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Abstract Data-driven approaches now allow for sys-

tematic mapping of microstructure with properties. In

particular, we now have diverse computational

approaches to ”featurize” microstructures, creating a

large pool of machine-readable descriptors for subse-

quent structure-property analysis. We explore three

questions in this work: (a) Can a small subset of fea-

tures be selected to train a good structure-property pre-

dictive model? (b) Is this subset agnostic to the choice

of feature selection algorithm? And (c) can the addi-

tion of expert-identified features improve model perfor-

mance? Using a canonical dataset, we answer in the

affirmative for all three questions. This suggests that

feature (down) selection is a good strategy to reduce

the complexity of the calibrated model, and any method

for feature selection is viable. Moreover, the addition of
expert-selected features can significantly improve model

performance, emphasizing the need for approaches that

assimilate domain knowledge with data-driven

approaches.
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1 Introduction

The holy grail of materials science is to discover the

mechanism governing the properties and describe them

in terms of a small set of physically meaningful salient

features. It is typically achieved through construction of

structure-properties (SP) relationships: Pi = F ({dj}),
where Pi are the properties of interest, and dj are the

set of salient features or descriptors. The function F is

constructed via hypothesis-driven experiments or, more

recently, via machine learning approaches [19,8].

Mapping microstructure-sensitive properties with mi-

crostructure representation is invariably challenging due

to the mismatch between the high dimensionality of mi-

crostructural information (e.g., via microscopy or simu-

lations) and the principal degree of freedom (or salient
features) governing the SP maps. This is because mi-

crostructural imaging aims to provide detailed, high-

resolution maps. Hence, imaging techniques inevitably

produce high-dimensional data sets, while the goal of

establishing quantitative SP maps is to derive the small-

est set of features that explain the data distribution.

Moreover, this set may not be known a priori espe-

cially for complex multi-physics phenomena governing

the properties. Thus, the construction and exploration

of F critically depend on the availability of a large set

of computable features (we use the words ”features”

and ”descriptors” interchangeably), along with princi-

pled approaches of selecting the most informative (or

salient) features.

In the case of microstructures, there exist several

distinct approaches to ”featurize” the microstructure.

That is, convert the microstructure (typically an image

in 2D or image stack in 3D) into a data representa-

tion that one can subsequently perform computations

upon. Several such representations have been proposed,
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including voxel-based representations, characterization

via physical descriptors [5] [25], statistical functions [21,

13], spectral density functions (SDF) [26,20] and ma-

chine learning methods [19,8]. For a detailed compara-

tive discussion of various representations, we refer the

reader to recent review papers [5,9].

Our motivation here is to understand the impor-

tance of data representation and subsequent feature se-

lection (salient features), as well as the robustness of

automatically identifying a subset of relevant features.

Additionally, we evaluate the utility of including se-

lected expert-derived features (i.e., domain knowledge)

in enhancing the predictive power of the trained mod-

els.

We utilize a problem of constructing structure- prop-

erty maps for organic photovoltaics applications (OPV).

It is well known that the microstructure of OPV active

layers determines, to a large extent, the photovoltaic

performance of the device. Hence, there is a critical

need to establish microstructure- property maps for this

application. We utilize an open-source dataset of mi-

crostructures and OPV properties – specifically, short

circuit current Jsc – as our canonical dataset. We utilize

a human-derived set of descriptors and machine-derived

statistical functions (i.e., 2-point correlation function)

and couple these representations with machine learn-

ing concepts - feature selection and feature engineering

- to construct structure-property (SP) maps. Our ref-

erence model for comparison is a SP model carefully

derived using expert-derived features. We compare the

performance of machine learning approaches with this

model and explore how well machine-derived features

can emulate an expert in deriving the salient features

for this specific SP mapping. Finally, the paper is sup-

plemented with a set of notebooks showcasing the basic

steps of microstructure featurization, feature selection,

and engineering to construct structure-property maps.

2 Materials and methods

This work aims to construct SP map for OPV appli-

cation. The performance of the OPV device is charac-

terized in terms of its short circuit current (Jsc) using

a physics-based computational model [16]. The short

circuit current is our property of interest and the ex-

pected value for our machine learning models to deter-

mine their accuracy. The models are calibrated from

our dataset of ∼ 1700 OPV microstructures generated

using Cahn-Hilliard equation [22]. Each microstructure

is a two-phase microstructure of size 401 × 101 pix-

els and is annotated by one property (Jsc). Each mi-

crostructure (based on material properties for a well-

studied material system, P3HT: PCBM blend) consists

of two phases corresponding to electron-donating ma-

terial and electron-accepting material. The microstruc-

ture is sandwiched between two electrodes: an anode

and a cathode. See Supplementary Information for more

details on data generation and the computational mod-

els.

Our reference model, which we denote as ME , is

a surrogate model of a physics-based computational

model. The model is based on prior work [24] where ex-

perts first defined features and then identified three key

features using manual trial and error correlation stud-

ies. The model ME is derived from the same data used

in this paper (see details below). We compare the per-

formance of this model against SP maps built with dif-

ferent data-driven featurization schemes. However, the

accuracy of models is computed with respect to the re-

sults of the physics-based model, as all models are the

surrogate models of the physics-based model learned

from the data.

Three levels of microstructure representations:

Formally, we consider three microstructure data repre-

sentations levels (RL): the raw data (RL0), the featur-

ized data (RL1), the subset of salient features (RL2) -

see Figure 1.

Representation layer zero (RL0): The raw data (i.e., im-

age data) constitutes the representation layer zero. The

raw data size depends on the resolution and size of

the sample, with even modest samples having sizes in

the range of 1002 (2D) to 1003 (3D). While it is possi-

ble to train SP models that directly map raw data to

output [19,17], several challenges exist – including the

curse of dimensionality [3] that necessitates the avail-

ability of very large datasets and the ”black box” nature

of such models, which makes extracting scientific insight

non-trivial. Additionally, it is non-trivial to enforce un-

derlying invariances (e.g., translation and/or rotation

invariance) that could play a part in determining the

output. An extra layer of representation is introduced

(RL1) to overcome these challenges. We refer to this

step as the featurization step (RL1). Before moving to

the next layer, we formally denote the raw dataset as

X = {X1, . . . ,XN} of N microstructures, where mi-

crostructure Xi is represented by a (nx × ny) bitmap,

i.e., Xi ∈ {0, 1}n×m, and Xi(x, y) is a bitmap pixel at

position (x, y).

Representation layer one (RL1): This level corresponds

to the feature layer, where transformations are applied

to the raw data from RL0. Here, we consider two classes

of features: human-derived and machine-derived fea-

tures (see Figure 1). The human-derived features con-

sist of sets of application-specific descriptors [23]. Such

descriptors require (low level) input from experts to for-

mulate and compute. While this featurization approach
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Fig. 1 A taxonomy of microstructure representations with three layers RL0, RL1, RL2 allows principled classification of
various approaches to construct microstructure-property maps. RL0 consists of raw data that can be featurized into RL1
using two approaches: human-derived features (here descriptors) and machine-derived features (here two-points correlation
function). Both types of features can be enriched with expert knowledge by adding more descriptors or expanding the state for
the correlation function. At the third layer - RL3, the salient features are extracted using three types of approaches: expert-
based selection (blue box), supervised feature selection (green boxes), and unsupervised feature engineering (yellow boxes).
The salient features from RL2 are used to construct models of varying complexity. Models are labeled ME , M1 to M5 and are
placed below the corresponding salient feature set. Note that all models with a tilde are non-linear, and all models with prime
superscripts correspond to the expert enriched feature set.

carries the risk of missing key features due to unin-

tended bias or lack of information, the feature set is

typically physically meaningful, explainable, and inter-

pretable. Examples include volume fractions, interfacial

area, connected

components, domain sizes, tortuosity of the paths, and

contact area with boundaries. The dimensionality of

this feature set is usually much smaller than the di-

mensionality of the input microstructure. In this work,

we use a human-derived set of twenty-one descriptors

computed using a graph-based approach [23]. This con-

sists of a basic set of nineteen descriptors, denoted by

d, defined based on an understanding of photophysics

operations appended with two additional descriptors

enriched by the expert. We refer to these two sets as

d = {d1, . . . , dl : di ∈ R} with cardinality of l = 19

and the expert-enriched set d′ with cardinality (l + 2).

Specifically, three stages of photocurrent generation –

light absorption, exciton dissociation, and charge trans-

port – guide the definition of these descriptors. We refer

to [1] for a detailed description of these descriptors. In

addition to these basic descriptors, two additional de-

scriptors characterizing charge transport are defined.

These two additional descriptors were defined based

on an in-depth, time-consuming sensitivity and correla-

tion analysis of the full-physics simulations that predict

the short circuit current. We emphasize that these de-

scriptors (contact area of donor-phase with anode and

acceptor-phase with cathode) are non-trivial, expert-

knowledge enriched descriptors. The complete set of

descriptors is listed in Supplementary Information.

For the machine-derived features, two-point spatial

auto-correlations (also known as two-point statistics)

are leveraged along with the open source package [2].

There is an extensive literature on using spatial dis-

tributions to represent microstructures for structure-

property maps [7,27,6,14]. For the two-phase material

system under consideration, two auto-correlations and

two cross-correlations can be computed. In this work,

however, only one the auto-correlation of the electron-

accepting phase is used, as the other correlations are

redundant, being linearly dependent [10,12]. Let m(s)

denote such an array, where s indexes each pixel 1, and

m denotes the material/microstructure state of inter-

est at that pixel. In microstructures considered in this

work, two phases are considered, and hence m for each

pixel can take either zero or one, and auto-correlations

are defined as:

f(r) =
1

Sr

∑
s

m(s)m(s + r) (1)

where f(r) is the auto-correlation function that reflects

the probability of finding the phase of interest at both

the tail and the head of a selected vector, r. The factor

1 a two-dimensional integer index is generally used to rep-
resent a two-dimensional image
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Sr is the normalizing factor that represents the total

number of valid placements of vector r. 2

Machine-derived features can also be enriched with

expert knowledge. The state m initially defined by the

phase can be informed by the expert to capture physics-

specific characteristics of the microstructure. Here, f ′

constitutes the expert-enriched feature set following the

underlying physics of the application. The property of

interest, Jsc, is known to depend on the availability of

donor-phase adjacent to the anode and acceptor-phase

adjacent to the cathode. In light of this, a 1D auto-

correlation of material distribution adjacent to the elec-

trode is added to f to generate f ′. The expanded state

may bias the feature set to include more spatial in-

formation in the layer adjacent to the electrodes. We

define f ′ = {f, fAn, fCa}, where fAn and fCa are 1D

auto-correlations on the layers adjacent to the anode

and cathode. The remaining steps of the featurization

remain identical, with the auto-correlations computed

generically.

It is important to note that the 2-point statistics re-

flect the directional dependencies of the extracted mi-

crostructure measures. However, the dimensionality of

this representation is fixed and in the same order at the

input microstructure. In comparison with descriptors,

the statistical functions are generic, and the dimension-

ality is linked to the size of the input microstructure.

However, they lack extensive interpretability. Neverthe-

less, they can be customized for a particular application

by redefining the state (from phase to application rele-

vant quantity) or expanding the state.

Representation layer one (RL2): This layer corresponds

to a ”concentration of information”, where the number
of features is reduced, ideally without degrading the

predictive power of the subsequent SP map. Such con-

centration of information or salient feature identifica-

tion is an important step in constructing PS surrogate

models. This is because interpolation theory suggests

that for a fixed number of samples, more accurate in-

terpolants (from structure features to property) can be

constructed when the number of features is smaller [11,

18].

However, identifying a proper set of salient features

is challenging. First, there is no uniqueness guarantee

for this set of salient features. Different data-driven ap-

proaches could result in different sets of features. Sec-

ond, this set of salient features can be incomplete 3. Fi-

nally, there is no guarantee that this set is interpretable,

thus precluding an easy generation of insight.

2 In this study, Sr is adjusted to account for the non-
periodic nature of the microstructures, see [7,15] for details.
3 Completeness is difficult to confirm even for hypothesis-

driven selection approaches

We broadly identify three approaches used for salient

feature selection: (a) expert-based selection, (b) super-

vised feature selection, and (c) unsupervised feature en-

gineering. Figure 1 visually lays out this classification

at RL2. Two first two approaches are used on human-

derived features, while the last approach is applied on

machine-derived features and the raw data.

In the first approach, an expert defines the set of

salient features, denoted as dE. In Figure 1, this ap-

proach is marked with the blue box. The set dE can be

derived using a hypothesis-driven approach or, as in our

case, an unsupervised approach relying on the correla-

tion studies. Here, the expert-derived salient features

consists of three features dE = {d10, d2,min(d20, d21)}.
These salient features are d10 - the volume fraction of

electron-donor phase (as this is the phase that con-

tributes to the light absorption), d2 - the weighted frac-

tion of the electron-donor phase (where weighting is

applied to the shortest distance to the interface and

captures the efficacy of exciton diffusion), and finally

min(d20, d21) the minimal contact area with the elec-

trode (donor with an anode, and acceptor with cath-

ode). The product of three descriptors correlates well

with the short circuit current, but identifying this set of

features requires tedious, manual, and time-consuming

studies by the domain expert. These three features are

used to construct our reference model ME - in Figure 1

placed below the blue box.

In the second approach, three types of off-the-shelf

feature selection techniques are applied: the filter meth-

ods, wrapper methods, and embedded methods. For

each type of methods, we choose one technique that

we briefly describe in the main document and provide

more details in Supplementary Information. The fil-

ter methods are the simplest to use. Here, we select

the maximum Relevance Minimal Redundancy method

(mRMR). Iteratively, this technique seeks to select down

a small set of features that have a strong correlation

with the targeted properties and a low redundancy with

other features selected in previous iterations. It is a rel-

atively simple technique that does not involve any SP

model construction but only looks at the basic corre-

lation between variables (either descriptors/features or

property). As a result, the input features are ordered

based on their score, capturing relevance and redun-

dancy. The scoring is then used to decide on the number

of salient features that enter the SP model. Once the

number of features is selected, several models can be

constructed as these selection and model construction

are independent.

In the wrapper methods, feature selection and ma-

chine learning are dependent. Forward selection (FS) is

an example method used in this paper, and it involves
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the iterative process that starts with an empty set of

features. In each iteration, the feature that best im-

proves the model is added until the addition of a new

feature does not improve the model’s performance. Be-

cause these two steps are linked, this type of method

is prone to over-fitting. Moreover, for a large pool of

descriptors, wrapper methods may be computationally

demanding.

Finally, the embedded methods, like the Random

Forrest (RF) used in this work, are the most complex

feature selection methods. The Random Forest con-

structs hundreds of decision trees, each of them built

the SP map over a random extraction of the observa-

tions from the dataset with a random combination of

the input features. As a consequence, RF is less prone to

over-fitting at the expense of computational cost. The

feature selection (or scoring) is computed from each de-

cision tree and averaged over all the trees. When train-

ing an individual tree, the output variance is minimized

at each node of the particular tree. In this method, an

individual feature’s relevance is based on the decrease

in its variance.

Regardless of the type, feature selection methods

belong to supervised methods. In some cases, the salient

feature selection is tightly coupled with the model. This

is the case for forward selection and random forest mod-

els. In Figure 1, we highlight this characteristics by

drawing the green background boxes around salient fea-

tures and the models. In filter methods, the model con-

struction is independent of the feature selection. But

the importance score is computed to capture correla-

tion with the property. In Figure 1, we highlight the

link with the vertical line. In this paper, mRMR, FS

and RF are applied to two sets of descriptors d and d′

to derive the corresponding features that are denoted

with the subscript: dmRMR and d′mRMR, dFS , d′FS ,

dRF and d′RF .

In the third approach - unsupervised feature engi-

neering technique salient features are independent of

the properties. Principal Component Analysis (PCA)

is an example technique. PCA seeks to reduce the di-

mensionality of the input data by transforming it into

lower dimensional space while capturing high variance

in the data and at the same time minimizing the num-

ber of dimensions. Since our data Xi is represented by

(nx × ny) bitmap. The total dimensionality is equal to

D = (nx × ny). Effectively, PCA finds K largest eigen-

vectors of the covariance matrix S, where K is the di-

mensionality presented and K < D [4]. The number

of salient features is made based on the residual vari-

ance of the eigenvalues of the projected data (or can be

selected using the performance of the SP model). Nev-

ertheless, the premise of feature engineering is to iden-

tify the small set of features that become the salient

features of the data (and not property - hence unsuper-

vised mode). We distinguish between feature selection

and engineering, as PCA seeks to transform the input

features, effectively redefining (or engineering) the fea-

tures. In this paper, we apply PCA to the machine-

derived features (f and f ′) from RL1 and the raw data

from RL0 (X ).

2.1 Microstructure-property maps

Using the salient features from RL2, this study aims

to compare and construct the surrogate models of the

SP map. The model ME is considered as the refer-

ence model. The form of the model (product of three

descriptors) is grounded in the process of the current

generation in OPV that involves a sequence of three

steps, where the outcome of the subsequent step de-

pends on the previous step. Hence, the property (P or

Jsc) is modelled as product of three salient descriptors:

P =
∏
i

dAi

E . We further linearized the model by trans-

forming each descriptor with a logarithmic function. In

this way, model log(P ) =
∑

i Ailog(di) is equivalent to

P =
∏
i

dAi
i .

This decision guides the form of remaining linear

models of this paper: M1, M ′1, M2, M ′2, M3, and M ′3.

Note that all models with the prime superscript corre-

spond to the expert-enriched set of descriptors d′, while

models without these superscripts correspond to the

smaller set of descriptors d. Models with subscripts one,

two, and three use the salient features from mRMR, FS,

and RF, respectively. In this paper, we also consider

the nonlinear model of the polynomial form. All mod-

els with tilde sign, for example, M̃1 assumes this form.

Figure 1 lays out all models below the corresponding set

of salient features and methods used to derive them.

We are moving now to unsupervised feature engi-

neering methods. Here, we also construct the linear and

nonlinear models from the projected two-point correla-

tion of phase distribution d and expert-enriched state

d′ into lower-dimensional embedding. The linear model

P =
∑c

i AiCi, where Ci is the i-th PC score of the low

dimensional embedding with c components. The cor-

responding linear models are M4, M ′4 and non-linear

models M̃4, M̃ ′4. Finally, we also construct the model

of SP map, M5, from the raw data again projected to

the lower-dimensional embedding.
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Table 1 Feature selection and feature engineering applied to two sets of descriptors: d is initial set of descriptors and d′ is the
expert-enriched set of descriptors with two features defined through time consuming redefinition of descriptors (by the domain
expert).

Expert-derived Feature selection (mRMR) Feature engineering (PCA) PCA
features and model on human-derived features on machine-derived features (RL1) on raw data

feature set d′ d d′ f f ′ X
salient
features (d10, d2,min(d20, d21)) (d3, d10, d8, d15, d19) (d3, d10, d21, d8, d20) (PC1, ..PC6) (PC1, ..PC6)
number 3 5 5 6 6 11 (50)

model M0 M1 (M̃1) M ′
1(M̃

′
1) M4 (M̃4) M ′

4 (M̃ ′
4) M5

R2 prediction 0.97 0.81 (0.89) 0.94 (0.98) 0.81 (0.94) 0.90 (0.98 ) 0.60 (0.90)

3 Results and analysis

This study compares the capabilities of various featur-

ization methods (creation, selection, engineering) of the

microstructure to enable robust data-driven SP map

construction. Altogether, thirteen models of the SP map

are construed. Tables 1 contain the summary of selected

models, while Figure 2 and 3 depict the results of fea-

ture selection and feature engineering methods applied

to features from the RL1 to determine the RL2. We

report the number of salient features, a list of salient

descriptors, the performance measure (R2) for five-fold

validation and prediction and the normalized mean ab-

solute error (NMAE) for prediction. The accuracy is re-

ported with respect to the physics-based computational

model.

Our results indicate that model ME offers the best

performance for the linear model. This models is the

expert-derived model with only three features manu-

ally selected by the expert. The R2 value for model ME

is 0.97. The superior performance is consistent across

training, validation, and prediction. Nevertheless, the

model with comparable performance can be constructed

for both human-derived and machine-derived features

only if features are enriched with expert knowledge and

nonlinear model is used (M̃ ′1,M̃ ′4). Below, we compare

and contrast various settings of model construction to

answer three major questions of this study outlined in

the abstract.

We begin by comparing various feature selection

methods to construct a SP predictive model. Figure 2

depicts the results for three methods and the associated

model M ′1, M ′2, M ′3 for the expert-enriched set of de-

scriptors d′. Three panels of the figure depict the order

of descriptors from d′ with the decreasing importance

score from top to bottom (except the forward selection

where the score is not computed explicitly). Each panel

of this figure also contains the insert with reported per-

formance for increasing features with the saturated R2

guided by the core values. These characteristics are evi-

dent from all three panels. For example, the right panel

of that figure, where the R2 increases significantly for

the first four features. Moreover, the importance score

for these first four features are considerably higher than

the following features. The higher values of scores are

reflected in the mean R2 = 0.94 of the model for the

increasing number of features - as shown in the insert of

this Figure. In fact, all three types of feature selection

methods (mRMR, FS, RF) offers comparable perfor-

mance of R2 = 0.93 to 0.95 (see models M ′1, M ′2, M ′3
in Table 2 of the SI). Interestingly, these three mod-

els selected a similar number of salient features: four or

five. Moreover, the salient feature/descriptors in three

sets (see Table 1) are consistent. The interfacial area

(d3), the fraction of donor within 10nm distance to the

interface (d11), and the contact area with the interface

(d20) have been the most commonly selected feature

among these three models. These descriptors match or

are strongly correlated with the expert-derived salient

features (see Figure 1 in the SI). This demonstrates that

feature selection is agnostic to the selection method.

This is important because it demonstrates that when

the featurization of microstructure is performed well,

the machine learning model can be constructed with

good performance and minimal involvement from the

domain expert. Moreover, it affirmatively answers the

question can a small set of features be selected to train

a predictive model of SP.

Nevertheless, it should be kept in mind that the

features used to construct these models include two

expert-crafted features. To ask the question on the im-

portance of expert involvement in the process of creat-

ing the features, we constructed the analogous models

(M1, M2 and M3) with the smaller pool of descriptors

d. For the same number of features, the performance

decreases consistently across three types of methods

(mRMR, FS, RF). The R2 of prediction decreased by

0.1 for forward selection, 0.13 for mRMR, and 0.17 for

random forest regression model. Moreover, the perfor-

mance behavior for an increasing number of features

increases only gradually (see Supplementary Informa-

tion Figure 3, 5 and 6) without a clear saturation be-

havior. Even with the complete nineteen features, the

SP model cannot reach the comparable performance

as models with salient features selected from the full

set d′. Finally, the lost performance cannot be compen-
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Fig. 2 Performance of feature selection on human-derived features d′ and the associated model of SP: (left) filter method
(mRMR) and model M ′

1, (middle) wrapper method (forward selection) and model M ′
2, and (right) embedded method (random

forest) and model M ′
3. The red vertical line corresponds to the number of features selected for the model. Note that all methods

consistently choose similar salient features (the number and the selected set d3, d20, d21, d11) for which models offer optimal
performance.

sated for by increasing the complexity of the model.

The R2 for nonlinear model M̃1 the R2 increases by

only 0.10 4. These consistent results reiterates the im-

portance of the input features sets, and reinforces the

value of expert-enrichment to the data representation

and featurization. Moreover, our results demonstrate

that the addition of expert-derived features can signif-

icantly improve the model performance that cannot be

compensated by the more complex model.

In the second part of this study, four different work-

flows (M4,M ′4,M̃4,M̃ ′4) with machine derived featuriza-

tion are performed for comparison. Models M4 and M ′4
stand for the linear models with regular machine de-

rived features and expert-enriched machine derived fea-

tures. M̃4,M̃ ′4 stands for non-linear (polynomial) mod-

els with regular machine derived features and expert-

enriched machine derived features. These structure-property

maps are constructed with increasing number of princi-

pal component for all workflows described above. Fig-

ure 3 depicts the performance of these workflows where

y axis represent the prediction (test set) R2 score and

x axis represent the number of PC scores used for the

workflow. Our results indicates that all worflows per-

fom better with increasing number of PC scores (used

for model building) up to 10 PC scores. The first 10 PC

scores were found to explain >90% of the entire OSC

dataset. Therefore, only the first 10 PC scores from

each workflow were utilized for establishing structure-

property maps with machine-derived features. As seen

from the Table 1 and Figure 3, using an expert guid-

ance in machine derived features consistently provide

increased prediction performance on both linear and

4 Here, we use polynomial model of order three, see SI for
more results.

nonlinear models. This observation suggests that addi-

tional expert guided features capture valuable informa-

tion for the correlation to material property, which is

not captured by regular machine-derived features (two-

point statistics). However, it is also clear that both

workflows with machine-derived features and expert-

guided machine derived features are capable of produc-

ing robust and reliable structure-property maps with

high prediction and cross-validation performance.Among

the two different modeling strategies for machine-derived

features, linear models consistently produced the low-

est prediction performance. This situation was expected

given the fact that simple linear models are likely to be

insufficient for capturing the complex relationship be-

tween the low-dimensional microstructure features and

the short circuit current (Jsc) property.

4 Conclusion

Our results demonstrate the high value of expert knowl-

edge embedded at any level of the structure-property

map construction. Our analysis showcase that it is im-

portant to identify the salient features and, more im-

portantly. However, feature engineering and selection

methods alone do not offer the optimal solution to salient

feature identification. The best performance of the SP

maps originates from the expert knowledge infused into

the featurization step. In our application - OPV - as

supported by the results, when experts knowledge is

added to the analysis pipeline, the feature selection and

engineering methods offer comparable performance to

the manual, time-consuming expert derived SP map in

organic solar cells.
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Fig. 3 Feature engineering from machine-derived features
used to build model M4: model where microstructure is repre-
sented as the two-point correlation of the phase distribution
and then transformed to RL2 using PCA with six components
being the lower dimensional representation of the structure
data.
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Nomenclature

d Set of descriptors

d′ Expert-enriched set of descriptors

X Microstructure data point in X
X Raw dataset with microstructures

D Dimensionality of each microstructure

dj Descriptor/feature

F Function to map properties to the salient fea-

tures

f Auto-correlation function of microstructure with

state being the phase

f ′ Auto-correlation function of microstructure with

state enriched by the expert knowledge

Jsc The short circuit current (A/m2)

K Dimensioality of the low dimensional embed-

ding

m(s) A state of the microstructure at the location s

in X

ME Expert-derived SP model

N Total number of microstructures in X
Pi Materials properties

S Covariance matrix of X
SP Structure-property


