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ABSTRACT

A major concern for interconnected power grid systems is low-frequency oscillation, which limits the scalability and transmission capacity of
power systems. Undamped or poorly damped oscillations will lead to undesirable conditions or even a catastrophic system blackout. Real-
time synchrophasor data can be used to reliably detect and control these low-frequency oscillations in order to mitigate their catastrophic
impact. In this paper, two low complexity tracking algorithms are proposed to identify and monitor low-frequency oscillations; namely, a
fast subspace tracking algorithm and a gradient descent based fast recursive algorithm. Initially, both methods perform a one-time matrix
pencil method on the power spectrum matrix of real-time Phasor Measurement Unit (PMU) data to detect low-frequency oscillations. This
is then followed by two different low-complexity algorithms to fast track the low-frequency oscillations. While the first method uses a recur-
sive fast data projection method-based algorithm, the latter runs a gradient-descent based fast recursive algorithm on every PMU to track
and monitor low-frequency oscillations. Both methods have been compared to other state-of-the-art techniques, such as matrix pencil
method, frequency domain decomposition, and TLS-ESPRIT. We have shown that the proposed approaches are capable of achieving perfor-
mance with high accuracy, especially in terms of computational complexity for a large system with many PMUs.

Published by AIP Publishing. https://doi.org/10.1063/5.0051338

I. INTRODUCTION

Low-frequency oscillation is becoming a major concern with the
interconnection of regional power grid systems and the high penetra-
tion of renewable energies. The detection and mitigation of
low-frequency oscillation can be best accomplished using real-time,
high-precision, time-synchronized measurement data. There are two
typical low-frequency oscillations; namely, local modes caused by a
single generator or multiple generators within one area, and interarea
modes associated with a group of generators among multiple areas.1,2

Interarea oscillations not only limit transmission capacity on the tie-
lines between regional power grids but also endanger the stability of
the interconnected power system. Please note that when interarea
oscillations occur, the amount of power transferred to tie-lines should
be reduced in order to ensure stable and secure system operation.1

Furthermore, with the increasing deployment of renewable and sus-
tainable energy technologies such as wind power and photovoltaic
(PV) power, power systems inertia is affected and their stability can be
significantly compromised by the injection of these renewable powers
through induction generators and/or electronics converters, resulting
in intensified low-frequency oscillations.1 Therefore, monitoring and
mitigating low-frequency oscillations can greatly enhance power

systems’ reliability, scalability, and transmission capacity, as well as
provide better solutions for renewable energies.

Traditional methods, such as Prony analysis, Hilbert–Huang
transform (HHT), Kalman filter, and wavelet transform (WT),
detect and characterize low-frequency oscillations based on post-
disturbance data.3–7 A Prony analysis method is developed from
Fourier analysis method and has a high complexity on the order
of OðN3Þ, where N is the dimension of the data vector. The HHT
method is proposed to compute the damping ratios of power sys-
tem signals in Ref. 8. Its computation complexity is on the order
of OðNlogNÞ, which slows down its performance. A Kalman
filtering-based technique is used to detect oscillations in large-
scale power systems in Ref. 7. It estimates frequency and damping
from the on-line measurement signals of PMUs, but at the
expense of higher computational complexity, i.e., OðN3Þ. The WT
method with a low complexity of OðNÞ was used to analyze the
dynamic behavior of the power system in Ref. 9. These traditional
methods, however, can only detect system disturbance under the
system fault occurrence and are not good at detecting
disturbance-independent low-frequency oscillations.1 In order to
detect system oscillations without causing big disturbance to
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power system, some system-identification type methods used
probing signals to provide eigenvalue estimation in Ref. 10.

With the implementation of wide area measurement system
(WAMS), it is now possible to monitor the oscillations in real
time11–13 by acquiring ambient data using synchronized PMU mea-
surements throughout the power system in a nonintrusive manner.
Recently, linear system models, such as autoregressive (AR),14 autore-
gressive moving average (ARMA) with the complexity of OðNlogNÞ;6
together with stochastic state space15 are used to process ambient
PMU measurements under normal operating condition. However,
those methods do not perform well in the presence of noise.

Recursive methods, such as least-mean-square (LMS) adaptive
filtering with complexity of OðNÞ;16 robust-recursive-least-square
(RRLS) and regularized RRLS (R3LS) with complexity of OðN2Þ17,18
update coefficients for each new sample of data and process data in
the time domain. In contrast, frequency-domain decomposition
(FDD)19–22 carries out singular value decomposition (SVD), or eigen-
value decomposition (EVD) to the ambient PMU measurements in
the frequency domain. Moreover, unlike the previously mentioned
time-domain methods, which have to handle data from each PMU
separately, the FDD approach can easily detect interarea oscillations
by performing SVDs on the power spectral density (PSD) matrix of
the entire power system. Another frequency domain method is the
Yule–Walker spectrum (YWS) method,4 which was proposed to calcu-
late autocorrelations from power PSD and is compared with the sub-
space state-space system identification (N4SID) method.4 However,
those methods are not suitable for adaptive tracking of nonstationary
low-frequency oscillations. This is because the required repetitive com-
putation of the subspace or the eigenvectors is at least OðN3Þ. This
complexity is too excessive to practically run in recursive mode. The
ESPRIT-based method, with similar complexity to Prony analysis,23,24

uses least-square or total least squares (TLS) variation to estimate the
modes. Its main problem is separating dominant modes from the triv-
ial modes.25

The matrix pencil method (MPM) proposed in Ref. 26 is one of
the Prony-like methods. It uses SVD on the Hankel matrix to estimate
the oscillation components and achieves a better noise performance
than the Prony method.11 However, the SVD approach has a high
complexity ofOðN3Þ, which makes MPM very time-consuming, hence
is not feasible to track oscillation components in real time. In order to
reduce the complexity, subspace tracking algorithms27–30 are proposed
to recursively update the subspace in a sample-by-sample fashion.
Their main objective is to directly track components of the eigenvalue
decomposition, rather than carrying out eigenvalue decomposition for
each block (window) of the power signal samples. Because of their low
complexity, subspace tracking algorithms have been widely used in
signal processing fields, such as spectrum analysis, direction-of-arrival
(DOA) estimation, interference mitigation, radar, and sonar.

In this paper, we present a fast subspace tracking algorithm to
identify and monitor low-frequency oscillations. For instance, to detect
low-frequency oscillations, an MPM is first performed on the power
spectrum matrix from real-time PMU measurements. This is then fol-
lowed by a low-complexity fast subspace tracking algorithm [on the
order of O Lþ 1ð ÞKð Þ� to monitor the low-frequency oscillations in
real time, where L and K are the pencil parameter and the model
order. Moreover, a gradient descent based fast recursive algorithm is
proposed to further reduce the computation complexity, where the

MPM on the power spectrum matrix of PMU measurements is used
to estimate the initial value of oscillation frequencies and damping fac-
tors. This is then followed by a low complexity tracking algorithm on
the order of O Kð Þ. The computational complexity and the conver-
gence speed in which low-frequency oscillations are detected play a
crucial role in real-time monitoring of the grid system. Indeed, under
these conditions, the control system would be able to respond quickly
in order to prevent possible cascading failures or blackouts.

Our major contributions are listed as follows:

(1) Our paper is the first of its kind to use the fast data projection
method (FDPM) algorithm27 for low-frequency oscillation
monitoring.

(2) In order to detect inter-area oscillations, the proposed FDPM is
also expanded to track the subspace of the entire power grid
system.

(3) By using the MPM on the spectrum of the whole system in the
initial stage, the gradient descent based tracking algorithm can
easily identify and track the inter-area oscillations.

(4) The gradient descent based tracking algorithm includes the esti-
mation and tracking of the damping factor, which is a very
important parameter used to assess low-frequency oscillations.

(5) We have shown that the proposed tracking algorithms are capa-
ble of quickly detecting low-frequency oscillations, hence pre-
venting possible cascading failures in a timely manner. In
addition, since highly scalable, they can be used in large power
grid systems.

The paper is organized as follows: In Sec. II, a background of the
matrix pencil method (MPM) is provided. We then present our fast
subspace tracking algorithm in Sec. III, followed by a low complexity
gradient descent based tracking algorithm in Sec. IV. Section V pro-
vides the simulation results of the proposed tracking algorithms and
then the conclusion is presented in Sec. VI.

II. MATRIX PENCIL METHOD FOR SPECTRUM
ESTIMATION

The matrix pencil method has been widely used mainly in the
field of spectrum analysis and signal parameter estimation. In Fig. 1,
an example of spectrum estimation for low-frequency oscillations is

FIG. 1. An example of spectrum estimation for low-frequency oscillations.
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displayed.1 A general model of low-frequency oscillations can be
expressed as2

y tð Þ ¼ Ae aþj2pfð Þt ; (1)

where A denotes the amplitude of the oscillation, a is the damping fac-
tor, and f is the oscillation frequency. The low-frequency oscillations
typically vary in the range of 0.1–2.0Hz.2 Based on damping factor
and oscillation frequency, we can derive damping ratio f as follows:

f ¼ �affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2pfð Þ2

q ; (2)

which is a practical parameter used to assess low-frequency oscilla-
tions. Power systems with damping ratio f less than 5% are unstable,31

leading to a high risk of system blackout. When sampled at a constant
period Ts, the n th element of the output y can be expressed in the fol-
lowing discrete form:

y nð Þ ¼
XK
i¼1

Aie
aiþj2pfið ÞnTs þ n nTsð Þ; (3)

where K is the model order, Ai, ai, and fi are the amplitude, damping
factor, and frequency of the ith oscillation, respectively. n tð Þ is the
additive Gaussian white noise (AWGN). Figure 2 displays an example
of an output vector y constructed from ambient PMUmeasurements.

If the signal is noise free, output y can be expressed as

y ¼
y 0ð Þ
y 1ð Þ
� � �

y N � 1ð Þ

2
664

3
775 ¼

1 1
z1 z2

� � �
� � �

1
zK

..

. ..
. . .

. ..
.

zN�11 zN�12 � � � zN�1K

2
66664

3
77775

A1
A2

� � �
AK

2
664

3
775; (4)

where zk ¼ e akþj2pfkð ÞTs . In the matrix pencil method, an output matrix
Y is defined as

Y ¼

y 0ð Þ y 1ð Þ
y 1ð Þ y 2ð Þ

� � �
� � �

y Lð Þ
y Lþ 1ð Þ

..

. ..
. . .

. ..
.

y N � L� 1ð Þ y N � Lð Þ � � � y N � 1ð Þ

2
66664

3
77775; (5)

where K � L � N � K is the pencil parameter. According to Ref. 26,
a correctly selected pencil parameter can significantly reduce noise

sensitivity. We use N
3 for L to ensure the robustness to noise. The sin-

gular value decomposition (SVD) of Y can be expressed as

Y ¼ UKVH ; (6)

where U and V are orthonormal matrices consisting of eigenvectors
of YYH and YHY . K is a diagonal matrix containing K nonzero singu-
lar values of Y in descending order. The superscript H denotes conju-
gate transpose. In the presence of noise, the zero singular values in S
become nonzero but are very close to zero. The model order K can be
estimated by finding all singular values which are greater than a
threshold, such as rmax

10r ; where rmax is the largest singular value and r is
the number of significant decimal digits. Singular values below this
threshold are set to zero to eliminate the interference from noise.

After discarding the singular values and vectors corresponding to
the noise, we can rewrite Y as

YT ¼ U SKSVH
S ; (7)

where US ¼ ½u1; u2; …; uK � contains column vectors of U corre-
sponding to the K dominant singulars. Signal subspace VS

¼ ½v1; v2; …; vK � contains column vectors of V corresponding to the
K dominant singulars and KS is a K � K diagonal matrix containing
K nonzero singular values of Y . By deleting the last column or the first
column of YT , respectively, we can construct a pair of matrices of Y1

and Y2 as follows:

Y1 ¼ USKSVH
S;1; (8)

Y2 ¼ USKSVH
S;2; (9)

where VS;1 and VS;2 are obtained by deleting the last row and the first
row of VS, respectively. It is shown in Ref. 11 that zk ¼ e aiþj2pfið ÞTs can
be estimated by calculating the eigenvalues of the K � K matrix

VH
S;2 VH

S;1

h i†
, where † denotes pseudoinverse. After deriving zk, we can

calculate the amplitude Ai by solving Eq. (4).
In order to analyze the spectrum of the entire power grid system,

multiple ðN � LÞ � ðLþ 1Þ the output matrix can be shown as

Yp ¼

yp 0ð Þ yp 1ð Þ
yp 1ð Þ yp 2ð Þ

� � �
� � �

yp Lð Þ
yp Lþ 1ð Þ

..

. ..
. . .

. ..
.

yp N � L� 1ð Þ yp N � Lð Þ � � � yp N � 1ð Þ

2
66664

3
77775; (10)

where, p ¼ 1; 2; …; P. These are collected from P PMUs distributed
over the grid system, which are used to construct an aggregated
P N � Lð Þ � ðLþ 1Þ output matrix: B ¼ ½Y H

0 Y H
1 …Y H

P �
H . The singu-

lar value decomposition (SVD) of B can be expressed as

B ¼ CRPH ; (11)

where C and P are orthonormal matrices consisting of eigenvectors of
BBH and BHB. Similarly, after discarding the singular vectors corre-
sponding to the noise in P, we can obtain the signal subspace PS con-
taining K column vectors of P corresponding to the K dominant
singulars. The next step is to obtain PS;1 or PS;2 by deleting the last
row or the first row of PS, respectively. The spectrum components zk
of the whole system can be derived by calculating the eigenvalues of

the K � K matrix PH
S;2 PH

S;1

h i†
.FIG. 2. An example of an output vector y from ambient PMU measurements.
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Note that the spectrum components of the whole system may be
different from the spectrum components obtained from the observa-
tion vector of each individual PMU. Inter-area oscillations can be
detected by analyzing the aggregated matrix B of the entire system,
while local oscillations may be detected only in some observation
matrices.

Bear in mind that K is usually a small number and the computa-
tional complexity of calculating the eigenvalues of a K � K matrix is
low. Nonetheless, the computational complexity of the matrix pencil
method mainly depends on the implementation of SVD, which is on
the order of OððN � LÞ3Þ or OððP N � Lð ÞÞ3Þ. Such a high complexity
makes the SVD rather impractical to be run in recursive mode.
Alternatively, the fast data projection method (FDPM) algorithm pro-
posed in Ref. 27 can be used to recursively update and track the signal
subspace VS or PS on a sample-by-sample fashion. Bear in mind that
V in Eq. (6) is an orthonormal matrix that consists of eigenvectors of
YHY , which can be decomposed into a signal subspace VS and a noise

subspace Vn as YHY ¼ VKVH ¼ V s Vn
� � Ks 0

0 Kn

� �
VH

s
VH

n

� �
,

where VS is also the signal subspace in Eq. (7), which can be updated
and tracked by the FDPM algorithm. Similar processing can be imple-
mented on PS.

III. FAST SUBSPACE TRACKING ALGORITHM

The FDPM is a numerically stable algorithm for subspace track-
ing with the ability to quickly converge to the steady-state.32 In our
proposed subspace tracking algorithm, the m th ðN � LÞ � ðLþ 1Þ
observation output matrix YðmÞ is constructed as

Y mð Þ¼

y 0þmð Þ y 1þmð Þ
y 1þmð Þ y 2þmð Þ

� � �
� � �

y Lþmð Þ
y Lþ1þmð Þ

..

. ..
. . .

. ..
.

y N�L�1þmð Þ y N�Lþmð Þ � � � y N�1þmð Þ

2
666664

3
777775:

(12)

We then implement an SVD to the output matrix Yð0Þ
and derive the initial subspace VSð0Þ. The signal subspace VS

is updated and tracked using the FDPM algorithm shown in
Table I.

In terms of the operational procedure of the FDPM algorithm,
VS mð Þ and l mð Þ represent the signal subspace and a normalized step
size at the m th time instant, respectively, which are used to guarantee
the convergence of the FDPM algorithm. The exponential forgetting
factor 0 < � � 1 is applied to down-weigh the previous data. This is
used to track the statistical variation of the observed data when work-
ing in a nonstationary environment. By projecting the ðLþ 1Þ
�ðN � LÞ dimensional observation matrix YH to the noise subspace,
the modified FDPM algorithm is capable of recursively updating and
tracking the subspace of the covariance matrix YHY on a sample-
by-sample basis. A K � ðN � LÞ dimensional matrix E1 ¼ e1
� 1 1 � � � 1½ �; e1 ¼ ½1 0 � � � 0�H is used to update the signal subspace.

Householder transformation I � 2An mð ÞAH
n mð Þ

kAnmk2
is then used to ortho-

normalize the signal subspaces VS mð Þ, which can play a crucial role in
the stability and the robustness of the process.

Based on the updated signal subspace VS mð Þ, we can obtain the
signal subspace VH

S;1ðmÞ and VH
S;2ðmÞ. After deriving the spectrum

components z1, z2, � � �, zK by calculating the eigenvalues of the

VH
S;2ðmÞ VH

S;1ðmÞ
h i†

, amplitude Ai can be derived by solving Eq. (4).

When considering spectrum tracking for the entire power grid
system, the aggregated P N � Lð Þ � ðLþ 1Þ output matrix B is used.
The FDPM algorithm is modified to recursively update and track the
subspace of the covariance matrix BHB on a sample-by-sample fash-
ion. As shown in Table I, BH mð Þ is the m th aggregated matrix and
PS mð Þ represents the signal subspaces at the m th time instant.
Instead of projecting the output matrix YH mð Þ to the signal subspace
VS m� 1ð Þ, we project the ðLþ 1Þ � P N � Lð Þ matrix, BHðmÞ, to
update the signal subspace PS m� 1ð Þ.

The FDPM algorithm is able to converge to an orthonormal
matrix despite being initialized with a non-orthonormal one.27

Furthermore, it exhibits the fastest convergence rate among subspace

TABLE I. Procedure of the FDPM algorithm for tracking subspaces of the observation matrix Y or B.

Updating the signal subspace Vs or PS and tracking oscillation components zk.
Perform an SVD to the initial output matrix Y 0ð Þ or B 0ð Þ and generate the initial signal subspace VS 0ð Þ or PS 0ð Þ:
Calculate lð0Þ ¼ l

kYð0Þk2 or lð0Þ ¼ l
kBð0Þk2, where l is a constant parameter less than 1.

For m ¼ 1; 2; … Do
1. Update lðmÞ ¼ l�lðm�1Þ

�lþð1��ÞkYðmÞk2lðm�1Þ or lðmÞ ¼ l�lðm�1Þ
�lþð1��ÞkBðmÞk2lðm�1Þ, where � is the forgetting factor,

2 : Rn mð Þ ¼ VS
Hðm� 1ÞYH mð Þ or Rn mð Þ ¼ PS

Hðm� 1ÞBH mð Þ: projecting the matrix YH mð Þ or BH mð Þ to the signal subspace,
3 : Tn mð Þ ¼ VS m� 1ð Þ þ lðmÞYH mð ÞRH

n mð Þ or Tn mð Þ ¼ PS m� 1ð Þ þ lðmÞBH mð ÞRH
n mð Þ,

4 : An mð Þ ¼ Rn mð Þ � kRn mð ÞkE1,
5. Zn mð Þ ¼ Tn mð Þ � 2

kAn mð Þk2 Tn mð ÞAn mð ÞAH
n mð Þ,

6. VS mð Þ ¼ normalizefZn mð Þg or PS mð Þ ¼ normalizefZn mð Þg: updating the signal subspace.
7. Obtain VS;1ðmÞ or VS;2ðmÞ ½PS;1ðmÞ or PS;2ðmÞ] by deleting the last row or the first row of VSðmÞ ½PSðmÞ�, respectively.
8. Derive the spectrum components z1, z2, � � �, zK by calculating the eigenvalues of the K � K matrix VH

S;2ðmÞ VH
S;1ðmÞ

h i†
or

PH
S;2ðmÞ½PH

S;1ðmÞ�
†.

9. Calculate the amplitude Ai by solving Eq. (4).
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tracking algorithms with computation complexity on the order of
O ðLþ 1ÞKð Þ.

IV. FAST AND LOW-COMPLEXITY TRACKING
ALGORITHM

In Ref. 33, a low-complexity fast tracking algorithm is proposed
to track the harmonics, sub-harmonics and inter-harmonics in power
grid systems. This algorithm has a very low complexity ofO Kð Þ, where
K is the model order of observation vectors. Because of its low com-
plexity and fast tracking characteristics, it is re-designed to track low
frequency oscillations.

Based on Eq. (3), the ambient PMU measurements can be
expressed as

y tð Þ ¼
XK
i¼1

Aie
ai t sin 2pfit þ uið Þ þ n tð Þ: (13)

Gradient descent methods are used to minimize the least squares
error between measurement y tð Þ and the desired signal
Aieai tsin 2pfit þ uið Þ:34 The objective is to extract the desired signal
from y nð Þ. The manifold containing all sinusoidal signals in y tð Þ can
be expressed asM;

M ¼ fA tð Þea tð Þtsin 2pf tð Þt þ u tð Þ
� �

g; (14)

where A tð Þ 2 ½Amin, Amax�, a tð Þ 2 ½amin, amax�, f tð Þ 2 ½fmin, fmax�, and
u tð Þ 2 ½umin, umax�. Please note that damping factor, a, is an impor-
tant parameter used to assess low frequency oscillations. It should be
estimated and tracked in time. The parameter vector belonging to
parameter space, U ¼ A; a; f ;u½ �, can be expressed as;

/ tð Þ¼ ½A tð Þ; a tð Þ; f tð Þ;u tð Þ�T ; (15)

where T denotes matrix transposition. We define a desired sinusoidal
component as follows:

y t;/ tð Þð Þ ¼ A tð Þea tð Þtsin 2pf tð Þt þ u tð Þ
� �

: (16)

To extract any desired component, such as the ith order of signals
from y tð Þ, we need to identify an optimum /i; i ¼ 1; 2; …; K ,
according to the following equation;

/i ¼ arg min
/i tð Þ2U

d y t;/i tð Þ
� �

; y tð Þ �
XK

j¼1; j 6¼i
zj

0
@

1
A

2
4

3
5; (17)

where d½y t;/i tð Þ
� �

; y tð Þ �
PK

j¼1; j6¼i zj
	 


� is the distance function

between y t;/i tð Þ
� �

and y tð Þ �
PK

j¼1; j 6¼i zj, while zj ¼ Ajeaj t

sin 2pfjt þ uj
� �

is the estimated component of the jth order of sig-

nals. Based on (17), the corresponding cost function can be shown
as;

J t;/ tð Þð Þ ¼ d2 t;/ tð Þð Þ¢e2 tð Þ ¼ y tð Þ �
XK

j¼1; j 6¼i
zj

2
4

3
52

: (18)

The gradient decent method is then used to estimate parameter
vector /;

d/ tð Þ
dt
¼ �!

@½J t;/ tð Þð Þ�
@/ tð Þ ; (19)

where the positive diagonal matrix, !, is the algorithm regulating con-
stant matrix. Denote the estimated value of parameter vector as;

b/ tð Þ¼ ½bA tð Þ;ba tð Þ;bf tð Þ; bu tð Þ�T ;

where bA tð Þ, ba tð Þ, bf tð Þ; and buðtÞ are estimated values of amplitude,
damping factor, frequency, and phase, respectively.

Based on Eq. (19), we can derive the estimation for damping fac-
tor a as;

dba tð Þ
dt
¼ l1

@

@ba tð Þ y tð Þ � bA tð Þeba tð Þtsin 2pbf tð Þt þ bu tð Þ
	 
h i2

¼ 2l1n tð ÞbA tð Þeba tð Þtsin 2pbf tð Þt þ bu tð Þ
	 


; (20)

where nðtÞ¼ y tð Þ � bA tð Þeba tð Þtsin 2pbf tð Þt þ bu tð Þ
	 


and l1 is a con-
stant step value. The nonlinear differential equation for damping fac-
tor, ai, of the ith spectrum component can be written as;

_bai ¼ 2li
1n bAie

bai tsin bwi ; (21)

where bAi is the estimation of amplitude Ai, bai is the estimation of the

damping factor ai, bxi is the estimation of frequency xi ¼ 2pfi, bwi is
the estimation of total phase wi ¼ xit þ ui, and n ¼ y nð Þ
�
PM

i¼1
bAiebai tsin bwi is the error signal between the PMU measure-

ment, y nð Þ, and its estimation. Similarly, a set of nonlinear differential
equations for other parameters can be derived as;

_bAi ¼ 2li
2ne
bai tsin bwi ; (22)

_bxi ¼ 2li
3n bAie

bai tcos bwi ; (23)

_bwi ¼ bxi þ 2li
3l

i
4n bAie

bai tcos bwi : (24)

Step parameters li
1 and li

2 are used to control the convergence speed
and accuracy of the ith component’s amplitude and damping factor,
respectively.35 Step parameters li

3 and li
4 are pre-set to get a trade-off

between convergence speed and accuracy of the ith frequencyFIG. 3. Block diagram of the low complexity tracking algorithm.
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component. Based on first order time derivative approximation, the
discretized form of Eqs. (21)–(24) can be written as

ai nþ 1½ � ¼ ai n½ � þ 2Tsl
i
1n n½ �Ai n½ �eai n½ �nTs sin wi n½ �ð Þ; (25)

Ai nþ 1½ � ¼ Ai n½ � þ 2Tsl
i
2n n½ �eai n½ �nTs sin wi n½ �ð Þ; (26)

xi nþ 1½ � ¼ xi n½ � þ 2Tsl
i
3n n½ �Ai n½ �eai n½ �nTscos wi n½ �ð Þ; (27)

wi nþ 1½ � ¼ wi n½ � þ Tsxi n½ � þ 2Tsl
i
3l

i
4n n½ �Ai n½ �eai n½ �nTscos wi n½ �ð Þ;

(28)

yi n½ � ¼ Ai n½ �eai n½ �nTs sin wi n½ �ð Þ; (29)

FIG. 4. A simplified WECC 179-bus power system.
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while the error signal can be expressed as

n n½ � ¼ y n½ � �
XK
i¼1

Ai n½ �eai n½ �nTs sin wi n½ �ð Þ; (30)

where n is the time step index and Ts is the sampling interval. The imple-
mentation of the proposed tracking algorithm is displayed in Fig. 3.

By appropriately setting the initial values of the spectrum compo-
nents, the proposed algorithm is capable of simultaneously tracking
multiple components. In order to achieve a reliable performance while
maintaining low complexity, the proposed algorithm is based on a
combination of the matrix pencil method (see Sec. II) and the low
complexity tracking algorithm, as described in this section.
Specifically, in the initial stage, the matrix pencil method is first per-
formed to acquire prior knowledge of all spectrum components and
their corresponding initial values. This information is then used by the
low complexity tracking algorithm to track and monitor the oscillation
components in recursive mode. Furthermore, with the help of the
matrix pencil method on the spectrum of the whole system, the pro-
posed tracking algorithm can easily identify and track the inter-area
oscillations. Otherwise, detecting inter-area oscillations would require
crosschecking low frequency oscillation from all the PMUs.

In the case of changing oscillations, their frequency estimations
will undergo significant fluctuations. Here, the matrix pencil method
will be invoked to re-calculate the oscillation components. In this way,
the computational complexity of the proposed algorithm is mainly
based on the low complexity tracking algorithm, which is on the order
of OðKÞ.

After identifying the oscillation frequencies by using the matrix
pencil method, the components of the observation PMU vector, y; can
be filtered by K Gaussian filters at f1, f2, …, fK with deviation ri, to
generate approximation of K oscillation components:

yi ¼ y � g i; i ¼ 1; 2; …; K; (31)

where “�” is the linear convolution operation. The Gaussian bandpass
filter g i’s frequency response is given by

g i fð Þ ¼
e
� f�fið Þ2

2 rið Þ2ffiffiffiffiffi
2p
p

ri
: (32)

The proposed low complexity tracking algorithm is then applied
to the filtered signal, yi, to enhance performance, hence mitigating any
interference from other oscillation components.

V. SIMULATION RESULTS

In this section, we assess the performance of the proposed fast
tracking algorithms by using: a test signal, a simplified WECC 179-bus
power system from a test case library36 shown in Fig. 4, and some
actual PMU data sets with oscillatory events captured in ISO New
England power systems.

In Figs. 5–7, the following test signal is used: y tð Þ ¼ e�0:05t

sin 2p� 0:2tð Þ þ e�0:1tsin 2p� 0:3tð Þ þ nðtÞ, where nðtÞ is the
AWGN and y tð Þ is sampled at 30Hz. The test signal contains two
oscillation modes at 0.2 and 0.3Hz with a damping ratio of 3.98% and
5.30%, respectively. Signal to noise ratios (SNRs) of 20 and 30 dB, have
been used in our experiments. In the case of the fast subspace tracking
algorithm, we have N ¼ 600 and L ¼ 300. Figure 5 shows that both

algorithms are capable of accurately detecting and monitoring low fre-
quency oscillations in the presence of noise. Figure 6 displays the
damping factor tracking performance of the gradient descent based
low complexity tracking algorithm on the test signal where initial
damping factors a of 0.04 and 0.11 have been used for both oscillatory
modes at 0.2 and 0.3Hz, respectively [also see Eqs. (18)–(23)].

Figure 7 shows the performance of both tracking algorithms
under changing oscillation frequencies. Specifically, the oscillation

FIG. 5. The low frequency tracking performance of the proposed tracking algo-
rithms on a test signal: (a) the gradient descent based low complexity tracking algo-
rithm, (b) the fast subspace tracking algorithm.

FIG. 6. The damping factor tracking performance of the gradient descent based
low complexity tracking algorithm on a test signal where the initial damping factor a
are 0.04 and 0.11 for modes at 0.2 and 0.3 Hz, respectively.
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mode at 0.2Hz jumps to 0.25Hz after 16.67 s, while the other mode
remains at 0.3Hz. These results demonstrate that both algorithms can
track oscillations under changing oscillation frequencies.

In our next experiment, a simplified WECC 179-bus power sys-
tem36 (see Fig. 4) is used to generate PMU measurement data, where
the sampling rate is 30Hz. A three-phase short circuit fault is pro-
duced at 0.5 s on bus 159 and then cleared after 0.05 s. This results in a
low frequency oscillation at 1.41Hz with a low damping ratio of 1.0%.
PMU data (sampled at 30Hz), are collected for our experiment. In
Fig. 8, two different sample-by-sample sliding windows sizes have
been used to evaluate the accuracy of the fast subspace tracking algo-
rithm. As shown in Fig. 8, a larger window size results in a better per-
formance. This is mainly due to the fact that a larger window size can
reduce the variance of frequency estimations, hence further improving
the accuracy. Figure 8 also indicates that the gradient descent-based
tracking algorithm, despite its lower complexity, is able to fast track
the low frequency oscillation with a greater accuracy.

In our next experiment we have used actual PMU data sets cap-
turing oscillatory events in ISO New England power systems, which is
impacted by an inter-area natural oscillation at 0.27Hz (due to the
presence of a large generator). The collected PMU measurements

shown in Fig. 2 are sampled at 30Hz.36 Figure 9 displays the perfor-
mance of the gradient descent based low complexity tracking algo-
rithm when using the filtered or unfiltered PMU measurements. As
can be observed, the gradient descent algorithm can significantly

FIG. 9. The low frequency tracking performance of the gradient descent based low
complexity tracking algorithm on actual PMU data sets capturing oscillatory events
in ISO New England power systems, where the oscillation frequency is 0.27: (a)
The PMU measurements are not filtered; (b) The PMU measurements are pre-
filtered by using Gaussian filter and different initial value is used to evaluate the
tracking performance.

FIG. 10. Computation time of difference methods monitoring low frequency oscilla-
tions in a sample-by-sample fashion.

FIG. 7. The oscillation tracking performance of the low complexity tracking algo-
rithms on a test signal where the oscillation mode at 0.2 Hz jumps to 0.25 Hz at
time 16.67 s, while the other mode remains at 0.3 Hz.

FIG. 8. The low frequency tracking performance of the proposed subspace tracking
algorithm on a 1.41 Hz natural oscillation.
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improve the tracking performance with the help of Gaussian filter.
Furthermore, different initial values are used to demonstrate the con-
vergence capability of the proposed algorithm. Note that there are
some error data in the actual PMU data caused by communication
error or delay. In the proposed algorithms, the lost PMU data can be
easily detected by checking PMU’s ID and the corresponding time-
stamp. If there is no measurement at a specific time, zero will be used.
Figure 9 demonstrates the robustness of the proposed methods.

Figure 10 displays the computation time of different methods
when monitoring a 500 s long PMU data from different PMU sets,
namely, a single PMU data, a 35 PMUs data and a 179 PMUs data. It
is shown that the gradient descent method achieves a significant speed
advantage over the subspace method, the MPM Method, the FDD
method20 and the TLS-ESPRIT method24 because of its extreme low
computation complexity. The fast subspace method achieves the sec-
ond best performance in computation time, due to the employed low
complexity FPDM algorithm. Note that in Table II, the mean and
standard deviation (STD) of frequency are expressed in Hz, while the
STD of damping ratio are expressed in percentage (%). With the help
of Gaussian filterer gradient descent method achieves a similar perfor-
mance as the FDD method20 and the TLS-ESPRIT method,24 but
with much lower computation complexity. The subspace
method outperforms the gradient descent method at the
expense of slightly increased complexity. It achieves a similar
performance as the MPM method with significantly reduced
complexity. In Table III, the complexity of the proposed algo-
rithms is compared with the state of the art algorithms dis-
cussed in Sec. I.

VI. CONCLUSION

In this paper we investigate low frequency oscillation estimation
and tracking for real-time power grid monitoring. We have demon-
strated that the proposed fast subspace and the gradient descent based
low complexity tracking algorithm can provide fast and reliable perfor-
mance while maintaining low complexity. With the help of a Gaussian

filter the gradient descent method is able to achieve a similar perfor-
mance as the FDD method and the TLS-ESPRIT method, with much
lower computation complexity. The subspace method outperforms the
gradient descent method at the expense of slightly increased complex-
ity. It achieves a similar performance as the MPMmethod with signifi-
cantly reduced complexity. Furthermore, by using eigenvalue
decomposition of the fast subspace tracking algorithm, the gradient
descent based tracking algorithm can easily track inter-area oscilla-
tions. The simulation results demonstrate the robustness of the pro-
posed low complexity tracking algorithms under dynamic conditions.
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from the corresponding author upon reasonable request.

REFERENCES
1X. Zhang, C. Lu, S. Liu, and X. Wang, “A review on wide-area damping control
to restrain inter-area low frequency oscillation for large-scale power systems
with increasing renewable generation,” Renewable Sustainable Energy Rev. 57,
45–58 (2016).

2D. Cai, P. Regulski, M. Osborne, and V. Terzija, “Wide area inter-area oscilla-
tion monitoring using fast nonlinear estimation algorithm,” IEEE Trans. Smart
Grid 4(3), 1721–1731 (2013).

3J. F. Hauer, D. J. Trudnowski, and J. G. DeSteese, “A perspective on WAMS
analysis tools for tracking of oscillatory dynamics,” in Proceedings of IEEE
Power Engineering Society General Meeting, 24–28 June (IEEE, 2007), pp. 1–10.

4D. J. Trudnowski, J. W. Pierre, N. Zhou, J. F. Hauer, and M. Parashar,
“Performance of three mode-meter block-processing algorithms for automated
dynamic stability assessment,” IEEE Trans. Power Syst. 23(2), 680–690 (2008).

5G. Ledwich and E. Palmer, “Modal estimates from normal operation of power
systems,” in Proceedings of IEEE Power Engineering Society Winter Meeting,
23–27 January (IEEE, 2000), Vol. 2, pp. 1527–1531.

6R. W. Wies, J. W. Pierre, and D. J. Trudnowski, “Use of ARMA block process-
ing for estimating stationary low-frequency electromechanical modes of power
systems,” IEEE Trans. Power Syst. 18(1), 167–173 (2003).

7P. Korba, M. Larsson, and C. Rehtanz, “Detection of oscillations in power sys-
tems using Kalman filtering techniques,” in Proceedings of IEEE Conference on
Control Applications CCA 2003, 23–25 June (IEEE, 2003), Vol. 1, pp. 183–188.

TABLE II. Comparison of the low complexity tracking algorithms with FDD20 and TLS-ESPRIT.24

Method FDD TLS-ESPRIT MPM Subspace Gradient descent

Freq. mean (Hz) 0.200 3 0.200 2 0.200 2 0.200 3 0.200 4
Freq. STD (Hz) 0.002 4 0.002 3 0.002 1 0.002 3 0.003 1
Damp. ratio mean (%) 3.87 3.88 3.95 3.93 3.92
Damp. ratio STD (%) 1.14 1.12 1.10 1.12 1.17
Freq. mean (Hz) 0.301 2 0.300 9 0.300 7 0.301 0 0.301 5
Freq. STD (Hz) 0.005 3 0.005 6 0.004 9 0.005 7 0.006 6
Damp. ratio mean (%) 5.82 5.49 5.38 5.42 5.58
Damp. ratio STD (%) 1.82 1.21 1.15 1.20 1.25

TABLE III. Comparison of the complexity of the proposed algorithms with some of the state of the art algorithms.

Prony analysis, Kalman filter,
FDD YWS N4SID ESPRIT MPM RRLS R3LS HHT AR ARMA WT LMS The subspace method

The gradient
descent method

Complexity OðN3Þ OðN2Þ OðNlogNÞ OðNÞ O ðLþ 1ÞKð Þ OðKÞ

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 13, 045501 (2021); doi: 10.1063/5.0051338 13, 045501-9

Published by AIP Publishing

https://doi.org/10.1016/j.rser.2015.12.167
https://doi.org/10.1109/TSG.2013.2257890
https://doi.org/10.1109/TSG.2013.2257890
https://doi.org/10.1109/TPWRS.2008.919415
https://doi.org/10.1109/TPWRS.2002.807116
https://scitation.org/journal/rse


8D. S. Laila, M. Larsson, B. C. Pal, and P. Korba, “Nonlinear damping computa-
tion and envelope detection using Hilbert transform and its application to
power systems wide area monitoring,” in Proceedings of the IEEE PES General
Meeting (IEEE, 2009), pp. 1–7.

9J. L. Rueda, C. A. Juarez, and I. Erlich, “Wavelet-Based analysis of power sys-
tem low-frequency electromechanical oscillations,” IEEE Trans. Power Syst.
26(3), 1733–1743 (2011).

10N. Zhou, J. W. Pierre, and J. F. Hauer, “Initial results in power system identifi-
cation from injected probing signals using a subspace method,” IEEE Trans.
Power Syst. 21(3), 1296–1302 (2006).

11G. Liu, J. Quintero, and V. Venkatasubramanian, “Oscillation monitoring sys-
tem based on wide area synchrophasors in power systems,” in IREP Symposium
2007, Charleston, SC (2007).

12S. A. Nezam Sarmadi and V. Venkatasubramanian, “Electromechanical mode
estimation using recursive adaptive stochastic subspace identification,” IEEE
Trans. Power Syst. 29(1), 349–358 (2014).

13H. Zhang, J. Ning, H. Yuan, and V. Venkatasubramanian, “Implementing
Online oscillation monitoring and forced oscillation source locating at peak
reliability,” in 2019 North American Power Symposium (NAPS), Wichita, KS
(2019), pp. 1–6.

14J. W. Pierre, D. J. Trudnowski, and M. K. Donnelly, “Initial results in electro-
mechanical mode identification from ambient data,” IEEE Trans. Power Syst.
12(3), 1245–1251 (1997).

15N. Zhou, J. W. Pierre, and R. W. Wies, “Estimation of low-frequency electro-
mechanical modes of power systems from ambient measurements using a sub-
space method,” in 35th NAPS, Rolla, MO (2003).

16R. W. Wies, J. W. Pierre, and D. J. Trudnowski, “Use of least mean squares
(LMS) adaptive filtering technique for estimating low-frequency electrome-
chanical modes in power systems,” in IEEE Power Engineering Society General
Meeting (IEEE, 2004), pp. 1863–1870.

17N. Zhou, J. W. Pierre, D. J. Trudnowski, and R. T. Guttromson, “Robust RLS
methods for online estimation of power system electromechanical modes,”
IEEE Trans. Power Syst. 22(3), 1240–1249 (2007).

18N. Zhou, D. J. Trudnowski, J. W. Pierre, and W. A. Mittelstadt,
“Electromechanical mode online estimation using regularized robust RLS
methods,” IEEE Trans. Power Syst. 23, 1670–1680 Nov. (2008).

19C. Y. Shih, Y. G. Tsuei, R. J. Allemang, and D. L. Brown, “Complex mode indi-
cation function and its applications to spatial domain parameter estimation,”
Mech. Syst. Signal Process. 2, 367–377 (1988).

20R. Brincker, L. Zhang, and P. Andersen, “Modal identification from ambient
responses using frequency domain decomposition,” in Proceedings of the 18th

International Modal Analysis Conference (IMAC), San Antonio, TX, February
7–10, 2000.

21J. Zuo, Y. Shen, D. Chen, H. Guo, Z. Hu, and K. Zhang, “Low frequency oscilla-
tion mode source identification with wide-area measurement system,” in IEEE
3rd Conference on Energy Internet and Energy System Integration (EI2),
Changsha, China (IEEE, 2019), pp. 1525–1539.

22G. Liu and V. Venkatasubramanian, “Oscillation monitoring from ambient
PMU measurements by frequency domain decomposition,” in Proceedings of
IEEE International Symposium on Circuits and Systems (2008), pp. 2821–2824.

23P. Tripathy, S. C. Srivastava, and S. N. Singh, “A modified TLS-ESPRIT
based method for low-frequency mode identification in power systems utiliz-
ing synchrophasor measurements,” IEEE Trans. Power Syst. 26(2), 719–727
(2010).

24J. Chen, T. Jin, M. A. Mohamed, and M. Wang, “An adaptive TLS ESPRIT
algorithm based on an SG filter for analysis of low frequency oscillation in
wide area measurement systems,” IEEE Access 7, 47644–47654 (2019).

25J. G. Philip and T. Jain, “Analysis of low frequency oscillations in power system
using EMO ESPRIT,” Int. J. Electr. Power Energy Syst. 95, 499–506 (2018).

26Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of
exponentially damped/undamped sinusoids in noise,” IEEE Trans. Acoust.
38(5), 814–824 (1990).

27X. Doukopoulos and G. Moustakides, “Fast and stable subspace tracking,”
IEEE Trans. Signal Process. 56(4), 1452–1465 (2008).

28X. Wang and H. V. Poor, “Blind multiuser detection: A subspace approach,”
IEEE Trans. Inf. Theory 44, 677–690 (1998).

29B. Yang, “Projection approximation subspace tracking,” in IEEE Transactions
on Signal Processing, 7 January 1995 (IEEE, 1995) Vol. 43, pp. 95–107.

30B. Yang, “An extension of the PASTd algorithm to both rank and subspace
tracking,” IEEE Trans. Signal Process. 2, 179–182 (1995).

31G. Rogers, Power System Oscillations (Kluwer, New York, 2000).
32J.-P. Delmas, Subspace Tracking for Signal Processing. Adaptive Signal
Processing: Next Generation Solutions (Wiley-IEEE, 2010), pp. 211–270.

33B. Hu and H. Gharavi, “A fast recursive algorithm for spectrum tracking in
power grid systems,” IEEE Trans. Smart Grid 10(3), 2882–2891 (2019).

34A. A. Giordano, Least Square Estimation with Applications to Digital Signal
Processing (John Wiley and Sons, New York, 1985).

35A. K. Ziarani, “Extraction of nonstationary sinusoids,” Ph.D. dissertation
(University of Toronto, Toronto, Canada, 2002).

36S. Maslennikov, B. Wang, Q. Zhang, F. Ma, X. Luo, K. Sun, and E. Litvinov, “A
test cases library for methods locating the sources of sustained oscillations,” in
IEEE PES General Meeting, Boston, MA, July 17–21, 2016.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 13, 045501 (2021); doi: 10.1063/5.0051338 13, 045501-10

Published by AIP Publishing

https://doi.org/10.1109/TPWRS.2010.2104164
https://doi.org/10.1109/TPWRS.2006.879292
https://doi.org/10.1109/TPWRS.2006.879292
https://doi.org/10.1109/TPWRS.2013.2281004
https://doi.org/10.1109/TPWRS.2013.2281004
https://doi.org/10.1109/59.630467
https://doi.org/10.1109/TPWRS.2007.901104
https://doi.org/10.1109/TPWRS.2008.2002173
https://doi.org/10.1016/0888-3270(88)90060-X
https://doi.org/10.1109/TPWRS.2010.2055901
https://doi.org/10.1109/ACCESS.2019.2908629
https://doi.org/10.1016/j.ijepes.2017.08.037
https://doi.org/10.1109/29.56027
https://doi.org/10.1109/TSP.2007.909335
https://doi.org/10.1109/18.661512
https://doi.org/10.1109/78.365290
https://doi.org/10.1109/78.365290
https://doi.org/10.1109/97.410547
https://doi.org/10.1109/TSG.2018.2813881
https://scitation.org/journal/rse

	s1
	s2
	f1
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	f2
	s3
	d12
	t1
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	s4
	d20
	d21
	d22
	d23
	d24
	f3
	d25
	d26
	d27
	d28
	d29
	f4
	d30
	d31
	d32
	s5
	f5
	f6
	f9
	f10
	f7
	f8
	s6
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	t2
	t3
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36

