
 NetSimulyzer: a 3D Network Simulation Analyzer for ns-3
Evan Black

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

evan.black@nist.gov

Samantha Gamboa
Associate, National Institute of
Standards and Technology
Prometheus Computing LLC
Sylva, North Carolina, USA
samantha.gamboa@nist.gov

Richard Rouil
National Institute of Standards and Technology

Gaithersburg, Maryland, USA
richard.rouil@nist.gov

ABSTRACT
The increased complexity of network protocols and scenarios simu-
lated using ns-3 is making the verification of simulation correctness
and the analysis of simulation outputs a challenging task. In this
paper, we present a new and flexible visualization tool for ns-3,
called NetSimulyzer, that can alleviate the workload of debugging,
understanding, and demonstrating a scenario. The tool was con-
ceived to easily integrate to any ns-3 scenario and provides core
functionalities that are technology agnostic. NetSimulyzer provides
mechanisms to track a variety of simulation elements, from topol-
ogy and node mobility, to statistics and other data generated by the
simulated network protocols. The collected information can be visu-
alized using a 3D scene augmented with data visualization elements
such as charts and logs. In this paper, we provide an overview of the
architecture and functionalities of the tool, and we also illustrate
its usability and versatility by visualizing scenarios provided in the
standard ns-3 distribution.

CCS CONCEPTS
•Networks→Network simulations; •Human-centered com-
puting → Visualization systems and tools.

KEYWORDS
ns-3, network visualization, 3D visualization, Qt
ACM Reference Format:
Evan Black, Samantha Gamboa, and Richard Rouil. 2021. NetSimulyzer: a
3D Network Simulation Analyzer for ns-3. In 2021 Workshop on ns-3 (WNS3
2021), June 23–24, 2021, Virtual Event, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3460797.3460806

Disclaimer: Any mention of commercial products in this paper
is for information only; it does not imply recommendation or en-
dorsement by NIST.

1 INTRODUCTION
The ns-3 Network Simulator is a discrete-event simulator widely
used in research and academia [9]. It can simulate a variety of com-
munication network architectures and protocols. As open-source
software, users can also extend or implement new models that
can use the underlying simulation framework. A typical workflow

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
WNS3 2021, June 23–24, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9034-7/21/06. . . $15.00
https://doi.org/10.1145/3460797.3460806

when using ns-3 includes the creation and parameterization of a
scenario, the execution of the simulation(s), and the analysis of the
simulation output data. Users can enable the ns-3 logging system or
use the standard outputs to monitor the progress of the simulation.
In addition, users make use of the tracing system, the modules’
built-in metric systems, or the data collection framework [10], to
gather simulation data of interest.

Interpreting network performance has become more complex
due to several factors, including the increasing number of devices,
the complexity of the protocols, the integration of different tech-
nologies, and the deep connection between upper and lower layer
performance. Thus, relying upon raw data outputs to debug, under-
stand, and demonstrate a scenario is cumbersome. Users often rely
on custom post-processing tools that are scenario and technology
specific and difficult to generalize or scale.

Separate visualization software may be used to ease simulation
interpretation. Such software allows ns-3 users to reproduce the sim-
ulation and display performance metrics in a user-friendly manner.
Visualizers also facilitate verifying correct scenario implementa-
tion such as node topology, simulation environment, and event
timelines, and allow users to study protocol behavior through state
machines and message exchanges.

There are two visualizers included with ns-3: NetAnim [4] and
PyViz [11]. NetAnim is an offline visualizer, i.e., it uses an eXten-
sible Markup Language (XML) trace file generated at the end of a
simulation to replay events in a separate application. PyViz is an
online visualizer, i.e., it runs together with the simulation allowing
live representation and debugging of a scenario. Both visualizers
can show 2D representations of the scenario topology and animate
node mobility and network connections between nodes. NetAnim
can animate packet exchange between nodes over the displayed
connections, while PyViz can display link statistics (e.g., data rate).
NetAnim software integrates some summary tabs that can show
metadata captured during the simulation, e.g., packet flows, node
counters, and routing tables.

While NetAnim and PyViz are very useful for visualizations that
only require the above features, extending the information to trace
and display data or metrics, other than the ones embedded in their
corresponding modules, is not trivial. In previous work, we built a
demonstration of Mission-Critical Push-To-Talk (MCPTT) proto-
col capabilities over Long Term Evolution (LTE) Device-to-Device
(D2D) communications using PyViz [6]. In addition to the limited
documentation, which delayed our assessment of the tool, the tight
coupling between the visualizer and the ns-3 modules (e.g., python
bindings) required a considerable amount of effort and program-
ming expertise to augment PyViz and obtain satisfactory results.
Another limitation of NetAnim and PyViz is the lack of support

Workshop on ns-3 – WNS3 2021 – ISBN: 978-1-4503-9034-7
Virtual Event, USA – June 23-24, 2021

65

JSON File Parser

Main Window

NetSimulyzer application

BuildingConfiguration

NetSimulyzer ns-3 module

Node

DecorationBuilding

Area

Topology

XYSeries

SeriesCollection
CategoryValueSeries

Data analysis

Logging
Playback Widget

Log Widget LogStream

Chart Widgets

Scene Widget

Node Widget

Logging

Data analysis

Topology

DecorationRectangularArea

BuildingConfigurationNodeConfiguration

XYSeries CategoryValueSeries

StateTransitionSinkThroughputSink

SeriesCollection

Orchestrator

LogStream

Figure 1: NetSimulyzer Architecture Overview

for 3D visualization even though ns-3 supports node positioning
and mobility in 3D space. This likely prevents their effective use to
support active research in aerial networks [2, 5, 12, 15] and millime-
ter wave communication [1, 18] where altitude and transmission
angles play an important part.

Other users in the ns-3 community have implemented custom
visualizers to suit their studies. For example, the authors in [17]
describe a visualizer developed for the Institute of Electrical and
Electronics Engineers (IEEE) 802.11ah ns-3 model. It is an online
visualizer that can display a 2D representation of the topology, con-
figuration, traffic statistics, and metrics of interest for 802.11ah (e.g.,
the slot usage) during simulation. In [1], the authors developed
an offline visualizer to analyze beamforming training for the IEEE
802.11ad/ay ns-3 models using millimeter wave bands. This tool
represents in 3D the scenario topology and environment, and the
evolution of the beam steering configuration of the transmitters
and receivers in the simulation. While these tools provide enhanced
scenario visualization, they are currently limited to the specific tech-
nologies that the respective authors are studying. One open-source
tool that aims to be generic is the United States Naval Research Labs
(NRL)’s Scripted Display Tool (SDT) [16]. There are two versions of
the tool: SDT, which provides 2D visualization like NetAnim and
PyViz, and SDT3D, a Java-based application that provides 3D visu-
alization by overlaying topology information on top of a map of the
world. While it is possible to export an SDT3D compliant file from
ns-3, it requires to use geographic coordinates to place the nodes
on a map. Geographic coordinates are supported in ns-3 but not
widely used. Furthermore, the terrain shown in the visualization is
unlikely to represent what was modeled in the simulation unless
the scenario is configured to use a terrain-aware propagation model
such as Terrain Integrated Rough Earth Model (TIREM) available
via contributed model to ns-3 [13]. Finally, SDT3D does not provide
plotting capabilities to show network performance, thus requiring
manual scripts to generate plots or use another library.

Due to the aforementioned limitations, we decided to implement
a new visualizer that provides a 3D representation of the topology,
core capabilities that are technology agnostic, and flexible simula-
tion data collection and visualizations. Since the tool is meant to
be used by other ns-3 users, it was also critical to make integration
with existing and new scenarios as easy as possible.

The rest of the paper is organized as follows. Section 2 describes
the structure and components of our tool and the functionalities
they provide. In Section 3, we use several examples to demonstrate
the capabilities and usability of the tool. Section 4 describes new
functionalities that we are currently developing or plan to develop
in the near future. Finally, Section 5 provides some concluding
remarks.

2 NETSIMULYZER OVERVIEW
The NetSimulyzer is a tool designed to visualize and aid in un-
derstanding ns-3 scenarios of any size and any communication
network technology used. NetSimulyzer is currently based on the
offline approach and, as shown in Figure 1, it works by combining
two separate entities: the NetSimulyzer ns-3 module, which reads
the simulation data, and the NetSimulyzer application, which dis-
plays it. Both entities are open source and respectively available at
[7] and [8].

The NetSimulyzer ns-3 module is used when configuring an
ns-3 scenario and provides simple functions to specify the data
to be collected during the simulation. The ns-3 module will gen-
erate a JavaScript Object Notation (JSON) file, which is used by
the NetSimulyzer application to visually represent the simulation
using different elements: a 3D scene that represents and animates
simulation components in 3D, and multiple mechanisms to show
the collected data in meaningful ways, e.g., with logs and interactive
charts.

NetSimulyzer: a 3D Network Simulation Analyzer for ns-3
E. Black, S. Gamboa, R. Rouil

66

2.1 NetSimulyzer ns-3 Module
The NetSimulyzer ns-3 module is used to configure, collect, and ex-
port simulation information for display in the NetSimulyzer applica-
tion. The module is designed to be modular, and the Orchestrator
component is the only mandatory component that needs to be
added to a scenario in order to use the tool. Every other compo-
nent can be added based on what is relevant to the given scenario.
Another design goal was the simplicity of integration; as such, the
components typically require very few lines of code to add to exist-
ing ns-3 scenarios as shown in Section 3. In this section, we group
the components currently present on the module by functionality
and we describe their main characteristics and functions.

2.1.1 Orchestrator. The Orchestrator class is the base of the
NetSimulyzer ns-3 module. It sets simulation-wide options, defines
the output file path, and controls the output of tracked information
to the JSON file. Every class of the module requires some reference
to an Orchestrator, typically in the constructor. A single simu-
lation may support several Orchestrator instances, allowing for
several outputs from one simulation.

2.1.2 Topology. The module provides mechanisms to track the
evolution of the simulation topology, supporting both items already
found in ns-3, such as nodes and buildings, as well as additional
items to further describe or enhance the environment and topology
visualization, such as decorations and highlighted areas.

The class NodeConfiguration holds the visualization configu-
ration of a node, such as its name and 3D model to use for display
in the application, and monitors its position throughout the simula-
tion. To begin tracking a node object for display, users aggregate a
NodeConfiguration object onto it, and the module will automati-
cally track the node for the rest of the simulation. The module will
also automatically integrate with any of the ns-3 mobility models
to easily track and output the node’s location without additional
code. The NodeConfiguration class supports many additional, op-
tional properties to further refine the rendering of a node, such as
configurable colors, height, orientation, offset, etc.

The NetSimulyzer ns-3 module is also capable of displaying build-
ings that are defined in the ns-3 scenario using a similar Application
Programming Interface (API) to nodes, provided by the class
BuildingConfiguration. To track a building object, users aggre-
gate a BuildingConfiguration object onto it. Each building loca-
tion, dimensions, and rooms are exported and will be displayed in
the application as a solid or semi-transparent rectangular prism
with planes dividing the rooms. The NodeConfigurationHelper
and BuildingConfigurationHelper classes are also provided to
allow simple configuration of many nodes and buildings at once.

To draw attention to locations of some significance in the sim-
ulation; the module provides the RectangularArea class. These
areas are defined by an ns-3 rectangle and are displayed in the ap-
plication with a border, fill, or both. The colors of the fill and border
of an area can be configured in the scenario. Finally, to add purely
visual enhancements to the topology scene, the module provides
the Decoration class with a similar API to NodeConfiguration.
This class alleviates the need to create nodes for props based on 3D
models.

2.1.3 Data Analysis. Most of the network protocol information
from an ns-3 simulation cannot be represented by the topology but
instead must be captured via standard outputs or the ns-3 tracing
system (i.e., by using trace sources and sinks).

The NetSimulyzer ns-3 module currently provides three generic
classes to collect such information from the simulations and to vi-
sualize it in the application using plots. The XYSeries class tracks
information that can be expressed using two numeric coordinates,
e.g., metrics over time, 2D positions, etc. By default, the mod-
ule produces a plot per XYSeries object, and additionally, the
SeriesCollection class can be used to group several XYSeries
objects to be displayed in a single plot. The CategoryValueSeries
class tracks numeric data organized into discrete, String categories,
e.g., the state names of a state machine. Each class supports a num-
ber of properties that may be configured via the ns-3 attributes sys-
tem or functions for configuring the plots. These properties include
plot title, axis label, colors for the series, and the type of plot (lines,
dots, connected dots). After an XYSeries or CategoryValueSeries
is created, the data can be appended to it during simulation time.
While there is no dependency on the ns-3 tracing system to gen-
erate statistics for the NetSimulyzer, this is typically used when
instrumenting a scenario. For example, using a XYSeries object for
collecting information, as shown later in the example of Section 3.1.

The module also provides two helper sinks to collect and process
data to calculate throughput and display state machine changes in
an easy way. The ThroughputSink tracks total data written by a
model over a configurable period of time, calculates the through-
put, and uses an XYSeries object to produce a plot that shows
the throughput over time. The user can configure the interval at
which the throughput is calculated as well as the unit for the Y-
axis (e.g., bit/s, MB/s) based on expected throughput. This sink
was designed to easily connect to packet transmission (Tx) and
reception (Rx) trace sources defined in most applications. The
StateTransitionSink was designed to track state changes and
uses a CategoryValueSeries object to plot the changes against
the time they occurred. This sink works with models that provide a
traced value for their current state that uses states stored as Strings
or as Enumerated types.

2.1.4 Logging. The LogStream class provides a mechanism, inde-
pendent of ns-3’s logging framework (NS_LOG), to output String
messages during the simulation playback in the application. The
LogStream class provides an API similar to std::cout and can be
useful for displaying messages about the status of the simulation,
such as marking the beginning of important events or indicating
some failure condition has occurred. Each LogStream can be con-
figured with a name and font color so that they can be clearly
identified in the NetSimulyzer application during playback.

2.2 NetSimulyzer Application
The NetSimulyzer application is a lightweight, standalone, cross-
platform, open-source, Qt application that replays an ns-3 simula-
tion tracked by the NetSimulyzer ns-3 module. The application is a
collection of optional widgets centered around the SceneWidget.
The SceneWidget uses OpenGL to render hardware-accelerated
3D graphics for displaying the environment and network topology.
The other optional widgets allow for control of the reproduction

Workshop on ns-3 – WNS3 2021 – ISBN: 978-1-4503-9034-7
Virtual Event, USA – June 23-24, 2021

67

Figure 2: Example of the NetSimulyzer Application Interface

of the simulation and the display of the collected data using charts
and logs.

In this section, we describe the main components of the Net-
Simulyzer application grouped by functionality so that the reader
can see the correspondence with Figure 1 and Section 2.1. Also, we
present in Figure 2 an example of the NetSimulyzer application
reproducing a scenario. In the figure, we also show a breakdown
of the interface components that will be referred throughout this
section.

2.2.1 Parser. The parser reads the output file from the NetSimu-
lyzer ns-3 module into models understood by the NetSimulyzer
application. It also collects some metadata about the simulation,
such as the furthest points in each direction and the last event
time to determine the ground plane size and how long to make the
playback timeline.

2.2.2 Main Window. The MainWindow holds all of the widgets
and provides areas on the top, bottom, left, and right to move
these widgets, referred to as “docks". Any widget, aside from the
SceneWidget, may also be detached from the window and moved
around freely.

2.2.3 Playback. Playback of the simulation can be controlled by
the PlaybackWidget (item 1 in Figure 2). It allows for starting and
stopping playback with either the play/pause button or pressing the
P key. The user may also seek within the simulation by dragging
the slider in the center of the widget forwards or backward. When
the slider is moved, all the widgets are adjusted to the state that
they were for the new time.

2.2.4 Topology. The traced topology from ns-3 is displayed in the
widget at the center of the window, referred to as the SceneWidget
(item 2 in Figure 2). It displays the nodes, buildings, decorations,
and areas defined in the simulation and a ground plane, skybox,
and minor lighting effects. The user may move or rotate the 3D
scene using the mouse and keyboard. It is the only widget that may
not be detached, moved, or disabled, although other widgets may
be resized to cover it entirely.

The NodeWidget (item 3 in Figure 2) displays the list of nodes
rendered by the application, with their node ID from ns-3, and the
name set in the NodeConfiguration. The user may reorder the
table by clicking on the column headings, and may change the view
in the SceneWidget to center on a node by double-clicking on a
record in the table.

2.2.5 Data Analysis. The application renders XYSeries,
CategoryValueSeries, and SeriesColection objects from the
ns-3 simulation into plots. These plots may be displayed on a
ChartWidget (item 4 in Figure 2), added to the window by opening
the “Window”menu and clicking “AddChart.” Several ChartWidget
instances may be created to compare data between plots easily. The
user may adjust the view of the chart and focus on specific areas
by clicking and dragging with the mouse or by adjusting the zoom
level using the keyboard.

2.2.6 Logging. The LogWidget (item 5 in Figure 2) manages the
LogStreams from the NetSimulyzer ns-3 module. Each individual
LogStream may be selected by name from the drop-down at the
top of the widget. There is also a “Unified Log”, which displays mes-
sages from every LogStream with the name from the ns-3 module
appended in front of each message.

NetSimulyzer: a 3D Network Simulation Analyzer for ns-3
E. Black, S. Gamboa, R. Rouil

68

3 EXAMPLES
In this section, we use several examples provided in the standard
ns-3 distribution to showcase the capabilities of the visualizer. These
scenarios and their respective JSON output files are provided with
the visualizer to assist new users as they familiarize themselves
with integrating the NetSimulyzer module with ns-3 scenarios, and
so that it is not necessary to run ns-3 simulations prior to operating
the tool. In addition, a recorded presentation describing andwalking
through the scenario shown in Figure 2 is also available in [14].

3.1 Outdoor Random Walk
The first example demonstrates how easy it is to integrate the
visualizer to an existing scenario to display the topology, add a plot,
and use the log feature. To that extent, we selected the outdoor-
random-walk-example scenario provided in the buildings module
as it includes many buildings and one moving node. The code
necessary to render Figure 3 is shown in Listing 1.

One powerful feature of the visualizer, which is to display the
various buildings and moving nodes in the 3D scene widget, can
be achieved by simply adding lines 15 to 23. We also show how to
create and configure a log component and an XYSeries plot (lines
24 to 32). For the purpose of demonstration, both elements are used
to export node position information, which occurs in the callback
function defined at line 5. The user can then better understand the
scenario layout by navigating through the topology and follow the
node’s movement after clicking the playback button. The resulting
plot ends up representing a 2D trace of the node’s trajectory, a
capability also present in NetAnim.

3.2 WiFi Bianchi
We now present an example based on the wifi-bianchi scenario
provided in the Wi-Fi module that was developed to validate the
performance of the Wi-Fi ns-3 model with the theoretical model
developed by Bianchi [3]. In this scenario, a number of devices in
very close proximity communicate with each other over Wi-Fi. The
scenario supports many parameters, including theWi-Fi technology
used (e.g., 802.11b, 802.11g), packet size, duration, and connection
mode (i.e., infrastructure or ad-hoc). The scenario is also logging
various information across different layers, such as when devices
start to transmit or receive a packet at the physical layer, medium
access control (MAC) layer, and application layer, or when devices
need to execute the backoff procedures.

In order to study the effect of congestion and enhance the analy-
sis, the distance between the center device and the other devices
is set to 10 cm and the traffic start of each device is staggered
throughout the first 75 % of the simulation time. A screenshot of
the visualization is shown in Figure 4, which can be obtained with
about 200 lines of code (the scenario itself being over 1200 lines
of code). On the left side, the list of nodes is displayed, which for
this example shows 10 stations. The log shows the time at which
each station starts sending traffic. The charts selected show plots
of the total MAC throughput received across all the devices, the
traffic between station 7 (blue phone) and station 8 (green phone),
and the backoff duration at station 7. The combo boxes associated
with each figure could be used to look at traffic between any pair

of nodes or view the congestion window information which is also
available.

By looking at the various plots, the NetSimulyzer can be an ef-
fective tool to help students and researchers understand the impact
of congestion in a Wi-Fi network. At time 8.89 s, station 7 starts to
transmit. We can observe the increase in throughput in the top two
figures, with station 7 sending at a rate of 12 Mbit/s (blue line in the
second plot). Initially, all the traffic is received by node 8 (green line
in the second plot). After the third station starts transmitting traffic,
at time 34.52 s, the network saturates. Given that all the stations in
the scenario have the same sensing configuration, they will each
share the capacity equally. As such we see a gradual degradation
of the traffic received by station 8, until about 3 Mbit/s, roughly
1/10 of the total capacity (as shown on the top figure). The bottom
plot also shows the backoff time experienced by node 7. As more
stations transmit, the medium gets busy for longer periods of time
and stations have to backoff for longer periods of time.

3.3 LTE Radio Link Failure
The final example, shown in Figure 5, is based on the lena-radio-
link-failure scenario available in the LTE ns-3 module. The scenario
is designed to test the radio link failure and handover capabilities by
having a User Equipment (UE)moving at a constant speed across the
coverage areas of various eNodeBs. Inputs to the scenario include
the number of eNodeBs, counters for the radio link failures, control
of error models, and simulation time. The outputs are used mainly
to capture the state of the Radio Resource Control (RRC) connection
at the UEs and eNodeBs.

During the integration with the NetSimulyzer, three LogStreams
were defined: one for the applications, one for events happening at
the eNodeBs, and one for events at the UEs. On the figure, we can
see that different colors are assigned to each log, making it easy
to read. Plots were created for the RRC state, aggregated received
throughput (i.e. combining both uplink and downlink), and the
signal strength of the surrounding eNodeBs measured by the Refer-
ence Signal Received Power (RSRP). Figure 5 also demonstrates the
NetSimulyzer’s ability to rearrange the layout, with the RRC state
plot placed on the left of the 3D layout since it requires more space.

The selected plots show that the UE initially connects to cell 1
and the aggregated throughput is about 9 Mbit/s. As the UE moves
away from cell 1, the signal strength becomes weaker, as shown
by the green line in the RSRP plot. Consequently, the throughput
decreases as the eNodeB performs link adaptation and reduces
the Modulation and Coding Scheme (MCS) used for the UE. At
14.47 s, a radio link failure occurs, triggering a scan and a handover
to cell 2. The RRC state diagram shows a transition to the CON-
NECTED_PHY_PROBLEM state before conducting a cell search
and then re-establishing a connection. After the handover takes
place, the UE is able to successfully send and receive packets, with
increasing throughput as the UE gets closer to cell 2.

4 FUTUREWORK
As shown in the previous sections, the NetSimulyzer supports a
large set of features to visualize and analyze ns-3 simulations. In this
section, we introduce some new features currently in development
or in our roadmap.

Workshop on ns-3 – WNS3 2021 – ISBN: 978-1-4503-9034-7
Virtual Event, USA – June 23-24, 2021

69

1 # i n c l u d e <ns3 / ne t s imu ly z e r −module . h>
2 / / . . .
3 / / De f ine c a l l b a c k f un c t i o n to t r a c k node mob i l i t y
4 vo id
5 CourseChanged (Pt r < n e t s imu l y z e r : : XYSer ies > po s S e r i e s , P t r < n e t s imu l y z e r : : LogStream > eventLog , s t d : : s t r i n g con tex t , P t r < con s t

Mobi l i tyMode l > model)
6 {
7 con s t au to p o s i t i o n = model−>Ge t P o s i t i o n () ;
8 / / Wri te c o o r d i n a t e s to l og
9 ∗ eventLog << S imu l a t o r : : Now () . GetSeconds () << " Course Change P o s i t i o n : ["
10 << p o s i t i o n . x << " , " << p o s i t i o n . y << " , " << p o s i t i o n . z << "] \ n " ;
11 / / Add da t a po i n t to XYSer i e s
12 po s S e r i e s −>Append (p o s i t i o n . x , p o s i t i o n . y) ;
13 }
14 / / . . .
15 auto o r c h e s t r a t o r = Crea t eOb j e c t < n e t s imu l y z e r : : O r ch e s t r a t o r > (" ou tpu t . j s on ") ;
16 / / Use h e l p e r to d e f i n e model f o r v i s u a l i z i n g nodes and agg r eg a t e to Node o b j e c t
17 ne t s imu l y z e r : : NodeCon f i gu ra t i onHe lpe r nodeHelper { o r c h e s t r a t o r } ;
18 nodeHelper . S e t (" Model " , S t r i n gVa l u e (" models / l and_drone . ob j ")) ;
19 nodeHelper . I n s t a l l (nodes) ;
20 / / Use h e l p e r to c on f i g u r e b u i l d i n g s and expo r t them
21 ne t s imu l y z e r : : B u i l d i n gCon f i g u r a t i o nHe l p e r b u i l d i n gHe l p e r { o r c h e s t r a t o r } ;
22 f o r (au to b u i l d i n g = bu i l d i n gV e c t o r . beg in () ; b u i l d i n g != b u i l d i n gV e c t o r . end () ; b u i l d i n g ++)
23 bu i l d i n gHe l p e r . I n s t a l l (∗ b u i l d i n g) ;
24 / / C rea t e a LogStream to ou tpu t mob i l i t y ev en t s
25 Ptr < n e t s imu l y z e r : : LogStream > eventLog = Crea t eOb j e c t < n e t s imu l y z e r : : LogStream > (o r c h e s t r a t o r) ;
26 eventLog −> S e t A t t r i b u t e ("Name " , S t r i n gVa l u e (" Event Log ")) ;
27 / / C rea t e XYSer i e s t h a t w i l l be used to d i s p l a y mob i l i t y (l i k e 2D p l o t)
28 Ptr < n e t s imu l y z e r : : XYSer ies > p o s S e r i e s = C r e a t eOb j e c t < n e t s imu l y z e r : : XYSer ies > (o r c h e s t r a t o r) ;
29 po s S e r i e s −> S e t A t t r i b u t e ("Name " , S t r i n gVa l u e (" Node p o s i t i o n ")) ;
30 po s S e r i e s −> S e t A t t r i b u t e (" LabelMode " , S t r i n gVa l u e (" Hidden ")) ;
31 po s S e r i e s −> S e t A t t r i b u t e (" Co lor " , n e t s imu l y z e r : : BLUE_VALUE) ;
32 po s S e r i e s −>GetXAxis () −> S e t A t t r i b u t e ("Name " , S t r i n gVa l u e ("X p o s i t i o n (m) ")) ;
33 po s S e r i e s −>GetYAxis () −> S e t A t t r i b u t e ("Name " , S t r i n gVa l u e (" Y p o s i t i o n (m) ")) ;
34 / / T ie t o g e t h e r the c a l l b a c k func t i on , LogStream , and XYSer i e s
35 Conf ig : : Connect (" / NodeL i s t / ∗ / $ns3 : : Mob i l i t yMode l / CourseChange " , MakeBoundCallback (&CourseChanged , p o s S e r i e s , eventLog)) ;

Listing 1: Code Needed to Visualize outdoor-random-walk-example as Shown in Figure 3

Figure 3: Visualization of outdoor-random-walk-example Scenario

NetSimulyzer: a 3D Network Simulation Analyzer for ns-3
E. Black, S. Gamboa, R. Rouil

70

Figure 4: Visualization of wifi-bianchi Scenario

We are currently developing additional widgets to display per-
node network information, such as a list of Applications and
NetDevices, and their associated information (e.g., device type, IP,
and MAC addresses). The goal is to provide dynamic node status
information relevant to the user.

We plan to expand the statistics capabilities. This will be done
by providing additional trace sinks in the ns-3 module to include
other frequently traced metrics, such as latency. Additional chart
types, such as histograms and Cumulative Distribution Function
(CDF) plots will also be developed.

We also plan to enhance the 3D scene by providingmore network
information such as antenna radiation patterns, the rendering of
wired links, and traffic flow information. Other non-networking
visual enhancements are also planned, such as support for text
rendering to display node names, adding a 3D compass to help the
user navigate through a scenario, or being able to select a node/link
directly from the scene. This also includes expanding the catalog of
available 3D object models to includemore generic models of simple
shapes and some network-specific models such as cell towers and
Wi-Fi router models so users do not have to worry about creating
or sharing their own models.

Finally, we also have plans to add an online mode, allowing
visualization while the scenario is currently running, similar to the
functionality provided by PyViz, but with the ease of integration
provided by NetSimulyzer.

5 CONCLUSION
In this paper we presented a new open-source visualizer for ns-3 to
fill the gaps of other existing visualization and animation tools. The
3D scene renderer provides the user with the ability to navigate
through the topology and follow nodes’ movements. The flexible
plotting architecture allows users to select and configure the plots
they want to show, and extend the capabilities to other types of
plots. Using several examples, we demonstrated how this visualizer
can help researchers understand their scenarios and share their
results with the community. Finally, we discussed on-going work
to further extend the supported features, which we hope can be
done in collaboration with the ns-3 user community.

ACKNOWLEDGEMENTS
The authors would like to thank Tom Henderson for providing
technical insights on ns-3 architecture and feedback throughout
the development of this tool.

REFERENCES
[1] Hany Assasa, Joerg Widmer, Tanguy Ropitault, and Nada Golmie. 2019. Enhanc-

ing the ns-3 IEEE 802.11ad Model Fidelity: Beam Codebooks, Multi-Antenna
Beamforming Training, and Quasi-Deterministic MmWave Channel. In Proceed-
ings of the 2019 Workshop on ns-3 (Florence, Italy) (WNS3 2019). Association for
Computing Machinery, New York, NY, USA, 33–40. https://doi.org/10.1145/
3321349.3321354

Workshop on ns-3 – WNS3 2021 – ISBN: 978-1-4503-9034-7
Virtual Event, USA – June 23-24, 2021

71

Figure 5: Visualization of lena-radio-link-failure Scenario

[2] Oscar G. Bautista and Kemal Akkaya. 2020. Extending IEEE 802.11s Mesh Routing
for 3-D Mobile Drone Applications in ns-3. In Proceedings of the 2020 Workshop
on ns-3 (Gaithersburg, MD, USA) (WNS3 2020). Association for Computing Ma-
chinery, New York, NY, USA, 25–32. https://doi.org/10.1145/3389400.3389406

[3] Giuseppe Bianchi. 2000. Performance Analysis of the IEEE 802.11 Distributed
Coordination Function. IEEE Journal on Selected Areas in Communications 18, 3
(2000), 535–547. https://doi.org/10.1109/49.840210

[4] NetAnim. 2017. https://www.nsnam.org/wiki/NetAnim.
[5] Ben Newton, Jay Aikat, and Kevin Jeffay. 2015. Simulating Large-Scale Airborne

Networks with ns-3. In Proceedings of the 2015 Workshop on ns-3 (Barcelona,
Spain) (WNS3 2015). Association for Computing Machinery, New York, NY, USA,
32–39. https://doi.org/10.1145/2756509.2756514

[6] NIST. 2017. Clear Talk for First Responders. NISTModeling Tool to Help Advance
Cellular Emergency Communications. https://www.nist.gov/news-events/news/
2017/10/clear-talk-first-responders.

[7] NIST. 2021. NetSimulyzer ns-3 Module, v1.0.1. https://github.com/usnistgov/
NetSimulyzer-ns3-module.

[8] NIST. 2021. NetSimulyzer Visualizer Application, v1.0.1. https://github.com/
usnistgov/NetSimulyzer.

[9] ns-3 Network Simulator. 2021. https://www.nsnam.org/.
[10] L. Felipe Perrone, Thomas R. Henderson, Mitchell J. Watrous, and Vinícius

Daly Felizardo. 2013. The Design of an Output Data Collection Framework
for ns-3. In 2013 Winter Simulations Conference (WSC) (Washington, DC, USA).
2984–2995. https://doi.org/10.1109/WSC.2013.6721666

[11] PyViz. 2015. https://www.nsnam.org/wiki/PyViz.

[12] Paulo Alexandre Regis, Suman Bhunia, and Shamik Sengupta. 2016. Imple-
mentation of 3D Obstacle Compliant Mobility Models for UAV Networks in
ns-3. In Proceedings of the Workshop on ns-3 (Seattle, WA, USA) (WNS3 2016).
Association for Computing Machinery, New York, NY, USA, 124–131. https:
//doi.org/10.1145/2915371.2915384

[13] RemCom. 2021. EMPIRE Shim. https://apps.nsnam.org/app/empire/.
[14] Richard Rouil, Evan Black, Samantha Gamboa, Wesley Garey, and Thomas Hen-

derson. 2020. Simulation and Visualization of Public Safety Incidents. https:
//www.nist.gov/ctl/pscr/simulation-and-visualization-public-safety-incidents.

[15] Benjamin Sliwa, Manuel Patchou, Karsten Heimann, and ChristianWietfeld. 2020.
Simulating Hybrid Aerial- and Ground-Based Vehicular Networks with ns-3 and
LIMoSim. In Proceedings of the 2020 Workshop on ns-3 (Gaithersburg, MD, USA)
(WNS3 2020). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3389400.3389407

[16] US Naval Research Laboratory. 2021. Scripted Display Tool (SDT), a 3D Network
Visualization Tool, v2.3. https://github.com/USNavalResearchLaboratory/sdt.

[17] Amina Šljivo, Dwight Kerkhove, Ingrid Moerman, Eli De Poorter, and Jeroen
Hoebeke. 2018. Interactive Web Visualizer for IEEE 802.11ah ns-3 Module.
In Proceedings of the 10th Workshop on ns-3 (Surathkal, India) (WNS3 2018).
Association for Computing Machinery, New York, NY, USA, 23–29. https:
//doi.org/10.1145/3199902.3199904

[18] Tommaso Zugno, Michele Polese, Natale Patriciello, Biljana Bojović, Sandra
Lagen, and Michele Zorzi. 2020. Implementation of a Spatial Channel Model
for ns-3. In Proceedings of the 2020 Workshop on ns-3 (Gaithersburg, MD, USA)
(WNS3 2020). Association for Computing Machinery, New York, NY, USA, 49–56.
https://doi.org/10.1145/3389400.3389401

NetSimulyzer: a 3D Network Simulation Analyzer for ns-3
E. Black, S. Gamboa, R. Rouil

72

