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ABSTRACT: 21 

The retrofit of wood-frame residential buildings is a relatively effective strategy to mitigate 22 

damage caused by windstorms. However, little is known about the effect of modifying building 23 

performance for intense events such as a tornado, and the subsequent social and economic impacts 24 

that result at the community level following an event. This paper presents a method that enables a 25 

community to select residential building performance levels representative of either retrofitting or 26 

adopting a new design code that computes target community metrics for the effects on the economy 27 

and population. Although not a full risk analysis, a series of generic tornado scenarios for different 28 

Enhanced Fujita (EF) ratings are simulated, and five resilience metrics are assigned to represent 29 

community goals based on economic and population stability. To accomplish this, the functionality 30 
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of the buildings following the simulated tornado is used as input to a computable general 31 

equilibrium (CGE) economics model that predicts household income, employment, and domestic 32 

supply at the community level. Population dislocation as a function of building damage and 33 

detailed socio-demographic U.S. census-based data is also predicted and serves as a core 34 

community resilience metric. Finally, this proposed methodology demonstrates how the metrics 35 

can help meet community-level resilience objectives for decision support, based on a level of 36 

design code improvement or retrofit level. The method is demonstrated for Joplin, MO. All 37 

analyses and data have been developed and made available on the open-source IN-CORE modeling 38 

environment. The proposed multi-disciplinary methodology requires continued research to 39 

characterize the uncertainty in the decision support results. 40 
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 44 

INTRODUCTION 45 

The performance of civil infrastructure systems supports community resilience but has been 46 

primarily controlled by probability-based limit states design over the last several decades (e.g., 47 

ASCE 7-16). In 2015, the U.S. National Institute of Standards and Technology (NIST) proposed 48 

a general framework to help communities develop resilience plans for building clusters (a group 49 

of buildings that support a community function such as education) and infrastructure associated 50 

with social and economic systems (NIST 2015). Since then, an increasing number of researchers 51 

have focused on physical infrastructure systems and related distributed networks to quantitatively 52 

assess community-level resilience with multi-disciplinary measurements (e.g., Doorn et al. 2019, 53 
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Wei et al. 2020, Wang et al. 2021, Roohi et al. 2020). According to McAllister (2016), engineering 54 

outcomes can be quantitatively coupled with socio-economic performance, providing more 55 

flexible and informative support for risk-informed decision-making with the public interest in 56 

mind. Advancements in community resilience modeling can help accelerate the development of 57 

building codes and standards to meet the requirements of community-wide resilience goals of the 58 

broader built environment at a higher level, consistent with performance objectives of individual 59 

buildings throughout their service lives (e.g., Ellingwood et al. 2017, Masoomi and van de Lindt 60 

2019). For example, in the United States, building codes and standards (e.g., ASCE 2016) have 61 

focused on life safety goals, but the role of the individual building performance in fulfilling 62 

community resilience goals is unknown (Ellingwood et al. 2017). In order to address this grand 63 

challenge over the next decade, there is a need to link resilience design objectives with individual 64 

building performance levels (Wang et al. 2018). Physical performance of buildings has been 65 

quantitatively linked to community-wide social and economic outcomes in only one study by 66 

Roohi et al. (2020), without focusing on achieving community-level goals. Therefore, in this paper 67 

a systematic community-level analysis of linked physical, social, and economic systems is 68 

proposed to de-aggregate performance targets of buildings to enable the community to achieve 69 

pre-defined socio-economic community-wide resilience goals. The performance targets can be 70 

expressed in terms of individual building fragilities to further guide the performance-based 71 

engineering design of structural components given specific design features.  72 

Community resilience goals mainly focus on robustness and rapidity (NIST 2015). The 73 

robustness goals emphasize improvements in the performance of building components, and the 74 

rapidity goals are devoted to allocating limited resources and creating organizational guidelines to 75 

ensure community recovery is implemented effectively and efficiently (Wang et al. 2018, Wang 76 
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and van de Lindt 2021). The NIST Community Resilience Planning Guide, the San Francisco 77 

Planning and Urban Research Association, and the Oregon Resilience Plan provided examples of 78 

specifying the desired time-to-recovery as performance goals for building clusters at different 79 

functional levels (NIST 2015, NIST 2020, OSSPAC 2013, Poland 2009). Schultz and Smith (2016) 80 

developed rapidity resilience objectives for housing, utility systems, and transportation 81 

individually when the community is exposed to flood events at different return periods. However, 82 

only a few studies focused on examining the achievement of robustness goals. Chang and 83 

Shinozuka (2004) set a reliability goal of 95% likelihood of being able to meet the objectives for 84 

water systems (e.g., major pump station loses function) in given seismic events. Kameshwar et al. 85 

(2019) estimated the likelihood of achieving robustness performance goals (i.e., the performance 86 

of infrastructure systems from 0% to 100%) for the coastal town of Seaside, Oregon, subjected to 87 

combined seismic and tsunami hazards. Wang et al. (2018) used the Direct Loss Ratio (DLR) and 88 

Un-Inhabitable Ratio (UIR) as the resilience goals for measuring the robustness of a residential 89 

building cluster under tornado hazards, with the damage values linked to direct loss and un-90 

inhabitability as defined from the HAZUS-MH MR4 technical manual for consistency.  91 

In order to measure socio-economic aspects of community resilience, researchers have 92 

proposed metrics that can be potentially considered as indicators of community resilience. 93 

Potential indicators of economic resilience include the unemployment rate, income equality (e.g., 94 

based on gender, race/ethnicity), and business diversity (e.g., ratio of large to small businesses). 95 

Social resilience metrics reflect individual human and social needs, which can be represented in 96 

population changes and the distribution of socio-demographic characteristics (e.g., age, race, 97 

education levels) over time (Burton 2015, Cutter et al. 2014), access to social services and 98 

networks, and quality of life assessments. Some metrics can reflect the multifaceted socio-99 
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economic indicators of resilience. For example, temporary and permanent population dislocation 100 

following a disaster is a complex social and economic process jointly impacted by the functionality 101 

loss of physical systems and the socio-demographic characteristics (Wang et al. 2018). The effects 102 

of population dislocation can ripple through the local economy, social institutions, and building 103 

inventory. For example, local businesses may lose both employees and customers, and therefore, 104 

decide to close permanently and relocate. As residents and businesses leave and relocate, tax 105 

revenue for local government shrinks, forcing layoffs that can induce more residents to leave 106 

(Mieler et al. 2015) as well as shrinking resources for restoring and maintaining physical 107 

infrastructure. 108 

In the present study, building functionality, employment, domestic supply, household income, 109 

and housing unit and population dislocation are used as physical and socio-economic resilience 110 

metrics in the context of a disaster. This is the first study in the literature where structural 111 

performance goals selected for buildings (or any physical system) are based on the ability to 112 

achieve both social and economic goals at the community scale. This is accomplished by chaining 113 

the performance of the built environment to a computable general equilibrium (CGE) model for 114 

economic metrics (i.e., household income, employment, domestic supply) and an existing 115 

population dislocation algorithm for sociological metrics (i.e., household/population dislocation), 116 

and ultimately determining the de-aggregated performance targets for individual buildings to meet 117 

a specified goal. The proposed methodology provides a structured but flexible approach to support 118 

resilience decision-making by helping stakeholders develop integrative implementation strategies 119 

to improve their resilience. Note that the proposed multi-disciplinary methodology builds on and 120 

integrates previous work (Wang et al. 2021), and continued research is needed to characterize 121 

uncertainty in the final decision support results. 122 
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DE-AGGREGATION OF COMMUNITY RESILIENCE GOALS 123 

Fig. 1A summarizes the methodology used in this study to develop individual residential building 124 

performance targets to achieve community-level resilience goals in terms of physical, social, and 125 

economic metrics. The approach starts by articulating community resilience goals such as less than 126 

an x% increase in unemployment immediately after an EF-3 tornado occurring anywhere in the 127 

community. The preliminary design for individual residential buildings shown in Fig. 1A refers to 128 

structural combinations such as roof covering and is controlled by fragility functions. Please refer 129 

to the section on Wind Design to Achieve Community Resilience for more details about the design. 130 

Fig. 1B depicts the sequencing of analyses for a given community and its physical, social, and 131 

economic attributes), damage and functionality models, computable general equilibrium economic 132 

model, and the population dislocation algorithm, which is introduced in later subsections of this 133 

paper, to evaluate the hazard impacts and support community resilience planning. The percentage 134 

of residential buildings that were assigned the specified retrofit were analyzed using values ranging 135 

from 0% to 100%, in intervals of 10%, for the community. The objective is to determine the 136 

percentage of buildings that should be retrofitted such that the community-wide building 137 

performance metrics and socio-economic metrics calculated in the resilience analysis meet the 138 

community resilience goals. Note that community resilience goals would typically be community 139 

defined and could be adjusted based on community-specific needs, but illustrative values are 140 

utilized in this study. 141 

Fig. 1A 142 

Fig. 1B. 143 
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Damage and functionality model 144 

Eq. (1) determines the building damage probability (Pdamage) using fragility functions for each 145 

building, which can be grouped by each building archetype, and have been fit to lognormal 146 

cumulative distribution functions (CDF) controlled by two parameters (median, λ, and standard 147 

deviation, ξ). The fragility functions (FrDS) represent the probability of exceeding damage state i 148 

(i.e., slight, moderate, extensive, complete) for each building as a function of the intensity measure 149 

(e.g., 3-s gust wind speed, spectral acceleration). For each Monte Carlo realization of a tornado 150 

event, a uniformly distributed random variable, Rj, between 0 and 1, is generated and compared to 151 

the building damage probabilities corresponding to the four damage states. As shown in Eq. (2), if 152 

the realization experiences the moderate damage state or greater, then the building is assumed to 153 

lose functionality in this study. The moderate damage state in tornado damage assessment means 154 

the building has moderate damage to window/doors and roof covering, but the building itself can 155 

be occupied and repaired (Memari et al. 2018).  For business, it would not be possible to have an 156 

operational business in the moderate damage state, thus the building would be deemed 157 

nonfunctional in the CGE analysis.  The building functionality status (𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗
𝑘𝑘 ) of Eq. (2) is either 158 

functional (1) or non-functional (0) for each realization. The index j is representative of each 159 

realization of the Monte Carlo simulation (j = 1 to N) for each building k. Subsequently, the 160 

building functionality probability (Pfun) can be approximated using Eq. (3).  161 

                                                     𝑃𝑃𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖
𝑘𝑘 = 𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝑖𝑖𝑘𝑘 (𝐼𝐼𝐼𝐼 = 𝑥𝑥)                                                         (1) 162 

                                                        𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗
𝑘𝑘 = �

1    𝑅𝑅𝑗𝑗 > 𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷2
0    𝑅𝑅𝑗𝑗 ≤ 𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷2

                                                        (2) 163 

                                                     𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘 ≈
𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓
𝑘𝑘

𝑁𝑁
=

∑ (𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗
𝑘𝑘 =1)𝑁𝑁

𝑗𝑗=1

𝑁𝑁
                                                      (3) 164 
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After the MCS building damage analysis, the results are passed to the CGE economic analysis, 165 

where the building is considered nonfunctional if the probability of being in or exceeding DS2 166 

(moderate damage) is greater than 0.5. The CGE is only run once after the structural analysis and 167 

this full sequence shown in Fig.1A is completed for each tornado scenario to develop a suite of 168 

scenarios.  169 

Computable general equilibrium (CGE) model 170 

The design or retrofit of infrastructure systems can be quantitively related to community-level 171 

economic resilience metrics through a dynamic economic impact model. In this study, the CGE 172 

model served as the economic impact model to quantitatively evaluate the varying impacts of 173 

natural disasters on the local economy. The section below provides a brief summary of the CGE 174 

model and its data. The implementation of the CGE model in this study is consistent with that of 175 

Wang et al. (2021); for further details on the CGE model, or its data and assumptions, please refer 176 

to Cutler et al. (2016) and Attary et al. (2020).   177 

CGE model description 178 

CGE models assume that firms maximize profits and households maximize welfare as a guide to 179 

making economic decisions. CGE models are data driven models that provide descriptions of how 180 

households, firms, and the local government interact to produce goods and services for an 181 

economy. In recent years, CGE models have become a particularly effective tool when applied to 182 

regional impact analysis of external shocks that are assimilated from other fields (e.g., Rose and 183 

Guha 2004, Rose and Liao 2005, Cutler et al. 2016, Attary et al. 2020). As such, financial shocks, 184 

health consequences of pollution, climate change, and, as this study conveys, natural hazards, can 185 

all be linked with a CGE model to simulate economic outcomes. Prior to the extensive use of CGE 186 

models, Input-Output (I-O) economic models were commonly used to model the impact of natural 187 
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hazards (e.g., Rose and Liao 2005). While I-O models adequately simulate demand-side shocks 188 

they have been limited in their ability to determine impacts to the supply-side such as the loss of 189 

buildings and lifeline systems (Koliou et al. 2020). Since the CGE model can address both demand 190 

and supply side factors, it is the tool of choice to examine the impact of natural disasters.  191 

A social accounting matrix (SAM) organizes data for three entities, households, firms, and the 192 

local government, that represent the flow of resources in an economy at a point in time. A SAM is 193 

a method to organize the data in a consistent way for modeling the interactions between all three 194 

entities. The SAM, along with input from other matrices, such as tax revenue, are input data to the 195 

CGE model. See Schwarm and Cutler (2003) for an extensive description of a SAM. The SAM 196 

used in this study is based on data from the Bureau of Labor Statistics, Bureau of Economic 197 

Analysis, and the U.S. Census Bureau. In addition, county tax assessor’s data is used to obtain 198 

parcel-level physical characteristics of residential homes and business buildings. The buildings 199 

from this data set are merged with building specific archetypes to summarize the impact of a 200 

tornado on the functionality of these buildings.     201 

CGE models are based on a range of fundamental microeconomic principles that include (1) 202 

utility-maximizing households that supply labor and capital, and use the proceeds to pay for goods 203 

and services and taxes; (2) the production sector is based on perfectly competitive firms that choose 204 

profit-maximizing amounts of intermediate inputs, capital, land, and labor to produce goods and 205 

services for both domestic consumption and export; (3) the government sector collects taxes and 206 

uses tax revenues in order to finance the provision of public services; and (4) local economy trades 207 

with the rest of the world. These principles help to formulate the CGE model, which consists of a 208 

series of equations and is calibrated when those equations exactly reproduce the data in the SAM. 209 
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The CGE model can then be used to simulate the outcomes from a wide range of exogenous shocks 210 

such as from a tornado. 211 

Linking the building functionality model and the CGE model 212 

   Capital stock within a community is the key variable of interest linking the functionality model 213 

to the CGE model. The market values of commercial and residential buildings were aggregated 214 

into a Goods, Trade, and Other commercial sectors, and three housing services sectors (HS1, HS2, 215 

HS3). The Goods, Trade, and Other are themselves aggregations of the NAICS (North American 216 

Industry Classification System) sectors. Goods represent large manufacturing industries, Trade is 217 

mostly retail, and Other is a combination of industries including services, health and finance. This 218 

study focuses on residential buildings, where HS1 is lower-value homes, HS2 is higher-value 219 

homes, and HS3 is rented residential buildings.  220 

Tornado damage to buildings, and their reduced functionality, is modeled as negative “shocks” 221 

in the CGE model. These shocks are the connection point between engineering outputs and the 222 

CGE model. Eq. (4) calculates the sector shocks (γs) as a percentage of capital stock remaining, 223 

where C represents the capital stock of each building k attributed to each sector s. 224 

                                                                𝛾𝛾𝑠𝑠 =
∑ 𝐶𝐶𝑠𝑠𝑘𝑘×𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓,𝑠𝑠

𝑘𝑘𝑓𝑓
𝑘𝑘=1

∑ 𝐶𝐶𝑠𝑠𝑘𝑘𝑓𝑓
𝑘𝑘=1

                                                            (4) 225 

Incorporating the output from the engineering models into external shocks enables the CGE 226 

model to estimate a range of post-hazard economic losses such as employment effects and 227 

domestic supply by sectors (Cutler et al. 2016). Furthermore, retrofit strategies that mitigate 228 

damage to residential properties will attenuate the shock to capital stock in the housing services 229 

sector and thus tend to reduce overall economic loss. 230 
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Population dislocation algorithm 231 

The population dislocation algorithm, which has input from the building damage analysis, and 232 

detailed socio-demographic data, predicts the probability of dislocation immediately following the 233 

event (Girard and Peacock 1997, Peacock et al. 1997, Rosenheim et al. 2019). Eq. (5) uses a 234 

logistic regression model with five constants, c1 to c5, to estimate population dislocation 235 

probabilities (Pdis) for each damage state i based on property value loss (ploss) and building types 236 

(single-family or multi-family, dsf) for each building, k, and neighborhood characteristics (percent 237 

of black, pblack, and Hispanic populations, phisp) by each census group, m. The variable dsf is set 238 

to 1 if the number of estimated housing units was 1. The variable is 0 if the number of estimated 239 

housing units is greater than 1. The logistic regression constants were not changed for this specific 240 

community, but the variables such as the percent of the black and Hispanic population were 241 

updated based on the Census Bureau’s data. Eq. (6) sums the dislocation probabilities for each 242 

damage state (𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,𝑖𝑖,𝐷𝐷
𝑘𝑘 ). Damage state 1 (slight or no damage) is evaluated separately from damage 243 

states 2 to 4, consistent with the building functionality evaluations, to determine the dislocation 244 

probability of each building k in each census group m (𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,m
𝑘𝑘 ). For each Monte Carlo realization, 245 

the population dislocation algorithm can help predict whether the households leave their housing 246 

unit immediately after a hazard event. For more details on the population dislocation algorithm 247 

and the logistic regression model, please see Rosenheim et al. (2019) and Lin et al. (2008). 248 

                                          𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,𝑖𝑖,𝐷𝐷
𝑘𝑘 = 1

1+𝐷𝐷−(𝑐𝑐1+𝑐𝑐2𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑖𝑖,𝑚𝑚
𝑘𝑘 +𝑐𝑐3𝑑𝑑𝑠𝑠𝑓𝑓𝑚𝑚

𝑘𝑘 +𝑐𝑐4𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑘𝑘𝑚𝑚+𝑐𝑐5𝑝𝑝ℎ𝑖𝑖𝑠𝑠𝑝𝑝𝑚𝑚)
                          (5)             249 

                                   𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,𝐷𝐷
𝑘𝑘 = 𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,1,𝐷𝐷

𝑘𝑘 × 𝑃𝑃𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,1
𝑘𝑘 + ∑ 𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,𝑖𝑖,𝐷𝐷

𝑘𝑘 × (4
𝑖𝑖=2 𝑃𝑃𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖

𝑘𝑘 − 𝑃𝑃𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑖𝑖−1
𝑘𝑘 )            (6) 250 
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ILLUSTRATIVE EXAMPLE FOR TORNADO HAZARDS 251 

In this study simulated tornado wind fields defined as a peak three-second gust were used. Joplin 252 

was selected as the testbed to perform resilience assessments for tornado-induced events due to its 253 

history with a large double vortex Enhanced Fujita 5 (EF5) tornado in May of 2011. The purpose 254 

of the illustrative example was to determine the minimum percentage of wood-frame residential 255 

buildings that need to be retrofitted for the community to meet their resilience goals. These 256 

community-level resilience goals were defined in terms of building functionality, social, and 257 

economic metrics, using the proposed methodology. All analyses and data were performed and are 258 

available in the open-source IN-CORE modeling environment 259 

(https://incore.ncsa.illinois.edu/doc/incore/notebooks/Joplin_testbed). Please refer to Wang et al. 260 

(2020) for more details regarding the manual, datasets, and example notebooks for the IN-CORE 261 

modeling environment and visit http://resilience.colostate.edu/in_core/. Note that this example 262 

focuses on the resilience assessment at the community level specific to tornado events since 263 

tornadoes only strike a small footprint area within a community. The resilience model and the 264 

retrofit can be applied to a large urban area for other natural hazards such as earthquake events 265 

(e.g., Roohi et al. 2020). 266 

Community description 267 

Joplin is a typical small to medium size community, located in southwest Missouri in the United 268 

States and spanning Jasper and Newton counties. In this illustrative example, a total of 19 269 

archetype buildings (e.g., residential, business, healthcare, education) were used to represent the 270 

buildings within the community. Five typical wood-frame residential buildings from Masoomi et 271 

al (2018) with different footprint areas, roof structures, and number of stories were used to describe 272 

all the residential buildings. The electric power network is generally regarded as the most impacted 273 

https://incore.ncsa.illinois.edu/doc/incore/notebooks/Joplin_testbed
http://resilience.colostate.edu/in_core/
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infrastructure system by tornado (and most wind) events and was therefore also included herein to 274 

examine the dependency between the building infrastructure and electric power network. 275 

Transmission/distribution substations and wood poles are the two types of vulnerable components 276 

included in the electric power network. Other networks such as water, transportation, and 277 

telecommunication networks were not considered in this study, but could be modeled in future 278 

work as needed. It is acknowledged that the functionality of other network systems depends on the 279 

reliability of the electric power network (e.g., Unnikrishnan and van de Lindt 2016, Zou and Chen 280 

2019). For example, water towers are vulnerable in that they need to be supplied with electric 281 

power (Masoomi and van de Lindt 2018), so may only last several days following a tornado if 282 

backup generators for pumps are not available/supplied. Additionally, damaged and/or fallen 283 

trees/poles can block the roads following tornadoes and cause adverse impacts on the 284 

transportation networks (e.g., Hou and Chen 2020, Hou et al. 2019).   285 

Table 1 provides a summary of the built environment and social systems for the testbed and 286 

example in this study. The number of buildings and the number of housing units in Joplin is 28,152 287 

and 23,261 (Note: multi-family will have multiple households in one building), respectively, and 288 

the building dataset was developed circa 2010 before the 2011 Joplin tornado. Note that non-289 

residential buildings include 13 building types herein such as commercial buildings and social 290 

institutions, e.g., schools. The housing unit estimation was determined based on the 2010 291 

Decennial Census data and an existing housing unit allocation algorithm (see Rosenheim et al. 292 

2019 for details). The allocated housing units are also designated by race/ethnicity and household 293 

income, in addition to tenure status, as shown in Table 1. The number of workers employed in 294 

Joplin in 2010 was 39,831, and the total domestic supply was US$3.04 billion. Please refer to 295 



 
 

14 
 

Wang et al. (2021) for more details on the building inventory, electric power network, housing 296 

unit characteristics, and economy in Joplin. 297 

Table 1. 298 

Initial capital stock values come from the Newton and Jasper County Assessor’s offices that 299 

encompass Joplin. It is important to note that the building level county assessor’s data and the 300 

building level archetype data used in the functionality model are from different sources. 301 

Fortunately, both datasets had detailed geographic coordinate location information for every 302 

building. Therefore, in order to connect individual building level archetypes and functionality to 303 

economic sectors, the building level sector information from the county assessor’s office was 304 

merged with the archetype datasets using a GIS spatial join algorithm. Building level data are then 305 

aggregated to the sector level. 306 

Generic tornado models 307 

A series of generic tornadoes based on the gradient technique (Standohar-Alfano and van de Lindt 308 

2015) were used as the hazard models impacting the community, resulting in physical damage to 309 

buildings and the electric power network, and propagating economic losses, household disruption, 310 

and population dislocation. Tornados with different EF ratings (EF0 - EF5) are associated with 311 

different ranges of wind speeds. Fig. 2 shows the geometry of the gradient model for an EF2, EF3, 312 

and EF4 single tornado, respectively, where the width of the applied tornadoes is equal to the 313 

average of the historical tornado data for the Enhanced Fujita (EF) rating (Attary et al. 2018). The 314 

start points, end points, and the directions of all tornado scenarios were assigned randomly within 315 

the community boundaries. The NIST Community Resilience Planning Guide (NCRPG) 316 

encourages communities to use routine levels (i.e., hazard events that are more frequent with less 317 

consequential events that should not cause significant damage), design levels (i.e., hazard events 318 
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used to design structures), and extreme levels (i.e., beyond design levels and likely to cause 319 

extensive damage) to address a range of potential damage and consequences (NIST 2020). This 320 

study examines the community resilience impacted by 100 random tornadoes for each different 321 

intensity level (i.e., EF2, EF3, EF4) individually in line with the concept encouraged in the 322 

NCRPG. It is worth noting that most tornadoes travel in paths from the southwest towards the 323 

northeast (Suckling and Ashley 2006). Additionally, it is important to mention that the building 324 

inventory was developed for Joplin exclusive of other nearby homes outside of the Joplin 325 

boundaries. Thus, some of the tornado scenarios might damage buildings outside of Joplin in the 326 

simulation but they are not included in the determination of physical damage and the associated 327 

socio-economic losses in this study.  328 

The methodology presented herein is general and can be implemented for any hazard type. The 329 

socio-economic goals defined for the community, partially or wholly, do rely on a hazard-specific 330 

analysis. For example, earthquake events commonly impact the entire community, whereas a 331 

tornado directly impacts a relatively small geographic footprint within a community, but the 332 

impact can extend to the entire community in terms of social and economic impacts. Additionally, 333 

building functionality is highly related to tornado intensity, tornado path/width, and housing 334 

density (urban or rural).  335 

Fig. 2 336 

Multi-disciplinary community resilience goals  337 

In this study, core resilience metrics inform three community stability areas, namely physical 338 

services, economic activity, and population stability. Physical services stability was estimated by 339 

determining building functionality two different ways: with and without the impact of the 340 

reliability of the electric power network. Percent changes in employment, domestic supply (e.g., 341 
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food, care, security), and household income were used to jointly reflect the activity of the local 342 

economy. Population stability was calculated as the percent change in households being dislocated 343 

by housing unit (or population) following a disruptive event. Three community resilience goals 344 

(Goal A, Goal B, and Goal C) were targeted as routine level (EF2), design level (EF3), and extreme 345 

level (EF4) tornado events, respectively, as indicated in Table 2. The community resilience goals 346 

may be viewed as being modest, but reasonable because tornadoes typically strike a portion of the 347 

entire community, sometimes 5% to 10%. All residential and commercial buildings outside the 348 

tornado path were not physically damaged but may still lose electric power. Therefore, two types 349 

of physical service metrics related to building functionality were proposed herein: considering the 350 

dependency between buildings and the electric power network or neglecting the dependency of 351 

buildings on electric power.  352 

It is important to mention that each community is unique with its own characteristics, and each 353 

will have its own specific resilience goals and potential solutions. In this study, having clearly 354 

defined resilience goals in terms of core metrics is intended to demonstrate how a community can 355 

change a physical design of a component within their infrastructure (buildings in this case) to affect 356 

change in their physical service, population, and economic stability areas if a natural hazard was 357 

to strike. For example, keeping the percentage of households dislocated below 5% is one of the 358 

social resilience goals identified for tornados at the extreme hazard level. 359 

Table 2. 360 

Wind design to achieve community resilience  361 

Tornadoes are low-probability high-consequence events that often result in significant physical 362 

damage and socio-economic impacts but have not been considered in the structural design codes 363 

and standards (e.g., ASCE 7-16) so far. That will change soon since tornadoes are planned to be 364 
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included for Risk Category 3 and 4 buildings (e.g., hospitals, emergency operations centers, etc.) 365 

beginning in 2022. Some challenges such as pressure deficit, vertical components of the tornadic 366 

winds, and windborne debris in tornadoes made it difficult to rationalize a design process for most 367 

buildings (e.g., Haan et al. 2010, van de Lindt et al. 2013, Masoomi and van de Lindt 2017). In 368 

this study, basic construction improvements were modeled using modified fragilities for individual 369 

building performance. Table 3 presents building fragility functions for typical and retrofitted 370 

residential buildings with a different structural combination of roof coverings, roof sheathing 371 

nailing patterns, and roof-to-wall connection types (Wang et al. 2021). The typical design would 372 

have regular asphalt shingles, 8d common nails spaced at 150/300 mm (6/12 inch) attaching roof 373 

sheathing panels to trusses, and two 16d toenails to connect the roof rafters over the vertical studs. 374 

The retrofit design used regular asphalt shingles, roof sheathing nails spaced at 150/150 mm (6/6 375 

inch) and two H2.5 hurricane clips as roof-to-wall connections. A series of cases was examined, 376 

ranging from 10% of residential buildings in a community being retrofitted to 100%, to select how 377 

many residential buildings would need to be retrofitted to achieve the desired community resilience 378 

goals. Several of these scenarios are illustrated in Fig. 3. The damage fragility curves for a suite of 379 

19 building archetypes incorporating 13 non-residential building types, each having four damage 380 

states (i.e., slight, moderate, extensive, and complete), are available to cover the entire range of 381 

wind speeds (Masoomi et al. 2018, Memari et al. 2018, Koliou et al. 2017, Masoomi and van de 382 

Lindt 2016).  383 

Table 3. 384 

Fig. 3 385 
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Community resilience metrics 386 

After combining the fragility functions for retrofitted residential buildings and the original fragility 387 

functions for other buildings in the community model, the community assessment was performed 388 

by chaining the algorithms as described earlier. Resilience metrics in terms of physical services, 389 

economic activity, and population stability were examined to explore the effect of wind mitigation 390 

retrofits on community resilience enhancement, i.e., to link resilience goals at the community level 391 

with the selection of a mitigation policy for building retrofit. Table 4 and Table 5 indicate some 392 

key findings for these core community resilience metrics in terms of the physical, economic, and 393 

social stability areas. The full suite of results for buildings retrofitted at each of the different 394 

percentages for the building stock under different scenarios are not shown herein for brevity. As 395 

an example, when the community was impacted by the idealized EF4 tornados, the number of non-396 

functional buildings and the number of housing units dislocated can be reduced by 11.7% (1,187 397 

to 1,048) and 11.0% (847 to 754), respectively, when 40% of residential buildings are retrofitted. 398 

The percentages shown in Table 4 are defined as the change in the metrics being measured (e.g., 399 

household dislocation) out of the total value that can be measured for that metric (e.g., households) 400 

for the community. Fig. 4 illustrates the histograms of typical metrics in terms of physical services 401 

stability and population stability from one hundred (100) EF2 tornado scenarios as an example. 402 

The reason for a few extreme values at the left end in the histograms is that the socio-economic 403 

losses caused by the tornado event are also highly related to the attributes of the area hit by the 404 

tornado, such as population density. In more rural areas, both population and building density is 405 

lower, and tornadoes striking these areas impact the local economy and cause household 406 

dislocation at a smaller scale compared to dense urban areas. 407 
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Workers employed at damaged or non-functional commercial buildings may face work 408 

interruption or job loss, leading to reduced household income and consumption expenditures. As 409 

part of the CGE simulation of this event, these values are calculated and represented in Table 5. 410 

Table 5 conveys that retrofitting played a significant role in mitigating economic impacts to 411 

domestic supply, especially employment and household income. From the lowest to highest retrofit 412 

application (from 0% to 100%) for EF2 and EF3, a more than 36% reduction (from $3.9 million 413 

to $2.5 million) in household income loss, and a 53.8% reduction (from 78 to 36) in employment 414 

loss, is observed. 415 

Table 4. 416 

Fig. 4 417 

Table 5. 418 

The minimum percentage of residential buildings retrofitted to achieve the community-level 419 

resilience goals can be determined for each tornado scenario  420 

(e.g., average of EF rating tornado striking anywhere in the community), as illustrated in Table 6 421 

and Table 7. Note that the column fields shown in Table 6 and Table 7 are consistent with those 422 

representing each metric in Table 2. In order to meet all the multi-disciplinary community 423 

resilience goals for EF2 tornadoes (see Goal A in Table 2), the metrics for household dislocation 424 

controlled the retrofit level and at least 34.2% of residential buildings would need to be retrofitted. 425 

However, the employment metrics control the retrofit level for the EF3 and EF4 tornado scenarios. 426 

The fundamental contribution of this analysis methodology is the ability to essentially de-427 

aggregate the community-level resilience goals in terms of physical, social, and economic metrics 428 

into building retrofit requirements. The goals themselves are flexible and can be adjusted by the 429 

analyst on a case-by-case basis. Additionally, it would also be possible to quantify the impact of a 430 

change in building code for new construction following a tornado or with some modification to 431 
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the methodology and examine the effect of implementing new building code requirements over 432 

time as a community grows.  433 

Table 6. 434 

Table 7. 435 

CONCLUSIONS 436 

Community resilience assessments help the community determine what is needed to improve their 437 

performance, and long-term benefits relative to the ‘do nothing’ case. This study presents a 438 

methodology to determine building retrofit targets to achieve community-level physical, social, 439 

and economic resilience goals, in support of community resilience decision-making. A series of 440 

tornado scenarios at different intensity levels were simulated and applied to an illustrative 441 

community testbed. A set of core resilience metrics includes the percent of buildings that are 442 

analytically predicted to remain functional, the percent of households/population dislocated, and 443 

the percent change in the local economy (i.e., employment, domestic supply, household income). 444 

The mitigation focuses on residential buildings, and the objective is to determine the minimum 445 

percentage of residential buildings across a community that need to be retrofitted in order to 446 

achieve the multi-disciplinary community resilience goals. Based on the work presented herein, 447 

and recognizing that uncertainty in the results is not addressed, the following preliminary 448 

conclusions can be drawn: 449 

• The percent of loss of functionality to buildings and the percent of household dislocation, 450 

as the key resilience metric in the study, may be reduced by approximately 11% when 40% 451 

of residential buildings are randomly retrofitted throughout the community for the assigned 452 

EF4 tornado scenario. For the EF2 and EF3 tornado scenarios, 40% of residential building 453 

retrofit may help mitigate the housing unit dislocation by approximately 14%. 454 
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• Building retrofits can play a significant role in reducing capital stock damage and further 455 

mitigating economic loss to domestic supply, employment, and household income. From 456 

the lowest (0%) to highest (100%) retrofit application for residential buildings for the EF2 457 

and EF3 tornado scenarios, there would be more than a 35% reduction in unemployment, 458 

and more than a 50% reduction in household income loss.  459 

• To meet all the multi-disciplinary resilience goals for tornadoes in the routine level 460 

intensity (EF2) defined in this study, the household dislocation metric controlled the retrofit 461 

level and at least 34.2% of residential buildings would need to be retrofitted. For the 462 

tornadoes at the design level hazard intensity (EF3) and extreme level hazard intensity 463 

(EF4), the employment metric controlled the retrofit level. The resilience goals are flexible 464 

and can be quantitively adjusted for different levels based on community input and the 465 

unique needs of a community. Clearly different multi-disciplinary metrics may control the 466 

retrofit requirements for different hazard intensities but are also specific to the resilience 467 

goals selected.  This further underscores the need to consider goals across different 468 

community stability areas.  469 

The study did not address budget constraints of the community and costs to retrofit, which 470 

would further limit selections of different retrofit strategies for different households. Note that 471 

communities have access to many funding sources outside of their own tax dollars for mitigation 472 

programs. The Federal Emergency Management Agency (FEMA) Building Resilient 473 

Infrastructure and Communities (BRIC) and Department of Housing and Urban Development 474 

(HUD) Community Development Block Grant–Disaster Recovery (CDBG-DR) programs are two 475 

examples.  476 
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The residential buildings were assumed to be retrofitted randomly without the consideration of 477 

the community retrofit priorities for residential buildings or individual capacity (e.g., high-income 478 

owners versus low-income renters).  479 

Additionally, future studies will directly incorporate the CGE model and population 480 

dislocation algorithm into the analysis sequence to enable addressing uncertainty in the results. 481 

The results can then reflect the uncertainty of the socio-economic description specific for each 482 

hazard event.  483 

Addressing the limitations above is beyond the scope of this study but future studies may 484 

include a risk-based cost-benefit analysis for the wind mitigation retrofits and the impact of 485 

insurance incentives and other policies, such as insurance companies offering a discount in annual 486 

insurance premiums for homeowners to encourage them to retrofit their houses. 487 

In summary, the ability to de-aggregate community resilience goals to individual building 488 

performance targets can help accelerate the development of resilience-based building codes and 489 

standards that satisfy community-wide resilience goals of the broader built environment. The 490 

ability to achieve community-level resilience goals in terms of socio-economic metrics can provide 491 

community decision-making support for stakeholders and planners. 492 
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NOTATION 506 

The following symbols are used in this paper: 507 

C = The capital stock 508 

c1 - c5 = Parameters for the logistic regression model 509 

dsf = Building types (single-family or multi-family) 510 

FrDS = Fragility functions 511 

i = Damage states 512 

𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗
𝑘𝑘  = The building functionality status 513 

j = Each realization of the Monte Carlo simulation 514 

k = Each building 515 

m = Each census group 516 

N = The total number of Monte Carlo simulation realizations 517 

pblack = Percent of black throughout the census group 518 

Pdamage = The building damage probability 519 

Pdis = The population dislocation probability 520 



 
 

24 
 

𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,𝑖𝑖,𝐷𝐷
𝑘𝑘  = The dislocation probabilities for each damage state 521 

𝑃𝑃𝑑𝑑𝑖𝑖𝑠𝑠,m
𝑘𝑘  = The dislocation probability of each building in each census group 522 

Pfun = The building functionality probability 523 

phisp = Percent of Hispanic populations throughout the census group 524 

ploss = The property value loss 525 

Rj = Random variables between 0 and 1 526 

s = Each sector 527 

γs = Sector shocks 528 

λ = Medians of fragility functions 529 

ξ = Standard deviation of fragility functions 530 
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Tables 699 

 700 

Table 1. Built environment and human social system for Joplin testbed 701 

 702 
Joplin testbed Description Values 

Built environment 
Buildings Residential 24,903 

Non-residential 3,249 
In total 28,152 

Electric power network Substations 18 
Poles 23,857 

Human social system 
Housing units Owner-occupied 11,344 

Renter-occupied 9,435 
Vacant 2,455 
Group quarters 22 
In total 23,261 

Population Owner-occupied 26,873 
Renter-occupied 20,949 
In total 49,810 

 703 
 704 
 705 
 706 
 707 
 708 
 709 
 710 
 711 
 712 
 713 
 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
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Table 2. Community resilience goals based on core metrics 724 

Community 
goals 

Tornado 
intensity 
(NCRPG 

hazard 
level) 

Physical service metrics Population stability 
metrics Economic stability metrics 

% buildings 
remaining 
functional 

(due to 
damage)  

% buildings 
remaining 
functional 

(due to 
damage + 
electrical 
power) 

% 
households 
dislocated 

(unit: 
households) 

% 
population 
dislocated 

(unit: 
people) 

% change in 
employment 

% change 
in 

domestic 
supply 

% change in 
mean 

household 
income 

Goal A EF2 
(Routine) 98% 95% 1% 1% 0.2 0.5 0.2 

Goal B EF3 
(Design) 96% 89% 3% 3% 0.5 1.0 0.5 

Goal C EF4 
(Extreme) 94% 83% 5% 5% 0.8 1.5 0.8 

725 
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Table 3. Lognormal parameters for residential wood-frame building fragilities in this study 726 

Building 
type Building description Damage 

states 

Original fragility 
functions (m/s) 

Retrofit design in 
terms of fragilities 

(m/s) 
λ ξ λ ξ 

T1 
Residential wood building, 
small rectangular plan, 
gable roof, 1 story 

DS1 3.68 0.13 3.68 0.14 
DS2 3.56 0.14 3.85 0.12 
DS3 3.63 0.13 3.98 0.11 
DS4 3.68 0.14 4.16 0.13 

T2 
Residential wood building, 
small square plan, gable 
roof, 2 stories 

DS1 3.60 0.13 3.60 0.13 
DS2 3.53 0.13 3.76 0.12 
DS3 3.59 0.13 3.91 0.11 
DS4 3.68 0.13 4.17 0.12 

T3 
Residential wood building, 
medium rectangular plan, 
gable roof, 1 story 

DS1 3.61 0.13 3.61 0.13 
DS2 3.51 0.13 3.77 0.12 
DS3 3.57 0.13 3.92 0.11 
DS4 3.74 0.12 4.23 0.12 

T4 
Residential wood building, 
medium rectangular plan, 
hip roof, 2 stories 

DS1 3.73 0.13 3.73 0.13 
DS2 3.65 0.13 3.87 0.12 
DS3 3.71 0.13 4.00 0.11 
DS4 3.76 0.13 4.28 0.12 

T5 
Residential wood building, 
large rectangular plan, gable 
roof, 2 stories 

DS1 3.75 0.13 3.75 0.13 
DS2 3.65 0.13 3.88 0.12 
DS3 3.70 0.13 3.98 0.11 
DS4 3.64 0.15 4.06 0.14 

 727 
 728 
 729 
 730 
 731 
 732 
 733 
 734 
 735 
 736 
 737 
 738 
 739 
 740 
 741 
 742 
 743 
 744 
 745 
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Table 4. Community resilience metrics for physical and social systems that benefit from 746 
residential building retrofits (Mean values) 747 

Residential 
building 
retrofits 

Physical service metrics Population stability metrics 

The number of 
buildings non-

functional (due to 
damage) 

The number of 
buildings non-

functional (due to 
damage + electrical 

power) 

Housing unit 
dislocation 

(unit: 
housing 
units) 

Population 
dislocation 

(unit: 
people) 

EF2     
0% 315 (1.1%) 981 (3.5%) 231 (1.0%) 478 (1.0%) 
40% 251 (0.9%) 971 (3.5%) 197 (0.9%) 409 (0.8%) 
70% 200 (0.7%) 963 (3.4%) 169 (0.7%) 350 (0.7%) 
100% 150 (0.5%) 955 (3.4%) 142 (0.6%) 295 (0.6%) 
EF3     
0% 703 (2.5%) 1,387 (4.9%) 501 (2.2%) 1,021 (2.1%) 
40% 601 (2.1%) 1,377 (4.9%) 436 (1.9%) 894 (1.8%) 
70% 523 (1.9%) 1,368 (4.9%) 388 (1.7%) 796 (1.6%) 
100% 443 (1.6%) 1,360 (4.8%) 339 (1.5%) 692 (1.4%) 
EF4     
0% 1,187 (4.2%) 2,583 (9.2%) 847 (3.6%)  1,711 (3.4%)   
40% 1,048 (3.7%) 2,570 (9.1%) 754 (3.2%)   1,532 (3.1%)    
70% 939 (3.3%) 2,558 (9.1%) 685 (2.9%)   1,392 (2.8%)    
100% 828 (2.9%) 2,547 (9.1%) 613 (2.7%)   1,231 (2.5%)   

 748 
 749 
 750 
 751 
 752 
 753 
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 756 
 757 
 758 
 759 
 760 
 761 
 762 
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 765 
 766 
 767 
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Table 5. Economic stability metrics given different levels of residential building retrofits 768 
and tornado scenarios (Mean values) 769 

Residential building 
retrofits 

Economic stability metrics 

Employment loss 
(unit: person)  

Domestic supply 
loss 

(unit: millions of $) 

Household income 
loss 

(unit: millions of $) 
EF2    
0% 78 (0.2%) 10.4 (0.3%) 2.0 (0.2%) 
40% 62 (0.2%) 8.4 (0.3%) 1.6 (0.1%) 
70% 49 (0.1%) 6.9 (0.2%) 1.3 (0.1%) 
100% 36 (0.1%) 5.3 (0.2%) 0.9 (0.1%) 
EF3    
0% 160 (0.4%) 22.0 (0.7%) 3.9 (0.3%) 
40% 136 (0.4%) 19.2 (0.6%) 3.3 (0.3%) 
70% 118 (0.3%) 17.0 (0.6%) 2.9 (0.3%) 
100% 99 (0.3%) 14.7 (0.5%) 2.5 (0.2%) 
EF4    
0% 270 (0.7%) 36.8 (1.2%) 6.7 (0.6%) 
40% 236 (0.6%) 32.7 (1.1%) 5.9 (0.5%) 
70% 211 (0.5%) 29.6 (1.0%) 5.3 (0.5%) 
100% 182 (0.5%) 26.2 (0.9%) 4.6 (0.4%) 

 770 
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Table 6. Percentage of residential buildings requiring retrofit to achieve community 792 
resilience goals 793 

Communit
y goals 

Physical service metrics Population stability metrics 
% buildings 
remaining 

functional (due 
to damage)  

% buildings remaining 
functional (due to 

damage + electrical 
power) 

% households 
dislocated 

(unit: households) 

% population 
dislocated 

(unit: people) 

Goal A 3.4% 12.0% 34.2% 33.3% 
Goal B 8.0% 6.0% 17.5% 14.0% 
Goal C 15.1% 16.0% 19.8% 15.4% 
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Table 7. Percentage of residential buildings requiring retrofit to achieve community 827 
resilience goals 828 

Community goals 
Economic stability metrics 

% change in 
employment  

% change in domestic 
supply 

% change in mean household 
income  

Goal A 28.7% 13.1% 19.4% 
Goal B 21.5% 18.7% 11.6% 
Goal C 29.0% 29.0% 18.0% 

 829 
 830 
 831 
Figures Captions 832 

Fig. 1 (a) The framework of the de-aggregation of community-level resilience goals; and (b) The 833 

sequence of analyses for community resilience assessment and metrics 834 

Fig. 2. The geometry of generic tornado models for different EF ratings: (a) EF2; (b) EF3; (c) EF4 835 

Fig. 3. Residential buildings retrofitted randomly assigned through the community: (a) 0% 836 

retrofitted; (b) 40% retrofitted; (c) 80% retrofitted 837 

Fig. 4. Statistics of resilience metrics in terms of physical service and population stability: (a) 838 

building functionality without retrofit; (b) building functionality with 100% residential retrofit; (c) 839 

housing unit dislocation without retrofit; (d) housing unit dislocation with 100% residential retrofit 840 
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 852 
Figure 1a 853 
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Figure 4a 857 

858 

859 
Figure 4b 860 

861 

862 
Figure 4c 863 

864 
Fig 4d 865 
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