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Abstract2

We analyze airborne measurements of atmospheric CO concentration from 70 flights3

conducted over six years (2015-2020) using an inverse model to quantify the CO emis-4

sions from the Washington, DC and Baltimore metropolitan areas. We found that CO5

emissions have been declining in the area at a rate of ≈ − 4.5 % a-1 since 2015, or6

≈ − 3.1 % a-1 since 2016. In addition, we found that CO emissions show a “Sunday”7

effect, with emissions being lower, on average, than for the rest of the week and that8

the seasonal cycle is no larger than 16 %. Our results also show that the trend derived9

from the NEI agrees well with the observed trend, but that NEI daytime-adjusted emis-10

sions are ≈ 50 % larger than our estimated emissions. In 2020, measurements collected11

during the shutdown in activity related to the COVID-19 pandemic indicate a signifi-12

cant drop in CO emissions of 16 % relative to the expected emissions trend from the13

previous years, or 23 % relative to the mean of 2016 to February 2020. Our results also14

indicate a larger reduction in April than in May. Last, we show that this reduction in15

CO emissions was driven mainly by a reduction in traffic.16

Keywords: Recent trend, Inverse modeling, Urban monitoring system, CO emissions,17

COVID-1918

Synopsis: Experimental confirmation of a downward trend in CO emissions from the19

DC/Baltimore area and impacts induced by the COVID-19 pandemic response.20

Introduction21

Carbon Monoxide (CO) is a toxic gas as well as a precursor of tropospheric ozone (O3)22

and carbon dioxide (CO2). CO is regulated by the EPA as a criteria air pollutant and23

its emissions have been declining in the United States (US)1–3 and globally4–6 for the last24

two decades, highlighting that more efficient combustion and emissions controls put in place25

by Federal and State Governments have been successful in reducing the emissions of this26

toxic gas and co-emitted air pollutants that contribute to ozone and fine particulate matter27
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(PM2.5).2,7 In particular, previous work had showed a decreasing trend in CO concentrations28

in our area of interest using ground-level observations, and other measurements, from 199729

to 2010.330

Urban metropolitan areas are the main source of global air pollution given their high31

population densities, industrial activities, transportation systems and related emissions, in-32

cluding emissions of CO. In urban areas, CO is primarily formed by incomplete combustion33

of carbon-containing fuels, and mobile sources are the largest contributor to total CO emis-34

sions in the US.8 In particular, for the Washington, D.C. and Baltimore, MD, census-defined35

metropolitan area, the on-road mobile sector represents 50 % of the total CO emissions while36

the total mobile sector (on-road + non-road) represents 88 % of the total CO emissions.837

In March 2020, the global response to the COVID-19 pandemic resulted in a dramatic38

decline in human activity across the world and, thus, a corresponding decline in pollutant39

emissions. Industrial activities, air travel, and road transportation were among the most40

affected sectors.9–11 In particular, traffic counts from the area indicate traffic reductions41

of ≈ 43 % in April and ≈ 27 % in May for DC and Baltimore with respect to January42

2020 (or ≈ 50 % in April and ≈ 37 % in May with respect to previous years) and fuel43

sales declined by ≈ 44 % in April and ≈ 28 % in May with respect to previous years (see44

Methods). However, quantifying such short-term reductions in CO emissions in 2020 caused45

by the pandemic response requires identification of the proper baseline, i.e., incorporating46

the predicted emissions from the long-term trend.47

CO emissions in inventories are generally estimated based on emission models that com-48

bine activity data with emission factors.8,12–14 However, atmospheric mole fraction measure-49

ments have also been successfully used to quantify CO emissions, greenhouse gases, and50

other pollutants using inverse data assimilation techniques. Researchers have used tower,51

satellite, and aircraft-based observations with transport models in an inversion framework52

to estimate trace gas emissions at regional,15–18 urban,19–21 and local scales.2253

Here we use atmospheric CO measurements collected by research aircraft from 2015 to54

3



2020 to estimate emissions in a Bayesian framework21 to characterize the CO emissions55

phenomenology in the Washington DC and Baltimore metropolitan region. We quantify the56

absolute emissions, and their temporal characteristics, in order to assess if CO emissions have57

continued to decline during the last years. In addition, measurements collected during the58

shutdown in human activities due to the COVID-19 pandemic response are used to estimate59

the impact of this anomaly on CO emissions.60

Methods61

Aircraft observations62

Atmospheric CO mole fractions were observed from three instrumented aircraft for the pe-63

riod 2015 to 2020 as part of an ongoing long-term aircraft campaign that is part of the64

National Institute of Standards and Technology’s (NIST) North East Corridor (NEC) urban65

testbed21,23,24 and as part of the East Coast Outflow (ECO) experiment.25 A total of 7066

flights (Fig. 1) were conducted, corresponding to 66 days across the 6-year period, mostly in67

winter and spring, with some flights in summer and fall. During the COVID shutdown, 1568

of the 70 flights were conducted in 13 days from 16 April to 16 May 2020. The flights gener-69

ally consisted of downwind transects at different altitudes that covered the full depth of the70

boundary layer, and at multiple distances from the cities of Washington, DC and Baltimore,71

MD, with at least one upwind transect to better characterize the upwind sources, and lasted72

between 3 to 4 hours during the afternoon. High-precision cavity ring-down spectrometers73

(CRDS), all calibrated to the WMO-CO-X2014A scale,26 were used on board the aircraft74

to measure CO mole fractions at 0.4 Hz. The data were then averaged at 60 s resolution75

and the standard deviation for each minute calculated. Only data within the well-mixed76

boundary layer was kept for the inversion analysis. Typical measurement uncertainties es-77

timated to be approximately 5 nmol mol-1 (1-σ), determined by the instrument precision78

and drift as well as the uncertainties and drift of reference gases used in-flight calibrations79
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or pre-and-post flight calibrations on the ground. For all flights, reference gas data were80

calibrated on the WMO-CO-X2014A scale,26 ensuring consistency in the measurements over81

multiple years within the uncertainty stated above. More details about the instrumentation82

and the aircraft can be found in Ren et al.27 and in Plant et al.2583

Figure 1: Flight tracks for all the flights and the DC/Baltimore region (red shaded area).

Transport model84

Since the transit times in our modeling domain, and especially over the area of interest, are85

much smaller than the CO lifetime, we use a passive-tracer transport scheme. We use the86

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) atmospheric transport87

and dispersion model28 driven by two different meteorological models in order to character-88

ize the transport error and use the inter-model variance as a component of the model-data89

mismatch in the inversion. The first is the North American Mesoscale Forecast System90
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(NAM12)29 generated by the National Center for Environmental Predictions (NCEP) and91

provided by the National Oceanic Atmospheric Administration - Air Resources Laboratory92

(NOAA-ARL), and the second is the European Center for Medium-Range Weather Fore-93

casts (ECMWF) fifth-generation atmospheric reanalysis (ERA5)30 provided by the Coper-94

nicus Climate Change Service Climate Data Store (CDS).31 NAM12 is provided with 2695

vertical pressure levels, 12-km horizontal resolution and 3-hour temporal resolution. ERA596

is provided with 37 vertical pressure levels, 0.25◦ horizontal resolution and 1-hour tempo-97

ral resolution. HYSPLIT was configured with the STILT vertical mixing and advection98

schemes32,33 and used the boundary layer heights from the meteorological models. 1000 par-99

ticles were released for each 1-minute measurement along the flight tracks and tracked back100

in time for 48 h with a model time step of 1 min. Then, influence functions, or footprints,101

representing each observation’s sensitivity to surface emissions32 were calculated at 0.1◦ and102

0.03◦ spatial resolution.103
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Figure 2: Cumulative footprint, or influence function, representing the CO measurements’
sensitivity to surface emissions, averaged across flights (note the logarithmic color-scale).
Nested domains used in the inversion are also shown with the full extent of the figure being
the large, coarser resolution domain and the red square depicting the extent of the smaller,
higher resolution domain. Black contours show (from the inside out) the 99th, 95th, 85th,
70th and 50th quantiles of the footprint. Urban areas and state borders are also shown in
grey.

Tiered Multi-Resolution Inverse Modeling Approach104

Similarly to Lopez-Coto et al.,21 we estimated trace gas emissions using a Bayesian inverse105

framework. However, in this work, we implemented a tiered multi-resolution inverse mod-106

eling approach, consisting of a two-step sequential Bayesian inversion based on the ideas of107

Rödenbeck et al.;34 but using the same transport model in both steps, although at different108

resolutions. We first estimate the emissions (CO emissions in this work) in a coarse (0.1◦),109

large domain (Figure 2) so that upwind sources are optimized. Then, we use the optimized110

emissions from the first inversion to estimate the contribution of the upwind sources in111

the background of the smaller, higher-resolution (0.03◦) domain and then proceed with the112
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higher-resolution inversion.113

Each inversion step solves the classical Bayesian inverse problem for each flight, where114

optimum posterior estimates of fluxes are obtained by minimizing the cost function J :35,36115

J (x) =
1

2

[
(x− xb)

T P−1
b (x− xb) + (Hx− y)T R−1 (Hx− y)

]
(1)

where xb is the first guess or a priori (prior) state vector, Pb the a priori error covariance116

matrix which represents the uncertainties in our a priori knowledge about the fluxes and R117

the error covariance matrix, which represents the uncertainties in the observation operator118

H and the observations y, also known as model-data mismatch. The state vector in our119

setup is composed only of fluxes, and the prior fluxes (xb) are taken from a bottom-up120

inventory described later. The observation operator H is constructed using the sensitivity121

of observations to surface fluxes, or footprints (units: ppm µmol-1 m2 s) generated by the122

transport model (HYSPLIT).123

Here, xb is taken as constant in time and, thus, a single exponential covariance model37124

for Pb is chosen to account for spatial correlations. 100 % of the prior grid cell emissions is125

used as prior flux uncertainty to account for the large reported uncertainties in inventories at126

this level38,39 as well as the lower representativity of the prior at the daily scale arising from127

the fact that we intentionally choose to use an average prior for a fixed year for the whole128

period. A lower limit of 1 nmol m-2 s-1 was set for the flux uncertainty. The correlation129

length (L) was set at 10 km as in previous work21,23
130

For R, a double exponential covariance model40 is used. Diagonal terms are computed131

as the 1-min variance in the measurements, the background variance and the inter-model132

variance of the transport models ensemble,.21,41,42 A lower limit of (5 nmol mol-1)2 was also133

used for the total variance. A correlation length (L) of 1 km and time-scale (τ) of 1 h were134

used since short characteristic length and time scales have been shown for atmospheric trace135

gases in urban environments.43,44136
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Background estimation137

We define the “long-range” background as the molar fraction of trace gas in the air flowing into138

the large domain (Fig. 2) for a particular flight. Because our measurements do not reach the139

boundaries of the domain, we first determine a “measured background” as the 5th percentile140

of the observed values. However, this “measured background” also includes the contribution141

from sources within the domain (“inside contribution”) which we approximate as the 5th142

percentile of the ensemble of transport models mean of simulated enhancements. Thus, the143

“long-range” molar fraction is approximated by subtracting the “inside-contribution” from144

the “measured-background”.145

For the second, high-resolution inversion, in addition to the previously computed “long-146

range” background, the contribution of the nearby outside sources (sources within the large147

domain but not in the nested domain) is incorporated into the background using the opti-148

mized fluxes from the coarser domain inversion posterior. This step helps to better char-149

acterize the outside contribution by using upwind sources already optimized as opposed to150

relying on the prior.151

Bottom-up emissions152

As the inversion prior (xb), we use the fuel-based CO emissions inventory of motor-vehicle153

emissions (FIVE),12,14 provided at 12-km and 4-km resolution for July 2018 (These emission154

files were created for the Long Island Sound Tropospheric Ozone Study (LISTOS) and New155

York Investigations of Consumer Emissions (NYICE) in 2018, and can be found at.45 FIVE156

replaces the whole "on-road" and "non-road" sectors of the NEI-2014 but maintains the rest157

of sectors. The fluxes are reprojected using a bilinear interpolation method to 0.1◦ and 0.03◦158

respectively for each domain used in the tiered inversion. We use the weekday, daytime159

hours (09:00 to 18:00 EST) average as prior emissions, constant in time, in the inversion160

consistently for the whole period. The prior emissions are kept constant among inversion161

days so that temporal changes in the posterior are not a consequence of changes in the prior162
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emissions.163

We use annual CO emissions estimates reported46 by the EPA in the NEI to compare164

with our posterior emissions estimates. The EPA estimates are at state level. However,165

our study area (red, Fig. 1 ) contains three states (Maryland, Virginia, and the District166

of Columbia) and thus we account for the proportion of each state’s total emissions that167

originate in the part of the urban area that belongs to each of the three states using the168

FIVE spatial distribution. This results in a weighted annual CO emissions estimate for our169

accounting area composed of 22 % of Virginia (VA) emissions, 56 % of Maryland (MD)170

emissions and 100 % of District of Columbia (DC) emissions. In addition, since our aircraft171

measurements were conducted during afternoon hours, and considering the typical residence172

time of the particles over the urban area (≈ 4 - 5 h), the reported inversion results represent173

daytime emissions (≈ 09:00 to 18:00 EST) rather than a 24 h average and, thus, to compare174

them with the NEI bottom-up estimates in a consistent way, the FIVE’s daily cycle is applied175

to the EPA’s annual emissions. This results in emissions ≈ 50 % larger than the reported176

annual mean.177

Last, to estimate the impact of COVID-related traffic reductions on CO emissions we use178

four activity proxies. The first two are directly derived from traffic counts and, as such, are a179

measure of how traffic changed. The first one measures the traffic counts47–49 changes during180

2020 from 127 stations in DC and Baltimore with respect to the first three weeks of 2020,181

while the second measures the changes in traffic counts with respect to the 2018 and 2019182

weekly average for the same stations. In addition, we use the Apple mobility index50 data183

for DC/Baltimore area, which is a proprietary index published by Apple Inc. during the184

pandemic that attempts to quantify the “mobility” using cellphone data. Last, we consider185

the declines in monthly “motor gasoline” fuel sales,51–53 using as reference the 2018 and186

2019 monthly average (Fig. 3). State fuel totals are combined using the same proportions187

presented in the previous paragraph. All these activity reduction proxies are then combined188

with the relative fraction of total emissions produced by, i) mobile on-road (≈ 50 %) and,189
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ii) mobile on-road + non-road (≈ 88 %) sectors from the NEI-20178 to produce relative CO190

emissions reductions. Then, they are averaged (for the appropriate days) to calculate the191

average reduction for the months of April and May for these two sectors independently. The192

standard deviation is also calculated among the different proxies and dates.193

Figure 3: Comparison of the time-series for the Apple daily mobility index for DC/Baltimore
area (red), traffic counts during 2020 for 127 stations in DC and Baltimore normalized to the
first three weeks of 2020 (TMAS-2020, grey solid line), 2018 and 2019 averaged traffic counts
for the same stations (TMAS-ref, grey dashed line), traffic counts reduction in 2020 with
respect to the 2018 and 2019 weekly averages, (TMAS-2020/ref, blue), and “motor gasoline”
fuel sales declines from the 2018 and 2019 monthly average (green). Sundays and period
when the flights happened during the lock-downs are also shown. Note that the TMAS-ref
series has been shifted to match the day of the week in 2020.(TMAS: Travel Monitoring
Analysis System).
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Results194

Emission Rates195

CO emission rates for the Washington, DC - Baltimore, MD area were estimated using196

an inverse modeling technique21 with aircraft measurements collected over 6 years (2015197

to 2020). Figure 4 shows the posterior CO emission rates estimated by the atmospheric198

inversion for the DC/Baltimore area (red area in Fig. 1) grouped by a) year, b) month, and199

c) day of the week. Each group (box and whiskers) contains all individual estimates from200

inverse calculations using two different transport models, and for each of N flights included in201

the group. The dominant source of variability in posterior emissions was the daily variability,202

≈ 32 %, which, as discussed in previous work, represents a combination of real variability in203

emissions and methodological uncertainty.21 In particular, the median spread in the posterior204

emissions due to the transport model for any particular day was about ≈ 8 %, which imposes205

a limit to the detectability of changes in daily emissions. However, at longer time scales, the206

median variability due to the transport model for each annual campaign (from 5 to 16 flights207

per year in this work) was just ≈ 3.8 %. This indicates that the addition of flight days can208

partially mitigate the transport model uncertainty and increase our ability to detect smaller209

changes in emissions at these longer temporal scales. The annual variability is approximately210

15 %, very similar to the monthly variability, 14 %, and weekday variability, 16 % (all defined211

as 1-σ of the means). However, it is clear that 2015 and 2020 stand out for having higher,212

and lower emissions, respectively, than the average for the period from 2016 to 2019 (Fig.213

4a). In fact, the annual variability between 2016 and 2019 is just 8 % while the monthly214

variability remains about the same (16 %). The monthly emissions (Fig. 4b) do not show215

any apparent seasonal cycle outside the range of the monthly variability. Nevertheless, the216

number of flights for some of the months is small and thus the mean estimates are more217

uncertain. As a point of comparison, fuel sales and traffic counts show a seasonal cycle of218

≈ 5 % indicating that more flights will be needed during summer months to uncover the219
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presence of any seasonal pattern in CO emissions. Sunday emissions are lower than weekday220

emissions (Fig. 4c) reflecting reduced traffic and industrial activities on Sundays, as also221

shown by the traffic counts and mobility index (Fig. 3). Our results for CO emissions show222

that the average for the period from 2016 to 2019 agrees well with the daytime emissions223

from the FIVE inventory (used as prior), as also shown in previous work.14 In addition,224

CO emissions in February 2016 match, within 1 standard deviation, those estimated in a225

previous analysis,21 in which a larger number of transport models and prior inventories were226

used and a large sensitivity analysis was conducted, providing additional confidence in our227

current estimated emissions.228

The spatial distribution of the posterior emissions averaged by year is shown in Figure229

5. Clear patterns associated with urban emissions, including traffic, seem to dominate as230

expected. Also, changes among years are evident, showing for example the overall higher231

emissions in 2015 or lower emissions in 2020, but without dramatic spatial differences. This232

result is however expected as most of the emissions sources are in the same locations.233

Trends and Anomaly Detection234

According to EPA’s state-level National Emissions Inventory (NEI), CO emission rates235

(daytime-adjusted and spatially allocated to the Washington, DC and Baltimore metropoli-236

tan area, see Methods) declined at a rate of (− 150 ± 6) mol s-1 a-1 (1-σ and thereafter)237

between 1996 and 2010, with a smaller but still significant trend of (− 32 ± 6) mol s-1 a-1238

from 2011 to 2019. However, for the period from 2016 to 2019 the trend was even smaller239

with just (− 17 ± 4) mol s-1 a-1, Table 1. The sharp decrease in CO during the 1990s is240

attributed to the universal adoption of port fuel injection, the elimination of carburetors241

and the success of three-way catalytic converters in controlling tailpipe emissions, includ-242

ing co-emitted volatile organic compounds (VOCs) that contribute to secondary ozone and243

aerosol formation.2,54 More recently, there are expected diminishing CO reductions from244

emission control technologies implemented on combustion-powered automobiles over many245
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Figure 4: Boxplots of CO posterior estimated emission rates (E.R.) for DC/Baltimore
grouped by a) year, b) month and c) day of the week. Boxes indicate the the inter-quartile
range (IQR), i.e. the 25th to 75th percentile range, whiskers the range up to 1.5 times the
IQR, circles the outliers (> 1.5 x IQR) and the black line the median. The black dashed
line represents the average emission rate for the period 2016 to 2019. The grey dotted line
represents the emission rate of the daytime FIVE inventory, used as the prior. The red, solid
circles connected with the red line represent the mean top-down estimate and the red shaded
area represents the standard error of the mean. The number of flights per group is shown in
parentheses.
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Figure 5: CO posterior flux (xp) averaged by year. The number of flights (N) and the mean
total emission rate ± the standard error for each year are indicated in each panel. Color-scale
is saturated at the maximum value shown.

decades.55,56246

Table 1: CO emissions trend (mol s-1 a-1) for the DC/Baltimore urban area for different pe-
riods calculated using the measurements (top-down) and derived from the daytime-adjusted
NEI reported values (bottom-up). p-values in brackets. (*pre-COVID).

Period Top-down Bottom-up
1996-2010 N.A. − 150 ± 6 (<<0.001)
2011-2019 N.A. − 32 ± 6 (0.001)
2015-2020* − 37 ± 13 (0.044) − 44 ± 15 (0.066)
2016-2020* − 20 ± 13 (0.21) − 17 ± 4 (0.048)

Figure 6 shows a comparison of the yearly averaged posterior emission rates (i.e., atmo-247

spheric measurement based, or top-down, estimates57) and the bottom-up estimates derived248

from the NEI for the area of interest. As discussed before, top-down estimated emissions in249

2015 are larger than the average between 2016 and 2019, which is also shown by the bottom-250

up estimates. On the other hand, the bottom-up daytime-adjusted emissions (≈ 09:00 to251

18:00 EST time) are ≈ 50 % larger than the inversion posterior estimates.252

The annual trend obtained with the inversion for the period 2016 to 2020 (before the253

COVID lock-down) is (− 20 ± 13) mol s-1 a-1 (p-value = 0.21) or ≈ − 3.1 % a-1. This254

trend is similar to, although slightly larger than, the trend obtained from the daytime-255
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adjusted EPA estimates ((− 17 ± 4) mol s-1 a-1, p-value = 0.048). The EPA trend is within256

the uncertainty of the posterior estimate trend, making them indistinguishable. However,257

due to the larger uncertainty obtained in our top-down estimates, we cannot establish our258

measured trend as statistically significant.259

Figure 6: CO posterior (top-down) emissions rates for DC/Baltimore by year compared
to EPA bottom-up estimates (scaled-up to represent daytime values) and annual trends.
Shaded areas indicate the 95 % confidence interval of the corresponding trendlines between
2016 and 2020 (top-down; 2020 estimate calculated without the COVID-affected flights) and
2016 and 2019 (bottom-up). 2015-2020 trendlines omitted for clarity. Errors bars indicate
the standard error of the posterior annual means. The COVID period is also shown separated
between 16 - 30 April 2020 and 1 - 16 May 2020. The dashed line represents the expected
emissions for 2020 extrapolated from the top-down trend and the red circles are expected
emissions after accounting for mobile sector reductions (on-road only and on-road+non-road)
due to mobility changes during the COVID lock-down using the extrapolated top-down trend
as reference. Error bars (red) in the COVID extrapolations represent the 1-σ daily variability
within the month. The number of flights in each group is given in parentheses.

Including 2015 in the trend estimation, our top-down trend becomes (− 37± 13) mol s-1 a-1260

or ≈ − 4.5 % a-1. This trend is 2.8 times the associated uncertainty, with a p-value of261

0.044, and is larger than for the period from 2016 to 2020. However, the relative uncer-262

tainty is smaller, 35 %, as compared to the previous 65 %, and the p-value smaller, being263
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now statistically significant at the 95 % level. On the other hand, the bottom-up trend is264

(− 44 ± 15) mol s-1 a-1 with a p-value of 0.066. As with the top-down case, this trend is265

larger, but is more uncertain and is no longer statistically significant at the 95 % level.266

As mentioned in the previous section, the 2020 top-down emissions estimates for CO267

were lower than in previous years (Figure 4a). However, by separating the 2020 estimations268

made before (February 2020) and during the COVID-19 induced lock-down (16/04/2020269

to 16/05/2020), (Figure 6), it is clear that emissions during the lock-down period were270

lower on average. Specifically, we see a 16 % ((96 ± 51) mol s-1) reduction with respect271

to the expected 2020 emissions using the calculated top-down linear trend (dashed line),272

or 23 % ((149 ± 54) mol s-1) with respect to the averaged top-down value for the period273

2016 to February 2020. These reductions for the lock-down period relative to either the274

long-term trend or the mean of previous years are more than 1.9 or 2.8 times the standard275

error of the observed difference, respectively. In April, the emissions were reduced 28 %276

((171 ± 104) mol s-1) with respect to the expected 2020 emissions using the calculated top-277

down linear trend, or 34 % ((219 ± 105) mol s-1) with respect to the averaged top-down278

value for 2016 to February 2020. In May, the reduction was smaller, 9 % ((55 ± 45) mol s-1)279

using the top-down linear trend or 16 % ((102 ± 48) mol s-1) with respect to the 2016 to280

February 2020 averaged. Our CO emissions declines are consistent with expected reductions281

in traffic emissions (Figure 6) estimated using traffic counts, fuel sales and mobility metrics282

(see Methods),as well as sectoral attribution provided by the NEI, further indicating that283

traffic was the main driver for the observed CO emissions decline and that it was substantially284

reduced in April relative to previous years, but then rebounded in May as the populations285

in these cities relaxed restrictions on activity.286

The spatial distribution of emissions for the pre-COVID period (excluding the high-287

emissions year 2015) along with the emissions map during the COVID shutdown and the288

differences between them are shown in Figure 7. The largest absolute reductions are mostly289

seen where emissions were the largest in the pre-COVID period, with a general reduction of290
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emissions in the urban areas. We can also estimate the relative reduction in the two separate291

metropolitan areas, resulting in a ≈ 26 % average relative reduction for the Baltimore, MD,292

census-designated area and an ≈ 18 % average relative reduction for the Washington, DC–293

VA–MD, census-designated area. However, due to the larger uncertainty for the reduction294

ratios at these smaller spatial scales, these differences between cities are not statistically295

significant.296

Figure 7: CO posterior emissions maps averaged a) between 2016 and February 2020, repre-
senting a pre-COVID estimate, b) during the COVID lock-down (16/04/2020 to 16/05/2020)
and c) spatial differences between the two. The number of flights (N) and the mean total
emissions ± the standard error for each are indicated in each panel.

Implications297

In this work we characterize the CO emissions phenomenology in the DC/Baltimore area and298

quantify the absolute emissions and their temporal characteristics. We find that while the299

seasonal cycle appears modest, the monthly and annual variability is considerable and there300

is a clear Sunday effect in emissions. This result implies that emission estimates can benefit301

from continuous updating, especially during times of rapid changes in emission drivers, and302

that the temporal variability in CO emissions must be considered to better understand air303

quality in urban areas.304

The US EPA National Emissions Inventory estimated trend based on bottom-up models305

agrees well with the results presented in this work (2015 – 2020) as well as with previous work3
306

in the area (1997 – 2010). Together, these results highlight that more efficient combustion307

and emissions controls put in place by Federal and State Governments have been successful308
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in achieving a long-term reduction in CO emissions. However, both our results and the EPA309

trends also suggest that in the last decade, CO emission reductions have slowed, which also310

has implications for trends of co-emitted mobile source VOCs and primary and secondary-311

forming PM2.5 emissions.2,7 Several metropolitan regions of the US still violate the ambient312

air quality standard for ozone and PM2.5, which impacts human health,58 and continued313

emissions control may be needed to continue improving the air quality in our cities.314

The anomaly in emissions due to the pandemic response, while substantial at 16 % (or315

23 % depending on the reference) for April and May 2020, was only a transitory reduction316

mainly driven by a decline of ≈ 35 % in traffic. However, this decrease also offers a partial317

glimpse into the emissions reductions possibly achievable if ≈ 35 % of the combustion-318

powered vehicles were removed or replaced with non-emitting vehicles, assuming that the319

same composition of the fleet as that caused the reduction in traffic during the COVID period320

is maintained during the transition. We recognize, however that such a reduction (or more)321

could be achieved by targeting the high-emitting vehicles on the tail of the distribution.59,60322

Future work is needed to better understand the seasonal cycle of CO as well as to monitor323

the impact on emissions as the fleet transitions to non-combustion engines by continuing324

to update the emissions in the study area in near real-time, as well as to compare to other325

cities with potentially different combinations of sources and degree of technology penetration.326

Additional pollutants and trace gases, like GHGs, should also be considered to increase our327

understanding of source composition and emission factors relative to CO2.328
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