
Network Security Traffic Analysis Platform -
Design and Validation

Zineb Maasaoui∗,Anfal Hathah∗†, Hasnae Bilil∗, Van Sy Mai∗, Abdella Battou∗, Ahmed lbath‡
Advanced Network Technologies Division, National Institute of Standards and Technology, MD, USA

†LIG/MRIM, CNRS, Grenoble Alpes University, Grenoble, FRANCE
‡Department of Computer Engineering and Sciences, Florida Institute of Technology, FL, USA

Email: {zineb.maasaoui, anfal.hathah, hasnae.bilil, vansy.mai, abdella.battou}@nist.gov,
ahmed.lbath@univ-grenoble-alpes.fr

Abstract—Real-time traffic management and control have
become necessary in today’s networks due to their complexity and
cybersecurity risks. With the increase in Internet use, threats are
more prevalent and require real-time detection and analysis to
prevent network intrusions. As the number of data flow increases,
the number and the types of attacks increase, which makes
detecting intrusions challenging. Therefore, over the last years,
many researchers have focused on different ways to detect and
more importantly prevent these intrusions

In this work, we describe the design and evaluation of a
network security traffic analysis platform (NSTAP) that collects,
searches, and analyzes traffic data in real time in order to filter
out malicious flows. Through charts, tables, histograms, and other
visualization methods, we demonstrate that the platform can
produce powerful and useful insights with simple time-domain
analytics of large data volumes. This work is intended to be the
foundation for more automation tools based on machine learning.

Index Terms—Network, Security, Intrusion Detection, Traffic
management, Machine learning

I. INTRODUCTION

Threat detection is a fundamental component of the current
network security ecosystem. Networks are becoming more
vulnerable because of the steady increase in attack attempts.
The need for a real-time solution for detecting, managing,
and controlling the traffic in a network has become necessary.
Attacks are growing in sophistication, leading to the need to
understand and identify the various properties of the network’s
flows.

Several studies have been published on intrusion detection
systems (IDS). The used techniques are generally signature-
based and can only detect known threats. In the early research,
the author in [1] based his study on predefined rules to
represent the characteristics of abnormal data. The matching
of these rules with the data profile allows to decide whether
there is an intrusion or not. Another approach [2] aims at
improving the detection by combining signature-based meth-
ods and immune-based intrusion detection methods to improve
the detection rate and reduce the false alarm rates. In addition,
machine learning-based approaches are used to detect zero-day
intrusions in the network traffic [3]. While in [4] the authors
studied different supervised algorithms applied to KDD99
dataset and showed no high detection rate for each class of
this dataset. The authors in [3], [5] presented a comparative

study of different machine learning techniques for anomaly
detection.

All these strategies require a large dataset of network flows.
There are a few available datasets, some of them are outdated,
others lack traffic diversity, and the more recent ones are still
being evaluated.

In this work, we aim to develop a network security traffic
analysis platform (NSTAP) that will be deployed inside or at
the edge of a network to collect and analyze real-time network
traffic flows. It will also archive the data for batch processing
in a HADOOP environment. NSTAP is able to combine its
collected data with existing datasets to provide a testbed for
real-time network traffic flow analysis.

II. RELATED WORK

With the rise of Internet usage, network attacks have become
more frequent, and Distributed Denial of Service (DDoS)
attacks make up a big fraction of these attacks. Consequently,
multiple studies have been conducted to model attacks and
enhance networks security [6]. For instance, the authors in [7]
proposed a lightweight algorithm to protect communication
networks against DDos attacks.

A part of the current IDS studies focused on traffic monitor-
ing by offering a traffic visualization and analysis [8]. Other
studies focused on new ways to collect, search, and visualize
the streaming network traffic – Elastic search and Kibana for
example. The authors in [9] for example, are able to process
streaming data and provide intuitive visualizations to facilitate
the detection of attacks in real-time. However, these methods
of visualization remain inefficient (not scalable) when the
amount of data is large. Also, they did not provide access to
the traffic history. While the authors in [10] treated the traffic
as a collection of flows and looked for significant changes
in the traffic patterns. They used the data to derive a model
of normal behavior based on past traffic history. Then, they
looked for significant changes in short-term behavior that are
consistent with that model. This approach can detect accurately
significant changes in traffic, albeit with a lot of false alarms
in massive data streams. Another study analyses the traffic
characteristics based on HADDOP [11]. A traffic monitoring
system was developed to collect real-time network traffic using



Fig. 1. Network architecture.

SARIMA model to examine the traffic characteristics and user
behavior from the perspective of flowsMore.

There are several security platforms on the market – fire-
walls, intrusion detection systems, virus scanners, etc. There
are also numerous open-source tools to collect network data.
What we noticed is a lack of tools for real-time analysis of
large volumes of network flows.

III. NETWORK SECURITY TRAFFIC ANALYSIS PLATFORM
DESIGN

The NSTAP design has two main objectives – inform
us about two aspects of our network: (1) Performance (2)
Security.
In terms of performance, we would like to monitor the
network, get alerts when certain links are about to experience
congestion, and receive alerts when certain network elements
are starting to drop packets on certain ports. We would like
to also have the capability to detect loops and parts of the
network that are unreachable. In terms of security, we would
like to detect threats and provide incident response for fast
remediation.

The performance and security evaluation requires the moni-
toring of the network at various points and collecting massive
volumes of data. This in turn defines our first design require-
ment of NSTAP we call the data strategy (NSTAP Pipeline)
requirement – the ability to ingest large amounts of data.
The second design requirement of NSTAP is the processing
requirement – the ability to process the data in real time.
These two requirements need to scale with network and data
collection size.

The performance goal includes a network connectivity anal-
ysis to determine the status of all network activities in order
to get a picture of bandwidth and resource utilization on the
network.

While the security goal is to have a capability that would
ingest all data from across the network, normalize it to make
it searchable, analyze it for anomalies, and then investigate
events and remediate incidents to neutralize attackers. In
this paper, we will only discuss network security and leave
the performance part of NSTAP for a future publication. In
the following, we will provide a description of the NSTAP
components and architecture.

A. Data Collection

The data collection module is responsible for collecting
network and host data. It is composed of two agents – Zeek
and Osquery agents. Both platforms are well-documented in
[12] and [13]. We will only describe how we integrated them
into the NSTAP.

B. ZEEK Agents

Zeek (previously named Bro) is an open source network
analysis framework developed by Vern Edward Paxson a
Professor of Computer Science at the University of California,
Berkeley. It is released under the BSD license. To collect
network data, we tap the network before the firewall using
a bidirectional optical tap that we connect to a Linux server
where we run a zeek agent as shown in Fig. 1. The reason for
this is to get all the attacks including the ones filtered by the
firewall. We also deploy what we call a managed zeek probe
in every segment in the network using port mirroring. This
is a low-cost Raspberry Pi computer running the zeek agent.
All of these zeek data collectors/Probes are managed traffic
monitoring resources controlled from the NSTAP management
system.



C. Osquery Agents

Osquery is a high-performance and low-footprint distributed
host monitoring daemon (Osqueryd). Its strength comes from
the way it exposes the host operating system as an SQL
Database. The benefit of an SQL database API is that we can
query our entire host’s infrastructure. The daemon aggregates
the query results over time and generates logs that indicate
state changes in our infrastructure. This allows us to build an
intelligent layer on top of Osquery to maintain insight into the
security and performance of the entire infrastructure. Notice
that through Osquery we have access to the application traffic.

D. Network Security Traffic Analysis Platform architecture

The NSTAP design includes 4 components – (1) Intelli-
gent Agents/Probes for data collection, (2) Pipeline for data
strategy, (3) backend for real-time data processing, and (4) a
Graphical User Interface (GUI) for representation and access.
We had several design choices on how to organize the interac-
tions between these components. The selection of intelligent
probes like Zeek and Osquery made our design choice very
flexible. Scalability was a major design parameter. We wanted
to be able to ingest massive amounts of data. After several
evaluations, we used a combination of two approaches:

(1) REST APIs Model
(2) Publish/Subscribe Model

Both approaches have been used in large production envi-
ronments (large financial applications in banks for example)
and have been shown to scale very well. Our choices were
also guided by existing open source projects we could use for
our implementation. We started with the first model and used
the OpenAPI Specification (OAS) to define language-agnostic
interface to RESTful APIs. We used it to generate code for
the implementation of the green (1), gold (2), and red (3)
interactions shown in Fig. 2. We also use the green connections
(1) to submit SQL queries for real-time inquiries from the
GUI. The collected data was stored in a Mongo Database and
accessed through the GUI to the initial evaluation (Fig. 3). We
put those queries on schedule to generate both network and
host data to start the evaluation and NetOps of our intelligent
layer. This first implementation is shown in Fig. 4 in red.

Fig. 2 below shows the real-time section of the NSTAP
architecture without the details of its pipeline. The green
lines labeled (1) refer to management bidirectional connections
using REST APIs. Endpoints exist on the agents and on
the NSTAP Backend. These REST API connections allow
us to carry configuration changes/updates on the agents and
to also receives alerts from the agents such as health status.
Both zeek and osquery require some configurations and this
approach allows to dynamically make changes and do a restart
when necessary. The gold labeled (2) and red labeled (3)
connections use a push model to move the data from zeek
and osquery respectively to the NSTAP pipeline. We use the
green connections labeled (1) to update the data collection
push schedule.

We also use the green connections (1) to submit SQL
queries for real-time inquiries from the GUI.

Fig. 2. NSTAP Architecture - Real-time section without the data pipeline.

Fig. 3. Screenshot of NSTAP GUI of traffic logs

E. Network Security Traffic Analysis Platform Data Pipeline

The data pipeline includes a load balancer (LB), a Web-
server (NGINX) , and a publish/subscribe messaging compo-
nent (Kafka). These components are selected because of their
scalability and have been all tested in various environments.
This data pipeline will feed both the real-time section through
Fig. 3 and Fig. 4 a database and the batch processing section
through a Hadoop environment as shown in Fig. 4.

The batch processing section will be used for unsupervised
learning algorithms to augment our automated detection algo-
rithms.

IV. USE CASE FOR NSTAP VALIDATION - INDUSTRIAL
CONTROL SYSTEM

Due to covid-19 crisis, we weren’t able to collect data from
our Smart Grid laboratory. To test the NSTAP we are using
the industrial network shown below in Fig. 5.

The substation’s energy network part is shown in Fig. 6.
It represents the one-line diagram of a power system used

Fig. 4. NSTAP Architecture - With data pipeline and batch processing section.



Fig. 5. Industrial control network environment [14].

Fig. 6. Substation one-line diagram [15].

for generating network traces. It consists of buses and 18
Intelligent electronic devices (IEDs), each with a unique
Mac address. The IEDs communicate among themselves
using IEC61850 Generic Object Oriented Substation Event
(GOOSE) communication protocol to facilitate information
exchange between devices in electrical substations. The gen-
erated GOOSE trace file can be analyzed in Zeek to generate
goose.log file. These logs consist of a subset of the GOOSE
data fields relevant to cybersecurity analysis.

We are feeding the NSTAP with the IEC-61850 dataset
[15] using the following simulated scenarios : attack-free,
attack-free with disturbance and attack trace with message
suppression scenarios. Then, we use NSTAP to analyze the
traffic by : (1) Searching the logs from NSTAP logs section
(Fig. 10) and (2) Generating graphs.

For the normal scenario, since all the IEDs are running
normally, the trace generator program is set to 1 GOOSE
frame/second and there are no event changes in the GOOSE

Fig. 7. Screenshot of attack-free Network trace.

Fig. 8. Screenshot of disturbance Network trace.

dataset. In Fig. 7, SqNum and StNum are correlated with each
GOOSE frame and the number of events respectively. With
stNum and sqNum are counters that indicate a change within
the Goose Frame and the dataset respectively [15]. As for
the breaker failure scenario, which is a type of disturbance, a
line fault is simulated to activate the breaker failure protection
schema. LIED11, represented in Fig.6, sends a GOOSE frame
to its neighbors IEDs to inform them about the malfunctioning
of CB-11. Fig. 8 shows the visualization of the generated trace
file where the StNum increases from 1 to 2 and then to 3. On



Fig. 9. Screenshot of attack induced trace with injection of high StNum of
GOOSE frame.

Fig. 10. NSTAP screenshot of Goose custom filter result.

the other hand, the SqNum resets to 0 when the disturbance
happens. Finally, for the attack scenario, the attackers hijack
the communication channel by injecting a GOOSE frame with
a high StNum. Fig. 9 shows the screenshot of the attack trace
with the high status number of 9999.

On the traffic logs side, as shown in Fig. 10, we can create
custom filters for each log which will allow us to better analyze
the traffic.

V. FUTURE WORK

Our future direction is to explore the collected data to work
on intrusion detection using machine learning to introduce a
framework dedicated to network security assessment and real
time monitoring. The design and architecture of NSTAP allows
us to collect enormous amounts of data which is an essential
ingredient in machine learning. We intend to simulate different
kinds of attacks in our laboratory’s network. We will start
with existing available datasets such as CIC-IDS 2017 [16]
and IEC61850 SecurityDataset to build our ML model. Then
we will test it on the traffic logs collected from the NIST

SmartGrid testbed laboratory. The ability to import external
datasets is important for machine learning training tools.

VI. CONCLUSION

In this paper, we presented the Network Security Traffic
Analysis Platform with the objective to highlight its perfor-
mance and scalability necessary to work with massive datasets.

The platform provides managed sophisticated probes and
our motivation comes from the increase of attack attempts and
the need to provide real time traffic analysis for our network.
NSTAP provides great visualization tools and real-time filters
and stream processing on the network traffic logs. We designed
and implemented the NSTAP to be easy to use and deployed
by dockerizing its services.

We demonstrated its value in an industrial network environ-
ment and were able to generate alerts and represent the traffic
logs with meaningful graphs for an easy analysis.

REFERENCES

[1] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on
Software Engineering, vol. SE-13, pp. 222–232, 1987.

[2] C. Liu and Y. Zhang, “An intrusion detection model combining
signature-based recognition and two-round immune-based recognition.”
Institute of Electrical and Electronics Engineers Inc., 2021, pp. 497–501.

[3] M. Almseidin, M. Alzubi, S. Kovacs, and M. Alkasassbeh, “Evaluation
of machine learning algorithms for intrusion detection system,” in
2017 IEEE 15th International Symposium on Intelligent Systems and
Informatics (SISY), 2017, pp. 000 277–000 282.

[4] T. Mehmood and H. B. Rais, “Machine learning algorithms in context
of intrusion detection.” Institute of Electrical and Electronics Engineers
Inc., 12 2016, pp. 369–373.

[5] V. Bhatia, S. Choudhary, and K. Ramkumar, “A comparative study
on various intrusion detection techniques using machine learning and
neural network,” in 2020 8th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO), 2020, pp. 232–236.

[6] A. Borkar, A. Donode, and A. Kumari, “A survey on intrusion detection
system (ids) and internal intrusion detection and protection system
(iidps),” in 2017 International Conference on Inventive Computing and
Informatics (ICICI), 2017, pp. 949–953.

[7] C. Gkountis, M. Taha, J. Lloret, and G. Kambourakis, “Lightweight
algorithm for protecting sdn controller against ddos attacks,” in 2017
10th IFIP Wireless and Mobile Networking Conference (WMNC), 2017,
pp. 1–6.

[8] A. Cirneci, S. Boboc, C. Leordeanu, V. Cristea, and C. Estan, “Netpy:
Advanced network traffic monitoring,” 2009, pp. 253–254.

[9] H. S. Qiu, W. Willinger, and J. Rexford, “Streaming data visualization
for network security,” 2017.

[10] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM conference on Internet measurement, 2003, pp.
234–247.

[11] D. Peng, Y. Qiao, and J. Yang, “Analyzing traffic characteristics between
backbone networks based on hadoop.” Institute of Electrical and
Electronics Engineers Inc., 2014, pp. 149–153.

[12] Vern Paxson, “The zeek network security monitor,”
https://docs.zeek.org/en/master/about.html, 19985, accessed: 2022-
08-06.

[13] Facebook, “osquery,” https://osquery.readthedocs.io/en/latest/, 2014, ac-
cessed: 2022-08-10.

[14] C. Salter, “Future trends to smart grid automation architecture by iec
61850.”

[15] P. P. Biswas, H. C. Tan, Q. Zhu, Y. Li, D. Mashima, and B. Chen,
“A synthesized dataset for cybersecurity study of iec 61850 based
substation.” Institute of Electrical and Electronics Engineers Inc., 10
2019.

[16] Canadian Institute for Cybersecurity, “Intrusion detection evaluation
dataset (cic-ids2017),” https://www.unb.ca/cic/datasets/ids-2017.html,
2017, accessed: 2022-08-05.


