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Abstract: In this post, we illustrate how various techniques from privacy-enhancing cryptography,
coupled with differential privacy protection, can be used to protect data privacy while enabling
data utility. Of notable interest is the setting where there are multiple sources of relevant data,
each having privacy constraints about data sharing. Privacy-enhancing cryptography is naturally
suited to resolve challenges in multi-party and interactive scenarios, avoiding the sharing of data
across parties. Its combined use with differential privacy broadens the set of problems that can
be handled in a privacy protecting manner. In this post, we consider a use case related to private
medical data, but the ideas can easily transfer to myriad other settings.

Protecting data privacy across multiple datasets

Alice is the data steward at hospital HA, responsible for a database of patient medical records.
Similarly, Bob is the data steward at another hospital HB. Alice and Bob learn of Rya’s ongoing
research about correlations between patients’ age and diagnosis. Alice and Bob would like to help
Rya, since the research could provide useful insights to derive better medical practices. However,
there are privacy restrictions that prevent Alice and Bob from sharing their databases.

Suppose Rya is interested in learning the number of patients diagnosed with a condition X, by
age range. Differential privacy allows Rya to obtain an approximate result from each of the two
hospitals, each tweaked by a noise addition in order to protect privacy. However, the restriction to
two separate results has shortcomings: (1) when combining the two results, Rya is unable to make
corrections that may be required because of possible duplicate entries; (2) the pair of individual
replies leaks information about hospital differences, which is unrelated to Rya’s goal.

In contrast to the above scenario, privacy-enhancing cryptography (PEC) enables Rya to in-
teract with Alice and Bob to obtain a combined response that is corrected with respect to duplicate
entries. This is done without Alice and Bob sharing data between themselves, and without Rya
learning anything beyond the intended output. PEC can be combined with differential privacy
techniques to provide the best tradeoff between privacy and accuracy. Table 1 illustrates how
errors may be introduced when not using PEC. The error is in the sum of two correlated counts,
which overestimates the true count in the union of the two sets. These errors (with rates above
25 % in the example) can significantly hinder the utility of the results.
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Table 1: Measure (N ) of the number of patients with diagnosis X

Age
range

Without differential privacy With differential privacy
Exact counts Error rate r Differentially private

counts
Error rate r

A B ∪AB
If N=A+B
(no PEC)

If N=∪AB
(with PEC) A’ B ’ ∪AB’

If N=A’+B ’
(no PEC)

If N=∪AB’
(with PEC)

0–30 8 11 15 26.7 % 0 % 9.2 10.1 16.5 28.7 % 10 %
31–60 123 85 172 20.9 % 0 % 119.5 87.2 168.3 20.2 % 2.2 %
61–120 428 632 660 60.6 % 0 % 433.7 633.1 656.8 61.6 % 0.5 %

Legend: A (counts at hospital HA); B (counts at hospital HB); ∪AB (counts at the union of hospitals HA
and HB); A’, B ’, ∪AB’ (differentially private versions of A, B, ∪AB); r = N / ∪AB − 1.

What is safe to compute? As discussed in previous posts, differential privacy techniques add
noise to the exact result of a query, to limit privacy loss while still enabling a useful answer to
relevant queries to a database. From a privacy perspective, the approximate result is “safer” than
an accurate answer. PEC techniques achieve something different: they circumscribe the disclosure
to only the specified final output, even if the source inputs are distributed across various parties.
Such disclosure is “safer” (with respect to privacy and accuracy) than replies that would include
isolated answers from each separate source. This is achieved with cryptographic techniques that
emulate an interaction that would be mediated by a (non-existing) trusted third party. The PEC
and the differential privacy paradigms can be composed to enable better privacy protection, namely
in scenarios where sensitive data should remain confidential in each individual original source.
Differential privacy adjusts the query result into a noisy approximation of the accurate answer,
which PEC can compute without exfiltrating additional information to any party.

Privacy-enhancing cryptography techniques

The next paragraphs consider five privacy-enhancing cryptography techniques: secure multiparty
computation (SMPC), private set intersection (PSI), private information retrieval (PIR), zero-
knowledge proofs (ZKP), and fully homomorphic encryption (FHE). We illustrate how they can
apply, in composition with differential privacy, to Rya’s research setting. The examples include
settings that have to handle more than one database, account for privacy restrictions from Rya,
and ensure correctness even if some parties misbehave.

SMPC. With secure multiparty computation (SMPC) [1, 2], Rya can learn a statistic computed
over the combined databases of Alice and Bob, without actually combining the databases. Alice
and Bob do not see each other’s data, and Rya learns nothing about the databases, i.e., other than
what can be inferred from the (differentially private) obtained statistic (see Figure 1).

The application of SMPC together with differential privacy (DP), as showcased in Figure 1, con-
stitutes a more secure alternative to “central DP” and to “local DP”, where a curator combines
the data but also becomes subject to privacy breaches [3], as explained in a previous post. Central
DP compromises on security, by requiring a potentially hackable curator to serve as custodian of
the data from multiple hospitals, to be able to answer queries in a DP manner. Local DP makes a
tradeoff between privacy and accuracy, mitigating the foreseeable case of the hacking of the curator,
by requiring that the data sent from each hospital to the curator has been DP-protected. SMPC
(of differentially private statistics) enables the best of both worlds: it provides the best-possible
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Figure 1: Secure computation of differentially private statistics from combined databases

accuracy (as in central DP), and it avoids the leakage potential from the possible breach of a
curator (in both central and local DP).

A different application of SMPC, to avoid requiring online availability of the original sources (the
hospitals), is to use a distributed curator (see Figure 2). Here, the data from each hospital is
secret shared, so that no sole component of the curator knows the data, but a threshold number
of them is sufficient to answer any query, i.e., using SMPC to compute over the secret-shared data.
Presently, the MPC Alliance is a consortium that joins more than 40 companies interested and
actively engaged in developing and implementing SMPC solutions.
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Figure 2: Differential privacy via a distributed curator, using SMPC over secret-shared data

PSI. With private set intersection (PSI) [4, 5], Alice and Bob can determine the set of patients
that are common across their databases, without sharing any information about other patients.
Naturally, this intersection can be considered sensitive information that should remain private. A
variant called PSI cardinality can be used to compute statistics about the common patients, such
as how many there are, without divulging the set itself (see Figure 3). The mentioned PSI# can
also be considered per age and per diagnosis.

We note that even the cardinality of the intersection may be sensitive information. Therefore, this
multi-party statistic can itself be subject to differential privacy protection. From a different angle,
the statistic can also be useful for the hospitals to determine how to parametrize their differential
privacy protection level for subsequent queries from external researchers. This may improve privacy
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Figure 3: Private set intersection cardinality (PSI#) of patients across two hospitals

and/or accuracy in settings where Rya will later be separately querying both hospitals. Conceivably,
this could be useful in a setting related to the COVID-19 pandemic, as considered in an application
where a party learns a risk of infection based on the number of encountered persons that have
been diagnosed as infected [6].

PIR. With private information retrieval (PIR) [7, 8], Rya is allowed to learn the result of a query
sent to Alice’s database, without Alice learning what was queried (see Figure 4). Recalling our exam-
ple from Table 1, Rya can learn the differentially private approximation (A’ = 119.5) of the number
(A = 123) of patients in HA, with diagnosis X and within the age range 31–60, without Alice learning
the queried age-range. Naturally, this can be generalized to hide which diagnosis (X) was queried.
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Figure 4: Private information retrieval (PIR) of a differentially private statistic

ZKP. Zero-knowledge proofs (ZKPs) [9] allow making proofs about data that has somehow been
“committed” (for example, by disclosing an encrypted version of a database), without revealing
the actual data. Thus, once the data has been committed, a database owner can prove that the
reply given to a certain query correctly relates to data that has not changed. This is a great tool
for allowing accountability while protecing. In particular, ZKPs can also be used to enable other
PEC techniques (such as SMPC, PSI and PIR) in the so-called malicious model, where any of
the parties (Alice and Bob) could otherwise undetectably deviate from the agreed protocol. For
example, a ZKP can be used by Alice to prove to Rya that an answer satisfies an appropriate
differential privacy protection, i.e., resulting from a correct noise addition, with respect to the
original secret database (see Figure 5). Presently, zkproof.org is an open initiative that seeks to
mainstream the development of interoperable, secure, and practical ZKP technology.
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Figure 5: Differentially private answer, with a zero-knowledge proof (ZKP) of correctness

FHE. Fully-homomorphic encryption (FHE) [10] allows computing over encrypted data, without
knowing the secret key. In other words, someone without the secret key (needed to decrypt) is able
to transform a ciphertext (i.e., the encryption of a plaintext) into a new ciphertext that encrypts
an intended transformation of the plaintext. Conceptually, Rya can encrypt the intended query,
send it to one or various hospitals, and then let the hospitals transform the encrypted query into
an encrypted DP-protected reply, which Rya can later decrypt (see Figure 6). The computation
can be made sequentially across hospitals, with each new transformation remaining encrypted until
the final stage of decryption by Rya.
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Figure 6: Using FHE for private computation of differentially private statistics

FHE is a natural primitive to enable privacy-preserving delegation of computation. The reader
may note that the FHE use-case in Figure 6 is very similar to the PIR use-case in Figure 4. Indeed,
FHE can be used as a primitive for a number of other privacy-enhancing cryptography tools,
including PIR, PSI, and SMPC. A typical implementation benefit is that it enables solutions with
minimal communication complexity. A possible downside of FHE is that it can be computationally
more expensive than other solutions. However, there are applications for which FHE is practical,
and the field is rapidly improving. The homomorphicencryption.org initiative is promoting the
standardization of FHE.
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Conclusion

The roles of privacy-enhancing cryptography (PEC) and differential privacy are significantly differ-
ent, but they are complementary. Both types of techniques are applicable to protect privacy while
enabling the computation of useful statistics. In conclusion, the toolkit of the privacy-and-security
practitioners should include PEC tools. They provide additional utility while protecting privacy,
including in interactive and multi-party settings that are not amenable to being handled by
standalone differential privacy. For more PEC details and examples, follow the NIST-PEC project.
This is an exciting area of development.
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Table 1: Measure (N ) of the number of patients with diagnosis X


Age
range


Without differential privacy With differential privacy
Exact counts Error rate r Differentially private


counts
Error rate r


A B ∪AB
If N=A+B
(no PEC)


If N=∪AB
(with PEC) A’ B ’ ∪AB’


If N=A’+B ’
(no PEC)


If N=∪AB’
(with PEC)


0–30 8 11 15 26.7 % 0 % 9.2 10.1 16.5 28.7 % 10 %
31–60 123 85 172 20.9 % 0 % 119.5 87.2 168.3 20.2 % 2.2 %
61–120 428 632 660 60.6 % 0 % 433.7 633.1 656.8 61.6 % 0.5 %


Legend: A (counts at hospital HA); B (counts at hospital HB); ∪AB (counts at the union of hospitals
HA and HB); A’, B ’, ∪AB’ (differentially private versions of A, B, ∪AB); r = N / ∪AB − 1.
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Figure 1: Secure computation of differentially private statistics from combined databases
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Figure 2: Differential privacy via a distributed curator, using SMPC over secret-shared data
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Figure 3: Private set intersection cardinality (PSI#) of patients across two hospitals
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Figure 4: Private information retrieval (PIR) of a differentially private statistic
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Figure 5: Differentially private answer, with a zero-knowledge proof (ZKP) of correctness
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Figure 6: Using FHE for private computation of differentially private statistics
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