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Abstract:

​Existing human genome assemblies have almost entirely excluded highly repetitive
sequences within and near centromeres, limiting our understanding of their organization,
evolution, and essential role in chromosome segregation. Now, the first telomere-to-telomere
human genome assembly (T2T-CHM13) has enabled us to deeply characterize
peri/centromeric repeats at single-base resolution, totaling 6.2% of the genome (189.9 Mb).
Mapping the inner kinetochore protein centromere protein A (CENP-A) revealed overlap with
the most recently duplicated subregions within centromeric repeat arrays. A comparison of
chromosome X centromeres across a diverse panel of individuals illuminated high degrees of
structural, epigenetic, and sequence variation. In total, we present an atlas of human
peri/centromeres to guide future studies of their complex and critical functions as well as their
evolutionary dynamics.
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The human genome reference sequence has remained incomplete for two decades. Genome
assembly efforts to date have excluded an estimated 5-10% of the human genome, most of which is
found in and around each chromosome’s highly repetitive centromere, owing to a fundamental
inability to assemble across long, repetitive sequences using short DNA sequencing reads (1, 2).
Centromeres function to ensure proper distribution of genetic material to daughter cells during cell
division, making them critical for genome stability, fertility, and healthy development (3). Nearly
everything known about the sequence composition of human centromeres and their surrounding
regions, called pericentromeres, stems from individual experimental observations (4–7),
low-resolution classical mapping techniques (8, 9), analyses of unassembled sequencing reads
(10–13), or recent studies of centromeric sequences on individual chromosomes (14–16). As a result,
millions of bases in the pericentromeric and centromeric regions (hereafter peri/centromeres) remain
largely uncharacterized and omitted from contemporary genetic and epigenetic studies. Recently,
long-read sequencing and assembly methods enabled the Telomere-to-Telomere Consortium to
produce a complete assembly of an entire human genome (T2T-CHM13) (2). This effort relied on
careful measures to correctly assemble, polish, and validate entire peri/centromeric repeat arrays for
the first time (2, 17). By deeply characterizing these newly assembled sequences, we present a
high-resolution, genome-wide atlas of the sequence content and organization of human
peri/centromeric regions.

Centromeres provide a robust assembly point for kinetochore proteins, which physically couple each
chromosome to the mitotic or meiotic spindle (3). Compromised centromere function can lead to
nondisjunction, a major cause of somatic and germline disease (18, 19). In many eukaryotes, the
centromere is composed of tandemly repeated DNA sequences, called satellite DNA, but these
sequences differ widely among species (20, 21). In humans, centromeres are defined by alpha
satellite DNA (αSat), an AT-rich repeat family composed of ~171 bp monomers, which can occur as
different subtypes repeated in a head-to-tail orientation for millions of bases (22, 23). In the largest
αSat arrays, different monomer subtypes belong to higher order repeats (HORs); for example,
monomer subtypes a,b,c can repeat as abc-abc-abc (24, 25). Each array can contain thousands of
nearly identical HORs, but kinetochore proteins associate with only a subset of HORs, usually within
the largest HOR array on each chromosome (25). Distinct HOR arrays tend to differ in sequence and
structure (26, 27) and, like other satellite repeats, they evolve rapidly, expanding and contracting in
repeat copy number over time and generating a high degree of polymorphism across individuals
(28–31). Active centromeric sequences (i.e. those associated with the kinetochore) are embedded
within inactive pericentromeric regions, which often include smaller arrays of diverged αSat
monomers that lack HORs (26, 32). Pericentromeric regions also contain transposable elements and
segmental duplications, which sometimes include expressed genes (33, 34), and frequently contain
non-αSat satellite repeat families (35), which have poorly understood functions. Given the opportunity
to explore these regions in a complete human genome assembly, we investigated the precise
localization of inner kinetochore proteins within large αSat arrays and surveyed sequence-based
trends in the structure, function, variation, and evolution of peri/centromeric DNA.
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A comprehensive map of peri/centromeric satellite DNA

Human peri/centromeric satellite DNAs represent 6.2% of the T2T-CHM13v1.1 genome (~189.9 Mb)
(tables S1,2 and fig. S1,2). Nearly all of this sequence remains unassembled or belongs to simulated
arrays called reference models (11) in the current GRCh38/hg38 reference sequence (hereafter,
hg38), including pericentromeric satellite DNA families that extend into each of the five acrocentric
short arms. Within these satellite DNAs, an assembly evaluation pipeline found only two ~10 kb loci
with strong evidence of structural misassembly issues, both within αSat on chromosome 19,
representing only 0.02% of satellite DNAs in T2T-CHM13 (reported in (17)). From decades of
individual observations, a framework for the overall organization of a typical human peri/centromeric
region has been proposed (Fig. 1A). By annotating and examining the repeat content of these regions
in the CHM13 assembly (Fig. 1B,C, tables S1,2, database S1), we tested and largely confirmed this
broad framework genome-wide at base-pair resolution, with some notable exceptions involving
large-scale structural rearrangements and previously uncharacterized satellite variants (fig. S1).

Consistent with prior studies (reviewed by (36)), all centromeric regions contain long tracts, or arrays,
of tandemly repeated αSat monomers (85.2 Mb total genome-wide, Fig. 1B,C). Often found adjacent
to αSat arrays, classical human satellites 2 and 3 (HSat2,3, totaling 28.7 and 47.6 Mb, respectively)
constitute the largest contiguous satellite arrays found in the human genome, with the longest arrays
on chromosomes 1, 9, and 16 (13.2, 27.6, and 12.7 Mb respectively, Fig. 1B,C). HSat2 and HSat3
are derived from a simple ancestral (CATTC)n repeat that diverged into distinct families and 14
previously characterized subfamilies (10, 37), which sometimes have variable repeat unit lengths on
the order of kilobases. Furthermore, two distinct satellite DNA families are known to constitute the
most AT-rich regions of the genome (37, 38), which we refer to as HSat1A and HSat1B. HSat1A is a
42 bp repeat spanning 13.4 Mb across chromosomes 3, 4, 8, and the acrocentrics in CHM13
(referred to as “human satellite 1” in the classic literature or “SAR” in RepBase, Fig. 1B,C, table S2)
(37). HSat1B is a 2.4 kb composite of AT-rich sequences and Alu fragments found predominantly on
the Y chromosome (38, 39), with 1.2 Mb across the acrocentrics in CHM13 (referred to as a “2.5 kb
male-specific repeat” in the classic literature or “HSATI” in RepBase, Fig. 1B,C, table S2) .

Two additional large families, Beta satellite (βSat, 7.7 Mb total, 52% GC) and Gamma satellite (γSat,
630 kb total, 72% GC), are more GC-rich than αSat (39% GC) and contain dense CpG methylation
(fig. S3). βSat can be further subdivided into simple arrays (68-bp repeat unit) and β-composite
arrays, in which βSat repeats are interspersed with LSau elements (40–42). All remaining annotated
pericentromeric satellite DNAs (collectively referenced as ‘p-censat’) total 5.55 Mb, with 1.19 Mb
representing previously uncharacterized types of satellite DNA found across many chromosomes in
CHM13 (table S2 and fig. S2) (42). Non-satellite bases observed between adjacent arrays and
extending into the p-arms and q-arms are considered ‘centric transition’ regions, which largely
represent long tracts of segmental duplications, including expressed genes (Fig. 1C, fig. S1) (2, 43,
44).
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Complete assessment of αSat substructure and genomic organization

A genome-wide assessment of CHM13 αSat monomers revealed a broad range of pairwise sequence
identity (44), with limited deviation in repeat unit length (median 171 bp, with 99.5% within the range
140-187 bp). Using previously described methods (32, 45, 46), we performed complete,
monomer-by-monomer classification of all αSat into 20 distinct suprachromosomal families (SFs)
each identified by its own monomeric classes ((44), table S2,3, database S2). Within each
peri/centromeric region, we identify between 1 and 9 HOR arrays, totaling 80 different HOR arrays
and >1000 different monomers in HORs across the genome (70 Mb total; table S4, database S3)
(38). Although 18 out of 23 chromosomes contain multiple, distinct HOR arrays, only one HOR array
per chromosome contains sequences that are consistently associated with inner kinetochore proteins
across individuals (25), and this array is designated as “active” with respect to centromere function
(total of 62 Mb in active HOR arrays genome-wide) (table S4, Fig. 1B,C). The active array on each
chromosome ranges in size from 5 Mb on chr18 down to 340 kb on chr21, which is near the low end
of the previously reported size range for this centromere among healthy individuals (47). All other
HOR arrays on the same chromosome are considered inactive (8 Mb inactive HORs, Fig. 1B,C).
Adjacent to many highly homogeneous arrays are regions of highly divergent αSat HORs, in which
HOR periodicity is somewhat or even completely eroded (46), as well as highly divergent αSat
monomeric layers (32), together totaling 15.2 Mb in CHM13.

Distinct repeat arrays from the same satellite family show varying degrees of similarity with each
other. For example, centromeres on chromosomes 13/21, 14/22 and 1/5/19 have near-identical HORs
that have confounded studies in the past (26, 36–38). The completeness and quality of the
T2T-CHM13 assemblies allowed us to successfully assign each of these active arrays to a specific
chromosome, which we validated using flow-sorted chromosome libraries for the cen 1/5/19 arrays,
and to discern their evolutionary history ((44), fig. S4). To provide a genome-wide view of the overall
sequence similarity between different αSat arrays, we obtained the full set of 75-mer sequences
within each array and searched for exact matches to the rest of the genome (Fig. 1D), readily
identifying the hierarchical evolutionary relationships between subsets of αSat arrays (which can be
organized into SFs and sub-SFs; (reviewed in (36)). Both HSat and βSat show evidence of
hierarchical subfamily organization with chromosome-specific features like those of αSat, however at
the resolution of shared 75-mers, their inter-array divergence is lower than for αSats overall (Fig.
1D-F).

Large structural rearrangements in peri/centromeric regions

These maps of peri/centromeric regions provide an opportunity to comprehensively examine the
large-scale organization of satellite DNAs and their embedded non-satellite sequences, including
transposable elements (TEs) and genes (Fig. 2 A-F). While divergent αSats are known to contain
many inversions (48) and TE insertions (49), such events within active HOR arrays are unexpected,
as they were considered to be homogeneous (30, 50). Quantifying strand inversions across entire
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satellite arrays (Fig. 2A,B,F, fig. S1, table S5, database S4,5) revealed unexpected anomalies, such
as a 1.7 Mb inversion inside the active αSat HOR array on chr1 (Fig. 2A), along with inversions in
inactive HORs on chromosomes 3, 16, and 20 (Fig. 2B and fig. S1,5). Surprisingly, the large
pericentromeric HSat3 array on chr9 and the βSat arrays on chr1 and the acrocentrics contain over
200 inversion breakpoints (Fig. 2A and fig. S5).

Apart from inversions, two multi-megabase HSat1A arrays appear to have been inserted and
expanded within the active HOR arrays of chromosomes 3 and 4 (Fig. 2B; Fig. 1C, table S6). We also
found evidence for an ancient duplication event that predated African ape divergence and involved a
large segment of the ancient chr6 centromere plus about 1 Mb of adjacent p-arm sequence ((44),
database S6). This duplication created a new centromere locus that hosts the current active cen6
HOR array.

Using previously developed standards (10), we also assigned HSat2 and HSat3 arrays into their
respective sequence subfamilies (Fig. 2A-C) and found the chromosomal localizations of these
subfamilies to be largely concordant with previous predictions (10). However, we identified a 280 kb
HSat3 array on chr17 that belongs to subfamily B1 (Fig. 2C), which had not previously been localized
to a particular chromosome (10). While we found novel chromosomal localizations of several
additional HSat3 subfamilies (Fig. 2E), we also noticed a conspicuous lack of HSat3 subfamily B2
(HSat3B2) on chr1, contrary to expectations based on different cell lines (10), implying a large
deletion of this subfamily on chr1 in CHM13.

To better understand if these structural rearrangements are common outside of the CHM13 genome,
we searched for evidence of these insertion/inversion/deletion breakpoints across 16
haplotype-resolved draft diploid assemblies from genetically diverse individuals from the Human
Pangenome Reference Consortium (HPRC) (51) ((44)). We found that the chr1 active HOR inversion
is polymorphic across individuals, evident in about half of ascertainable haplotypes (11/24; fig. S6).
However, the HSat1A insertions on chr3 and chr4 were evident in all ascertainable haplotypes (32/32
and 33/33, respectively; fig. S7). Furthermore, CHM13’s missing chr1 HSat3B2 array is, in fact,
contained within a 400 kb polymorphic deletion, which we detected in 29% (8/28) of haplotypes
examined (Fig. 2A, fig. S7). These analyses demonstrate the utility of a complete reference sequence
for investigating the organization and variation of these formerly missing regions of the human
genome assembly.

Transposable elements and genes in peri/centromeric regions

Like inversions and insertions, transposable elements (TEs) are virtually absent from homogeneous
HOR arrays but are enriched in divergent αSat in CHM13 (Fig. 2F, database S7) (49, 52). The
CHM13 assembly also revealed regions where combinations of TE sequences have been tandemly
duplicated, forming previously uncharacterized satellite sequences which we refer to as “composite
satellites” (described in (42)). Consistent with individual published observations (38, 40, 53), we also
found that other satellites, such as HSat1, HSat3, and βSat, often include fragments of ancient TEs
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as part of their repeating units—a phenomenon we rarely observe in αSat HOR arrays (Fig. 2A,F, fig.
S8).

We also compared our pericentromeric maps to gene annotations reported for T2T-CHM13, revealing
676 gene/pseudogene annotations embedded between large satellite arrays, including 23 protein
coding genes and 141 lncRNAs (when excluding the acrocentric short arms; table S7 and database
S8; (2)). One region on chr17, located between the large HSat3 and αSat arrays (Fig. 2D), contains
two protein-coding genes: KCNJ17, which encodes a disease-associated potassium channel in
muscle cells (54); and UBBP4, which encodes a functional ubiquitin variant that may play a role in
regulating nuclear lamins (55). Notably, KCNJ17 is missing from GRCh38, which likely has caused
inaccurate and missed variant calls in homologous genes KCNJ12 and KCNJ18 (56). This region also
contains a long non-coding RNA annotation (LINC02002), which starts inside an SST1 element and
continues into an adjacent 33 kb array of divergent αSat (Fig. 2D). We also identified a processed
paralog of an apoptosis-related protein-coding gene, BCLAF1 (BCL2 Associated Transcription Factor
1), as part of a segmental duplication embedded within an inactive HOR array on chr16 (fig. S9).

The fine repeat structure of satellite DNA arrays

To further chart the structure of peri/centromeric regions at high resolution, we compared individual
repeat units within and between different satellite arrays. We decomposed each αSat HOR array first
into individual monomers and then into entire HORs, revealing the positions of full-size canonical
HORs and structural variant HORs resulting from insertions or deletions ((44), database S9). While
some chromosomes, such as chr7, are composed almost entirely of canonical HOR units, other
chromosomes, such as chr10, contain many structural variant HOR types, with high variation in the
relative frequency of these variants across individuals (Fig. 3A and fig. S10).

Unlike αSat, some families like HSat2 and HSat3 have inconsistent or unknown repeat unit lengths
and often contain an irregular hierarchy of smaller repeating units. We propose calling these repeat
units nested tandem repeats (NTRs), a more general term than HORs, which are composed of
discrete numbers of monomers of similar lengths. To expand our ability to annotate repeat structure
within assembled satellite DNA arrays, we developed NTRprism, an algorithm to discover and
visualize satellite repeat periodicity (Fig. 3B and fig. S11). Using this tool, we discovered HORs in
HSat1 and βSat arrays, as well as NTRs in multiple HSat2,3 arrays (Fig. 3B and fig. S11). We also
applied this tool in smaller windows across individual arrays, showing that repeat periodicity can vary
across an array, consistent with NTRs evolving and expanding hyper-locally in some cases (fig. S11).

Genome-wide evidence of layered expansions in centromeric arrays

Previous studies have hypothesized a “layered expansion model” for centromeric αSat arrays based
on limited available sequence information (reviewed in (36)). This model postulates that distinct new
repeats periodically emerge and expand within an active array, displacing the older repeats sideways
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and becoming the new site of kinetochore assembly. As this process repeats itself over time, the
displaced sequences form distinct layers flanking the active centromere with mirror symmetry (Fig.
3C). These defunct flanks rapidly shrink and accumulate mutations, inversions, TE insertions, and
other satellite expansions (16, 32, 46). Efforts to document this layered expansion pattern have
focused on divergent αSats that surround HOR arrays (32). Here, we studied active αSat arrays in
their entirety along with adjacent diverged αSat, providing detailed, genome-wide evidence in support
of this model (44).

First, in agreement with prior studies, we observed a symmetrical flanking arrangement of two types
of divergent αSat: divergent HORs (dHORs) (database S10), and monomeric αSats (table S8), which
represent ancient, decayed centromeres of primate ancestors (32). We classified divergent αSat into
distinct SFs and dHOR families, and demonstrated how these sequences accumulate mutations,
inversions, TE insertions, and non-αSat satellite expansions over time (Fig. 3C, table S5,6,9,
databases S4,5,7). In agreement with previous studies (16, 32, 46), we show gradients of size and
intra-array divergence (17 to 26%) in monomeric αSat layers, a steep (~10%) divergence increase
between HORs and dHORs, and a gradient of L1 element quantity and age which parallels the age of
monomeric layers (Fig. 2F, Fig. 3C, table S9, database S7).

We next asked if the layered expansion pattern overlaps the active arrays themselves. As shown in
Fig. 3D, the sequences seeding the expanding satellite array can be either introduced from within
(intra-array seeding) (32) or from an external HOR (or non-HOR) array (inter-array seeding) (57, 58).
In total, we document four cases of symmetry consistent with inter-array seeding (on chrs 1, 2, 16,
18; Fig. 3D) of which only one was known before (59). In some cases of the inter-array model, the
active HOR array originates from a different SF than the flanking inactive array (chrs 1 and 16) (Fig.
3D). This provides evidence of how entire arrays have been recently displaced in favor of an
externally introduced sequence.

Moreover, classification of HORs by their shared sequence variants revealed symmetry within active
HOR arrays. Such variants have been known for decades (30, 60, 61) and were noted in the
completely assembled centromeres from chromosomes X (62, 63) and 8 (16). In these studies the
central part of the active array was found to contain HOR variants slightly different from those on the
flanks. To test if this array structure is typical, we aligned individual HOR units within the same array
and clustered them into “HOR-haplotypes” or “HOR-haps” (44). Initial broad classifications of entire
arrays into 2-4 distinct HOR-haps revealed that active HOR arrays are also composed of distinct
layers, which typically expand from the middle (dark red versus grey, Fig. 3D). Further classification
into a larger number of HOR-haps (5-10) found additional evidence for symmetric patterns (see the
next section, Fig. 3E and (44)).

To examine whether the middle HOR-haps are the most recently evolved, we built phylogenetic trees
of consensus HOR-haps (Fig. 3E) and rooted them using reconstructed “ancestral” sequences built
from consensus monomers for each SF. We also performed complete phylogenetic analysis of all
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HORs. The identification of evolutionarily younger and older HOR-haps was supported by both
methods, as shown for chr3 (Fig. 3E). In addition, the intra-array divergence in central HOR-haps is
often slightly lower than in the flanking arrays, indicating that the central HOR-haps have expanded
more recently (Fig. 3E, materials and methods section 6). Together, these findings present
genome-wide evidence for a layered expansion pattern within active arrays.

Precise mapping of sites of kinetochore assembly

Human centromeres are defined epigenetically as the specific subregion bound by inner kinetochore
proteins within each active αSat HOR array (21, 64). Previous studies were able to broadly determine
which HOR arrays are associated with kinetochore proteins (65), and therefore active, but T2T
assemblies have now enabled us to map the precise positions of centromeres within active arrays
(16). Centromeres contain a combination of epigenetic marks distinguishing them from the
surrounding pericentromeric heterochromatin, including the presence of the histone variant CENP-A
(66, 67), “centrochromatin”-associated modifications to canonical histones (68), consistently high
CpG methylation compared to neighboring inactive arrays (69), and regions of reduced CpG
methylation called Centromere Dip Regions (CDRs) (15, 16, 69). To study HOR organization at sites
of kinetochore assembly, we identified discrete regions of CENP-A enrichment within each active
array using published native CHM13 ChIP-seq (NChIP) data (16) along with CUT&RUN (70) data
generated in this study ((44), table S10). To precisely map these short-read data, we developed a
repeat-sensitive alignment method using a collection of informative markers across each HOR array
(Fig. 4A). Consistent with previous studies, CENP-A binding is almost exclusively localized within
αSat HOR arrays, with one active array per chromosome (25) (table S4,11).

In agreement with previous studies on individual chromosomes (16, 69), we found the strongest
CENP-A enrichment near and within CDRs on all chromosomes. Notably, some chromosomes show
evidence for multiple CENP-A peaks within each CDR. These multiple peaks could represent
interspersed domains, variation in the organization of CENP-A nucleosomes across the two
homologous chromosomes, or polymorphic organization across the population of cells (69). We found
that the complete span of each centromere position, defined as a window with strong CENP-A
enrichment, extends outside of the CDR and totals 150-500 kb on each chromosome (Fig. 4B,C and
table S11). The lengths of these CENP-A windows bear no apparent relationship to the total length of
each HOR array (table S11), contrary to predictions from previous work (65). However, we note that
we cannot exclude the possibility that lower levels of CENP-A extend beyond these windows of
strong enrichment, or that the sizes of these windows vary among cells or cell types. We detected
smaller regions of CENP-A enrichment outside of the primary CDR, with some overlapping a minor,
secondary CDR (chromosome 4, 16, 22) or no CDR at all (chromosome 18) (Fig. 4C,D, fig. S12, table
S11). Furthermore, similar dips in CpG methylation, although infrequent, do occur outside of αSat and
CENP-A associated regions, as observed in a 5S RNA composite satellite array (42), and in two
regions (less than 10 kb) where CpG methylation drops below 25% within the active HOR arrays on
chromosomes 5 and 8 (fig. S12).
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We also found that CENP-A is typically enriched in young, recently expanded HOR-haplotypes within
active HOR arrays (except on chr6, described below, and chr21, which has a very small array
enriched across its full length; table S11, Fig. 4B-F). For example, in the active array on chromosome
12, we identified CENP-A enrichment on one of two large macro-repeat structures, both presenting
similar HOR-hap sequences (Fig. 4B and fig. S13). Further investigation into the region of CENP-A
enrichment on chr12 revealed a zone of very recent HOR expansions (i.e. eight sites of nearly
identical duplications within a ~365 kb region; (44); fig. S14) that coincides with the CDR and
distinguishes one macro-repeat region from the other (Fig. 4B,F).

On most other chromosomes, we observed similar zones of recently expanded, younger HOR-haps
that overlap CENP-A (8 more examples shown in Fig. 4C, table S11), although we identified a few
notable exceptions to this general trend. On chr4, which has two CENP-A regions occurring on either
side of a 1.7 Mb HSat1A array, we found that the larger CENP-A region spans a slightly younger
HOR-hap and the smaller CENP-A region spans an older HOR-hap (Fig. 4D,F). On chr7, CENPA
overlaps young HOR-haps, but these do not appear to have been recently duplicated (fig. S15).
Inversely, on chr2, CENPA overlaps older HOR-haps, but these do appear to have been recently
duplicated (fig. S15). On chr6, we observe CENP-A enrichment within an older HOR-hap layer, over a
megabase away from the site of recent duplications and expansions (Fig. 4E,F). In summary, we
observe that human centromeres and CDRs are typically, though not universally, positioned over
young and/or recently expanded layers within each HOR array in CHM13.

Genetic variation across human X centromeres

Satellite DNA arrays are highly variable in size across individuals. In fact, the extremes of satellite
size variation are often plainly visible under the microscope in chromosomal karyotypes (71, 72), yet
the clinical significance of these variants remains unknown and largely unexplored. Studies have
provided low-resolution sequencing-based evidence for variability in both satellite array lengths and in
the frequency of certain sequence and structural variants within human populations (10–12). This
suggests accelerated sequence evolution in these regions compared to the rest of the genome.
However, satellite array variation and evolution have remained poorly understood at base-level
resolution due to the lack of complete centromere assemblies.

Therefore, we characterized and compared centromere array assemblies from chrX across seven XY
individuals with diverse genetic ancestry (lymphoblastoid cell lines from (73), Fig. 5A, fig. S16, table
S12). We assigned repeats in the cenX active array to seven HOR-haps, revealing both localized and
broad variation within each array (44). For example, we identified duplications spanning hundreds of
kilobases in two assemblies relative to CHM13 (HG01109 and HG03492, Fig. 5A, fig. S17). Four of
the seven arrays contain zones of recent expansion in the younger HOR-hap (CHM13, HG01109,
HG02145, HG03098). The remaining three assemblies (HG03492, HG01243, HG02055) show a
trend of recent duplication within a shared region closer to the p-arm (spanning different subsets of
more divergent and less derived older HOR-haps). Notably, we found evidence for a recently
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expanded HOR-hap type (HOR-hap 6) present in three individuals with recent African ancestry but
absent in the other individuals, including CHM13 (Fig. 5A, dark red).

Next, we studied how this variation within αSats relates to variation across single-nucleotide markers
that tend to be co-inherited with the centromere. Because meiotic crossover rates are low in
peri/centromeric regions (74), centromeres are embedded in long haplotypes, called cenhaps (Fig 5B;
(75)). Cenhaps are identified by clustering pericentromeric single-nucleotide variants into
phylogenetic trees, and then splitting them into large clades of shared descent. Here, we divided a
group of 1599 XY individuals genotyped using published short-read sequencing data (76) into 12
cenhaps (with 98 individuals remaining unclassified; Fig. 5C, fig. S18 and database S11). We also
defined array-specific and HOR-hap-specific k-mer markers in order to utilize short-read sequencing
data to estimate the absolute size of each individual’s chrX centromere array (fig. S19, database S11,
(11, 75)), along with the relative proportion of that individual’s array belonging to each HOR-hap (44).
The results revealed that different cenhaps have different αSat array size distributions as well as
different average HOR-hap compositions (Fig. 5C and fig. S18). For example, HOR arrays belonging
to cenhaps 1 and 2 tend to be larger overall than those belonging to cenhaps 3-12. We found a
recent duplication in the chrX HOR array, representing hundreds of kilobases, that is common in
cenhap 1 and can explain the relatively larger average HOR array sizes in this cenhap (Fig. 5C).

As shown in Fig. 5D, two of the 12 cenhaps, 1 and 2, are very common in non-African populations
(overall, 49% and 47%, respectively) and rare in African populations (1.7% and 3.5%, respectively).
The remaining 10 cenhaps are almost exclusive to African populations as well as those with recent
African admixture (ASW, PUR, CLM, ACB). The relatively low cenhap diversity in non-African
populations is consistent with their lower overall genetic diversity, attributable to demographic
bottlenecks during early human migrations out of Africa (73). This analysis also revealed that
HOR-hap 6 (shown for three individuals in Fig. 5A) appears to be almost exclusively found in cenhaps
10-12, which form an anciently diverged clade within African populations (Fig. 5C). These findings
demonstrate that centromere-linked SNVs can be used to tag and track the evolution of αSat, and
they underline the need for greater representation of African genomes in pan-genome assembly
efforts.

To explore the variation within one of the large cenhap groups (cenhap 2), we compared fine-scale
cenhap phylogenies and HOR-hap assignments across 558 individual X chromosomes, revealing a
degree of further substructure and variation in the αSat array on a more recent evolutionary timescale
(Fig. 5E). To dissect this further, we compared two finished centromere assemblies from CHM13 and
HG002, a cell line whose chrX array had been constructed using T2T assembly methods, and whose
array structure had been experimentally validated by both pulse-field gel electrophoresis Southern
blots and by digital droplet PCR (2). CHM13 and HG002 have similar array sizes and both belong to
cenhap 2 (Fig. 5E). We found both genomes to be highly concordant across the array, apart from
three regions, where we observe recent amplifications and/or deletions of repeats (Fig. 5F, fig. S20).

Epigenetic variation across human X centromeres
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To examine how centromere positioning varies among individuals at high resolution, we compared
patterns of CENP-A CUT&RUN enrichment on the fully assembled chrX centromeres from HG002
and CHM13 (69). Notably, the region with the most pronounced structural differences between
CHM13 and HG002 coincides with the strongest CENP-A enrichment in both arrays. Therefore, even
though inner kinetochore proteins are present in both arrays over CDRs and young HOR-haps, the
HOR sequences enriched with CENP-A represent local duplication events that are not shared and
distinguish the two arrays (marked in yellow, Fig. 5G and fig. S20).

Finally, we asked if CENP-A enrichment patterns were consistently found in the younger HOR-haps,
as observed in CHM13 and HG002, across 7 additional cell lines with publicly available CENP-A
ChIP-seq and CUT&RUN datasets (fig. S21). Using the T2T-CHM13 X array as a reference, we
determined CENP-A enrichment for each cenX HOR-hap relative to the matched input DNA. Unlike
CHM13, in three XY individuals we observed CENP-A enrichment within the older HOR-hap
subregion, proximal to the p-arm, indicating the presence of an epiallele (as shown for HuRef (77) in
Fig. 5H, and for HT1080b (78) and MS4221 (79) in fig. S21). Further, we examined two independent
CUT&RUN experiments from the RPE-1 cell line (XX) (80) and found enrichment on both older and
younger HOR-haps, which could be explained if the two chrX homologs carry different functional
epialleles. Three additional XX cell lines (IMS13q, PDNC4, K562 (81)) were consistent with CHM13,
providing evidence that the same CENP-A-enriched HOR-hap is shared across both chrX homologs
in each line. In total, these findings uncover frequent variation in the position of the chrX centromere,
with some XX individuals potentially harboring heterozygous epialleles. Further, these observations
highlight the need to study both epigenetic and genetic variation in centromeric regions, across both
related and unrelated individuals and across populations of cells over time, to better define the trends
and exceptions regarding centromeric epiallele positioning and inheritance.

Discussion

Here we provide detailed maps of previously unassembled centromeric and pericentromeric regions
to facilitate further analysis of these relatively unexplored loci in the human genome. Using this
resource, we characterized satellite array variation, uncovering a 400 kb polymorphic deletion of an
entire HSat3 array and a 1.7 Mb polymorphic inversion in an active HOR array, both on chr1, along
with an expansion of a particular αSat HOR-haplotype on chrX in individuals with recent African
ancestry. The high degree of polymorphism in these regions, even within a single cenhap (Fig. 5E),
underlines the need to produce T2T assemblies from many diverse individuals, to fully capture the
extent of human variation in these regions and to shed light on their recent evolution and the
functional consequences of this evolution. Achieving this goal requires an ability to produce accurate,
complete, phased assemblies from diploid individuals. Centromeric regions have presented a
challenge for phased assembly due to their repetitive nature, but their high degree of variation may
assist these efforts. Now, equipped with the T2T-CHM13 assembly and the ability to compare
challenging repetitive regions in the genome, we are optimistic that future high-quality, phased,
diploid, T2T assemblies are within reach. Apart from genetic variation in these regions, we identified
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epigenetic variation in the location of CENP-A within an array, as has been observed on other
chromosomes (82–85). We acknowledge the need to study centromeric protein localization at fine
scales across many individuals to better understand centromeric establishment and propagation, and
how this relates to the underlying genetic variation found within each array.

In light of our observation that CENP-A tends to localize to the most recently expanded HORs
genome-wide, many questions remain about the evolutionary and molecular mechanisms responsible
for the relationship between the kinetochore and the layered expansion patterns of αSat. One
possibility, which we call the “independent expansion hypothesis,” is that αSat expansions occur
independently of the kinetochore yet somehow attract it by virtue of their homogeneity or some other
property. Kinetochore-independent expansion is feasible in light of the fact that we observe large
duplications and localized repeat expansions in non-centromeric satellites like HSat3 arrays, which
are not associated with kinetochores (fig. S11). Another possibility is what we refer to as the
“kinetochore selection hypothesis,” in which kinetochore proteins, or their associated loading and/or
replication factors, play a causal role in the expansion of particular HOR variants (36, 86). This aligns
with the proposed recombination-based homogenization process in Arabidopsis (87), that is
hypothesized to maintain a satellite consensus optimal for kinetochore recruitment. Further,
experiments in model organisms have demonstrated that extreme array sequence variants increase
meiotic and mitotic nondisjunction rates and can promote both mutational drive and/or (female)
meiotic drive (20, 88–90). Similar drive mechanisms, along with selection for variants that promote
high-fidelity chromosome transmission, may also play a role in shaping centromeric sequence
diversity in the human population.

Exploring these models will require careful experimental systems and methods for precisely
measuring interactions between kinetochore proteins and repetitive DNA, as well as measuring how
these interactions affect the fidelity of chromosome transmission. While the short-read mapping
methods that we developed enable the use of existing protocols like NChIP (91) and CUT&RUN (70)
to provide sensitive protein-DNA interaction information at broad scales within satellite arrays, new
long-read methods for mapping protein-DNA interactions will be essential for providing high-resolution
binding footprint information, including in regions that lack single-copy or region-specific markers (92).
Furthermore, forthcoming pan-genome and pan-epigenome references promise to make human
peri/centromeric regions even more accessible for careful study using modern genomic tools.

Figure Captions

Fig. 1. Overview of all peri/centromeric regions in CHM13. (A) Schematic of a generalized human peri/centromeric
region identifying major sequence components (not to scale) and their canonical repeat structure, repeat unit length (note:
HSat2,3 lengths vary by genomic region), and GC%. (B) Barplots of the total lengths of each major satellite family
genome-wide. (C) Micrographs of representative DAPI-stained chromosomes from CHM13 metaphase spreads, next to a
color-coded map of peri/centromeric satellite DNA arrays (available as a browser track, database S1). Large satellite
arrays are labeled. (D-F) Circos plots showing genome-wide relationships in sequence content for 3 different satellite
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families. Connecting line widths indicate the proportion of 75-mers that are shared between arrays. αSat lines are colored
by their SF assignment. Radial barplots indicate specificity of 75-mers proportionally, with white indicating 75-mers unique
to the array, light gray indicating 75-mers shared with other centromeric regions, and black indicating 75-mers shared with
regions outside of centromeres.

Fig. 2. Discoveries in three peri/centromeric regions. (A) The peri/centromeric region of chr1 (cylindrical schematic at
top), zooming into the transition region between the large αSat and HSat2 arrays (tracks 1-4). Track 1: satellite families
(see color key); placement above or below the line indicates which strand contains the canonical polarity for each satellite
family. Track 2: positions of TEs overlapping αSat or HSat1,2,3, colored by TE type. Track 3: transcription start sites of
pericentromeric gene annotations, colored by gene type. Track 4: HSat2,3 subfamily assignments (as in (10)), and αSat
SF assignments, with large arrays labeled. (B) As in (A) but for the peri/centromeric region of chr3. (C) As in (A) but for
the peri/centromeric region of chr17, with the newly localized HSat3B1 array indicated with an asterisk. (D) Zoomed-in
view of gene annotations between the αSat and HSat3 arrays on chr17. (E) Heatmap showing the major and minor
localizations of each αSat HOR SF (upper, red) and each HSat2,3 subfamily (lower, blue). Novel localizations relative to
(10) are indicated with the letter N. The polymorphic chr1 HSat3B2 array shown in (A) is marked with a ‘-’. Note: HSat3A3
and 3A6 are almost entirely found on chrY, which is not present in CHM13. (F) Barplots illustrating the number of inversion
breakpoints (strand switches) or the number and type of TEs detected per megabase within different satellite families
genome-wide. “div” = divergent αSat (dHORs + monomeric).

Fig. 3. Genome-wide evidence of layered expansions in centromeric arrays. (A) Left: HOR structural variant
positions across the active αSat arrays on chr7 and chr10 (gray=canonical HORs; other colors=variants). Right:
proportions of the same structural variant types among HORs identified on HiFi sequencing reads from 16 HPRC cell
lines. (B) Illustration of NTRprism used to identify tandem repeat periodicities, with results for 3 arrays below. (C)
Comparison of the age and divergence of LINE TEs embedded in different αSat SF layers. (D) Centromere displacement
modes supported by T2T-CHM13. (i) Four centromeres where an active HOR array of distinct origin appears to have
expanded within a now-inactive HOR array. (ii-iii) Monomeric SFs (rainbow colors) surrounding active HOR arrays on 8
chrs, with major HOR-haps shown within each array (k=2 clusters; red: younger, emphasized below with red rectangles;
gray: older, emphasized below with asterisks). (E) Zoomed-in view of major αSat HOR arrays on chr3, divided into finer
HOR-haps (k=7 clusters) showing further symmetry. Bottom left: radial tree showing the phylogenetic relationships
between all HORs, colored by fine (k=7) HOR-hap assignments as in the track above. Red/gray ellipses indicate major
(k=2) HOR-hap assignments of each subclade. Bottom right: phylogenetic tree built from HOR-hap consensus sequences,
rooted with a reconstructed ancestral cen3 active HOR sequence (ANC) (44). Branch lengths represent base substitutions
per position.

Fig. 4. Kinetochore proteins tend to bind recently expanded centromeric subregions. (A) Two approaches to define
NChIP/CUT&RUN enrichment in centromeric regions. (B) Active αSat HOR array on chr12 (coordinates at top). Track 1:
CENP-A NChIP marker-assisted mapping coverage. Track 2: reference-free region-specific marker enrichment (bins with
no region-specific markers are shown in black). Track 3: percent of CpG sites methylated. Tracks 4/5: HOR-haps (k=5 or
2 clusters, respectively). Track 6: number of identical copies of each HOR unit occurring within the adjacent 10 HOR units.
Bottom: self-alignment dotplot (exact-match word size 2000), with arrows pointing to a zone of recent duplication. Small
inset on left: smaller dotplot of the entire array (word size 500, allowing for detection of older duplications), with positions
of two large macro-repeats indicated with blue lines. (C) As in (B) but for 8 different centromeres, with the full span of
CENP-A enrichment framed by black windows. (D) As in (B) for chr4, with an inset highlighting a secondary CENP-A
enrichment site and minor CDR on the other side of the interrupting HSat1 array. (E) As in (B) for chr6, with CENP-A
enrichment over an older HOR-hap region. (F) HOR-hap consensus trees as in Fig. 3E, with the location of the CENP-A
enriched region(s) indicated with arrows.

Fig. 5. Evidence for substantial genetic and epigenetic variation in a human centromere. (A) Comparing the active
αSat HOR array on chrX (DXZ1) between CHM13 (top) and 6 HPRC cell line HiFi read assemblies. Tracks indicate
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HOR-haps (top: k=7; bottom: k=2) and recent HOR duplication events (bottom, as in Fig. 4B). (B) Low recombination rate
around centromeres produces large, centromere-spanning haplotypes with many linked single-nucleotide variants (SNVs)
flanking the centromere. (C) Left: tree illustrating the relationships of 12 cenhaps defined using short-read data from 1599
XY genomes from (73, 76) plus HG002, CHM13, and HuRef. Triangle vertical length is proportional to the number of
individuals in that cenhap (note: 98 individuals, labelled NA and colored dark gray, belong to small clades not among the
12 major cenhaps). Middle: barplots illustrating the average HOR-hap compositions for all individuals within each cenhap,
colored as in (A). Right: ridgeline plots indicating the distribution of estimated total array sizes for all individuals within
each cenhap, with individual values represented as jittered points. (D) Populations represented among the 1599 XY
genomes, with pie charts indicating the proportion of cenhap assignments within each population, with the same colors as
in (C). Population descriptions are in (44). (E) A detailed tree showing the relationships of all cenhap 2 individuals inferred
from their SNV data, along with each individual’s superpopulation (AFR: African, AMR: American, EAS: East Asian, EUR:
European, SAS: South Asian) and their HOR-hap barplot as in (C). (F) Comparison of the DXZ1 assembly for CHM13 and
HG002, which are both in cenhap 2. Tracks are as in (A), with the addition of gray shading to the top track to indicate
regions that align closely between the two individuals, and yellow bars indicating regions of increased divergence between
the two individuals. Vertical dotted line indicates the homologous site of a CHM13 expansion on the HG002 array. Bottom:
Dotplots representing the percent identity of self-alignments within the array, with a color-key and histogram below. (G)
Left: a zoom-in of the CHM13 kinetochore region with a self-alignment dotplot (exact match word size 2000) revealing
patterns of recent nested duplication. Right: a model for the recent evolution in this region. (H) Left: comparison of
CENP-A NChIP enrichment from CHM13 and HuRef cell lines in DXZ1 HOR-haps, colored as in (A), for 2 replicates
(gray/black). Right: comparison of HOR-hap assignments from input controls. Bottom: asterisks highlighting the CENP-A
enriched regions from HuRef and CHM13, with respect to the CHM13 array.
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samples. (https://github.com/human-pangenomics/hpgp-data).

Data tracks and satellite annotations can be visualized on the UCSC Genome Browser (93, 94):
http://genome.ucsc.edu/cgi-bin/hgTracks?genome=t2t-chm13-v1.0&hubUrl=http://t2t.gi.ucsc.edu/chm13/hub/h
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Annotation data tables and other supporting data and analysis workflows: https://github.com/kmiga/t2t_censat/
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