ftp-
trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/Bionano_haplotype_SV_DLS_06172019/. 
A haplotype-aware optical assembly of Bionano data for HG002 was generated using default parameters with Bionano 
Solve3.6. The assembly was aligned against GRCh38 and against the T2T-CHM13 v1.0 reference, and SV calling was 
performed using default parameters with Bionano Solve3.6. For mapping, the T2T-CHM13 reference was in silico 
digested from t2t-chm13.20200921.withGRCh38chrY.chrEBV.chrYKI270740v1r.fasta.  

There were 2865 non-redundant variants called against T2T-CHM13, and the number of insertions and deletions called 
against T2T-CHM13 are more balanced than that against GRCh38, consistent with the observation that T2T-CHM13 
corrects collapses in GRCh38 (Fig. S3.14). There are 1431 insertions called against the T2T-CHM13 reference compared 
to the 2771 insertions called against GRCh38. 

Among the variants called against the T2T-CHM13 reference, 306 of them overlap non-syntenic regions, which are novel 
or improved regions compared to GRCh38. Some of these SVs involve GRCh38 gaps that are now fixed in the T2T-
CHM13 reference (Fig. S3.15). Although the SVs crossing gaps in GRCh38 can still be called with respect to GRCh38, 
T2T-CHM13 improves resolution for these SVs by adding markers that can be aligned between the optical assembly and 
the reference.  

Further curation of telomeric region also finds that the T2T-CHM13 reference is more comprehensive than GRCh38 at 
many telomeres, at least in relation to the HG002 optical assembly, though HG002 is closer to GRCh38 for some 
telomeres. Future work could include evaluating the utility of calling SVs from Bionano data in many individuals against 
T2T-CHM13 to assess improvements across ancestry groups. 

 

Section IV. Characterization of non-syntenic regions 
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Newly added region analysis 

We intersected the 1000 Genomes population-wide joint genotyped VCF files with the non-syntenic <CITE> and novel 
<CITE> regions of the CHM13 assembly, which we used to calculate the number of bases newly added in this assembly 
and the number of variants in these newly accessible regions. Intersected with gene regions 

 

 TODO the long-read analysis 

 

Identifying signatures of selection in novel CHM13 regions 

We applied a frequency differentiation-based method for identifying signatures of selection within novel regions of the 
CHM13 assembly. These novel regions were defined as regions of no synteny between the CHM13 and GRCh38 
assemblies, as identified by <synteny method>. Using variant genotypes generated with the 1000 Genomes dataset, we 
applied Ohana [46,67,68], a maximum likelihood-based method that models individuals as possessing ancestry from 
combinations of k ancestry components. Ohana then tests whether individual variants adhere to this genome-wide null 
model, or are better explained by an alternative model in which frequencies are allowed to vary in one or more 
populations. Because most demographic events will affect the genome in its entirety, outlier loci exhibiting extreme levels 
of frequency differentiation compared to the genome-wide average serve as candidate targets of local adaptation. 

We used the inferred admixture relationships generated by [69] for the core 2,504 samples from the 1000 Genomes 
Project, modeling these individuals’ genomes as combinations of 8 ancestry components. This choice of k follows the 
precedent of the 1000 Genomes Project [18] and replicates known patterns of population structure at continental scales, as 
well as signatures of admixture within the Ad Mixed American and African American populations [69] . In order to 
generate “selection hypothesis” matrices to search for selection in a specific ancestry component, we modified the neutral 
covariance matrix by allowing one component at a time to have a greater covariance. A scalar value of 10, representing 
the furthest possible deviation that a variant could have in a population under selection, was added to elements of the 
neutral covariance matrix depending on the population of interest. 

For each variant of interest, Ohana computes the likelihood of the observed ancestry component-specific allele 
frequencies under the selection and neutral models, then compares them by computing a likelihood ratio statistic (LRS), 
which quantifies relative support for the selection hypothesis. We filtered these results to remove extreme outliers in null 
model log-likelihoods (global log likelihood (LLE) < -1000), which were unremarkable in their patterns of allele 
frequency and instead indicated a failure of the neutral model to converge for a small subset of variants. We also removed 
variants that could not be genotyped in more than 20% of samples, as well as variants that were extremely rare in all 1000 
Genomes populations (minor allele frequency in all populations < 0.05 or > 0.95). 
 

Section V. CHM13 Clinical Genomics 
Annotation of CHM13 variants using Variant Effect Predictor (VEP)  

VEP [48] (version 102.0) was used to annotate variants generated by dipcall when aligning chm13_v1.0_plus38Y.fa to 
hg38.no_alt.fa. Briefly, vcf files were annotated without the --filter_common and --canonical flags. CADD [70] v1.6 and 
raw SpliceAI [71] scores were added using both the CADD and SpliceAI plugins. Variants were filtered based on 
predicted HIGH functional impact. 

 

Identification of medically-relevant genes with impacted variant discovery 
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Reference artefacts and errors were intersected with a previously curated list of medically-relevant genes [23]. GRCh38 
coordinates for genes were lifted over using Picard liftover tool to identify locations in T2T-CHM13. For putative errors 
or rare SVs, we intersected gene coordinates after expanding breakpoints for each variant ± 5 kbp. Genomic sequencing 
containing TNNT3 implicated with SVs in GRCh38 were extracted from each reference (chr11:1,892,362-1,946,566, 
GRCh38; chr11:1,978,257-2,034,355, CHM13v1.0) and homologous regions compared using miropeats -s 400 [72]. SDs 
containing KCNJ18 were identified in GRCh38 (chr17:21,687,227-21,736,311; CDS: chr17:21,702,787-21,704,088) and 
T2T-CHM13v1.0 (chr17:21,636,382-21,685,461; CDS: chr17:21,651,942-21,653,243) and paralogs pinpointed using the 
UCSC Genome Browser SD annotations [73–75]. With KCNJ18, Genome coordinates of SDs containing KCNJ12 
(GRCh38: chr17:21,399,778-21,450,415 (whole) and chr17:21,415,343-21,416,644 (CDS); T2T-CHM13v1.0: 
chr17:21,348,977-21,399,639 (whole) and chr17:21,364,558-21,365,859 (CDS)) and the novel KCNJ17 (T2T-
CHM13v1.0: chr17:22,634,421-22,683,415 (whole) and chr17:22,666,582-22,667,880 (CDS)) were used to extract 
variants from both references intersecting each locus. Minor-allele frequencies were plotted and distributions compared 
using a Mann-Whitney U test (R-command etc). Finally, direct comparison of allele frequencies for variants falling within 
the CDS were compared using 1000 Genomes datasets from the NYGC (GRCh38), produced here (described above for 
T2T-CHM13), and the liftover of T2T-CHM13 to GRCh38 (described above). 
 

Creating a difficult medically-relevant gene benchmark for HG002 on CHM13 

The Genome in a Bottle Consortium recently created a highly-curated benchmark for 273 challenging and medically-
relevant genes with GRCh37 and GRCh38 as references [23]. This benchmark used variant calls generated by dipcall [47] 
when aligning the paternal and maternal haplotypes assembled using hifiasm with PacBio HiFi reads for HG002 and 
Illumina k-mers from the parents, HG003 and HG004 [76]. These 273 genes tend to be challenging to call variants in 
HG002 due to structural variants, segmental duplications, and/or reference errors. The final benchmark regions for these 
genes excluded a small number of errors in homopolymers longer than 20 bp and errors found during extensive manual 
curation. 

For this manuscript, we create a comparable benchmark for HG002 on the CHM13 reference with the following steps. (1) 
We find the gene coordinates on CHM13 for the 273 genes using the T2T-CHM13 v3 gene annotations. (2) We generate 
variant calls with dipcall (https://github.com/lh3/dipcall) using the same HG002 trio-hifiasm assembly with CHM13 as a 
reference, as is done in the NIST assembly benchmarking pipeline (https://github.com/usnistgov/giab-asm-
benchmarking). Dipcall generates variant calls using any non-reference support in regions that are greater than or equal to 
50 kb with contigs having mapping quality greater than or equal to 5. Dipcall also produces a BED which denotes 
confident regions that are covered by an alignment greater than or equal to 50 kb with contigs having mapping quality 
greater than or equal to 5 and with no other greater than 10 kb alignments. (3) We identify that dipcall/hifiasm fully 
resolves 269/273 genes on CHM13 (i.e., the gene region and any segmental duplications that overlap the gene region are 
encompassed by the dip.bed file output by dipcall, so that one and only one contig from each haplotype fully covers the 
region). We exclude 4 genes (ESPN, IFITM3, FCGR3A, and FCGR2B) due to large structural variation in CHM13 
relative to GRCh38 and HG002. (4) We liftover the HG002 medically relevant genes v1.0 small variant benchmark 
regions from GRCh38 to CHM13 and intersect with T2T gene coordinates. (5) We manually exclude new SVs >49bp in 
HG002 on CHM13 plus any overlapping tandem repeats. (6) We liftover CHM13 benchmark regions from CHM13 to 
GRCh38 and intersect with GRCh38 benchmark regions to get equivalent benchmarks on both references. The resulting 
benchmark regions are <1% different in size (11548799 bp and 11482860 bp on GRCh38 and CHM13, respectively), 
enabling benchmarking performance metrics to be directly compared between the references.  

To compare variant call accuracy when using CHM13 vs. GRCh38 as a reference, we follow best practices for 
benchmarking from the Global Alliance for Genomics and Health, using hap.py with vcfeval to generate performance 
metrics [77]. We use 3 callsets for HG002 generated similarly for this work on both GRCh38 and CHM13: Illumina-
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bwamem-GATK, HiFi-PEPPER-DeepVariant, and ONT-PEPPER-DeepVariant. For Illumina-bwamem-GATK, we use 
single-sample variant calls before filtering, because HG002 was not included in the 1000 Genomes Project population 
analysis for GRCh38. 

 
<<Supplementary figures and tables as separate attachments with captions embedded within>> 


