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Abstract. The magnet system is an essential component of the Kibble balance, a
device that is used to realize the unit of mass. It is the source of the magnetic flux, and
its importance is captured in the geometric factor Bl. Ironically, the Bl factor cancels
out and does not appear in the final Kibble equation. Nevertheless, care must be taken
to design and build the magnet system because the cancellation is perfect only if the Bl
is the same in both modes: the weighing and velocity mode. This review provides the
knowledge necessary to build a magnetic circuit for the Kibble balance. In addition,
this article discusses the design considerations, parameter optimizations, practical
adjustments to the finished product, and an assessment of systematic uncertainties
associated with the magnet system.
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1. Introduction

Today, the Kibble balance [1] is a precision instrument that is used to realize the unit
of mass, and it can weigh masses ranging from grams to kilograms. It is one of two
methods for the primary realization of the mass unit, the other being the X-ray crystal
density method (XRCD) [2].

Previously, the Kibble balance was called the watt balance. The community agreed
to the name change to honor the late Dr. Bryan Kibble, who invented this measurement
technique. Before 2019, the balance was used to determine the Planck constant, h,
utilizing a mass that was traceable to the international prototype kilogram (IPK) as an
input quantity. According to Nature [3], in 2012, the watt balance was one of the six
most difficult experiments.

By the end of July 2017, the different measurements of h had converged sufficiently
to initiate the revision of the international system of units, the SI (abbreviation for the
French expression Système International d’Unités). Based on data available at that
time, final values were calculated for the Planck constant h, the Avogadro constant NA,
the elementary charge e, and the Boltzmann constant k [4]. The assigned numerical
values to these four constants define four of the seven base units in the SI [5]. These
are the kilogram, the ampere, the mole, and the kelvin. On May 20th, 2019, the
revised SI came into effect. Since then, the Kibble balance and XRCD have replaced the
international prototype kilogram as the starting point of worldwide mass dissemination.
Kibble balance experiments are carried out at many National Metrology Institutes
(NMIs) and the Bureau International des Poids et Measures (BIPM), e.g. [6–15].

The principle of the Kibble balance is based on the measurement of the integral of
the magnetic flux density B along the coil wire l or the gradient of the coil flux linkage
Φ over the vertical direction z, the so-called geometrical factor, given by (see Appendix
A)

Bl =
∂Φ

∂z
=

∫
(dl×B)z (1)

in two separated phases. In the weighing phase, the coil is excited by current I. The
electromagnetic force is adjusted such that it is equal and opposite to the weight of a
test mass,

(Bl)w =
mg

I
, (2)

where m and g denote the test mass and local gravitational acceleration, respectively. In
the velocity phase, the current is removed, and the open coil is connected to a voltmeter
with a high input impedance. The Bl factor is measured by moving the coil along
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the vertical direction with a velocity v. The quotient of the induced voltage U to the
velocity v is equal to Bl as

(Bl)v =
U

v
. (3)

Ideally and theoretically that is the case, (Bl)w and (Bl)v are the same, and, hence, the
right side of equation (2) is equal to the right side of equation (3). Then, after crosswise
multiplication, the equation of virtual power, also known as the Kibble equation,

mgv = UI, (4)

is obtained. The Kibble equation can only be obtained if (Bl)w = (Bl)v. At this point,
it is necessary to reflect on the relative uncertainties that are required. The best Kibble
balance can measure a 0.5 kg mass with a relative uncertainty just below 1× 10−8 [6].
So the question is, can the ratio (Bl)w/(Bl)v be trusted to be one within ±1× 10−8?
We will scrutinize this assumption in the sections below.

The current in the weighing phase is measured as a voltage drop V on a standard
resistor R, i.e. I = V/R. Solving for mass yields,

m =
UV

gvR
. (5)

The two different electrical measurements, voltage and resistance, can be traced back
to quantum effects. The Josephson effect [16] allows to realize a voltage

U =
nUfU

KJ

, (6)

with the Josephson constant KJ = 2e/h. Here nU is the number of Josephson Junctions
used (typically between 104 and 105) and fU is the microwave frequency that is used
to irradiate the Josephson junctions (several tens of GHz). For more information, the
reader may consult a recent review on Josephson voltage standards, for example [17].

The standard resistor is compared against, read: “is a fraction η of”, the quantum
Hall value [18,19],

R = ηRK, (7)

with the von Klitzing constant RK = h/e2. Recent reviews of the quantum Hall effect
can be found in [20,21].

Using nV and fV for the corresponding values in the V measurement, equation (5)
can be written as

m =
nUnV

4η

fUfV

gv
h. (8)

The quantum aspects pertain to the electrical measurement chain employed in the
Kibble balance. These aspects are crucial in bridging the gulf between classical and
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quantum mechanics [22], and are the prime connection that enables the Kibble balance
to realize the unit of mass. Despite the fact that quantum mechanics plays a critical
role in the Kibble balance, this article focuses on classical physics: the electromechanical
transducer. Hence, equation (5) suffices to understand our considerations.

The Kibble balance would not work without a magnet system. Its importance is
visible in the individual measurements made in weighing, (Bl)w, and velocity mode,
(Bl)v. In the final equation, i.e., the Kibble equation (5), however, the geometric factor
drops out, and it seems the result is independent of Bl. So, why spend energy and effort
designing a perfect magnet system? Because, as we shall see in the next paragraph, the
Bl does matter.

According to equation (5), the obtained value for the mass, m, is given by five
measurements. To find the lowest possible uncertainty for a Kibble balance experiment,
a simple uncertainty propagation is performed. The relative uncertainty in the mass,
neglecting correlations, is given by(σm

m

)2

=
(σv

v

)2

+

(
σg

g

)2

+
(σR

R

)2

+
(σU

U

)2

+
(σV

V

)2

, (9)

where σX denotes the absolute uncertainty in the measurement of quantity X. It is
reasonable to assume the same uncertainties for the two voltage measurements, σU = σV.
Following the derivation in [23], we replace U with Blv and V with mgR/(Bl) and obtain(σm

m

)2

=
(σv

v

)2

+

(
σg

g

)2

+
(σR

R

)2

+

(
1

Bl

)2 (σU

v

)2

+ (Bl)2

(
σU

mgR

)2

. (10)

The first three terms in the sum on the right are independent of Bl. The fourth term
is inversely proportional to (Bl)2 and the last term proportional to (Bl)2.

To minimize the relative uncertainty in the mass, one has to maximize Bl according
to the fourth term and minimize Bl per the fifth term. This dilemma provides the
designer with an opportunity. There must be an optimal Bl that minimizes the relative
uncertainty of the mass. It is given by,

(Bl)op =

√
mgR

v
. (11)

Figure 1 shows the relative uncertainty of the mass as a function of Bl. The graph
is obtained for typical parameters of a Kibble balance, m = 1 kg, R = 100 Ω, and
v = 2 mm/s. The uncertainties are assumed to be σv/v = σg/g = σR/R = 5 × 10−9,
σU = 5 nV. For these parameters, the minimum is achieved at (Bl)op ≈ 700 T m. Note
that (Bl)op only depends on the parameters and not their uncertainties. Furthermore,
(Bl)op is proportional to the square root of the product of weight and resistance,

√
mgR.
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Figure 1. The relative measurement uncertainty for mass as a function of the chosen
Bl, according to equation (10). In this example, σv/v = σg/g = σR/R = 5 × 10−9,
σU = 5 nV, v = 2 mm/s, mgR = 1000 ΩN. The smallest relative uncertainty of 1×10−8

is obtained at (Bl)op ≈ 700 Tm [23].

One can achieve the same performance by scaling both quantities inversely to each other.
Using the same magnet system with m = 100 g and R = 1 kΩ will produce the same
relative uncertainty as if it were used with m = 1 kg and R = 100 Ω. This scaling is only
true for the magnet system. The weighing system may have a different requirement for
smaller and larger masses.

Since Bl is a product, the magnet designer can fix one factor and adjust the other to
achieve the desired value. But what is the best strategy? Should the designer increase
B or l to obtain the highest possible value? Or is a trade-off the best strategy? A
quantity to consider for this decision is the resistive loss in the coil in the weighing
mode P = RcI

2, with Rc denoting the coil resistance. With the mass of test mass m,
the optimal Bl and ρ, the wire resistance per unit length, the electrical loss can be
written in two ways

P =
ρm2g2

(Bl)2
op

× l =
ρm2g2

(Bl)op

× 1

B
. (12)

Both formulas have a factor that only depends on the product (Bl)op, ρ, and m. But
the second-factor changes with the free parameter. The equations show that a large flux
density, and hence a small l, is desired because this scenario leads to a decrease in the
power dissipation in the wire. The opposite is true for increasing the length of the wire.
It would increase the electrical power dissipated in the coil. Consequently, it’s best to
make B as large as possible and therefore l as small as possible.
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We described how to choose a value for Bl and how to divide it up to B and l, but
still unclear is the magnetic flux source. While this topic is discussed in greater detail
in section 3, a brief overview is given here.

Through the history of the Kibble balance, the source of the magnetic field evolved.
The predecessor of the Kibble balance, the Ampere balance [24, 25], used air-cored
coils to produce the magnetic flux. These coils were wound with copper wire, and not
superconductor wire. We refer to such coils as conventional coils, as opposed to super-
conducting coils. The Ampere balance was used to realize the unit of electrical current
from 1948 to 1990. Because of the similarity to the Kibble balance, the magnet system
of the Ampere balance can be analyzed within the same framework, see section 3.1. The
conventional coils cannot produce a strong magnetic field. The magnetic flux density at
the measurement position was only a few mT, which limited the weighing capacity to a
few grams. Although the wire length l or excitation current can be increased to reach a
higher force. In both cases, the self-heating increases which yields to larger uncertainty
components caused by adverse effect of the heating, consistent with equation (12).

Later, different magnetic systems, such as permanent magnet systems [26–28],
superconducting coils [29], yoke-based electromagnet [30] were designed to increase
the magnetic field B and, at the same time, reduce the ohmic dissipation. During
this time, researchers developed concepts for improving the field profile, e.g. [9, 31–33].
After more than a decade of iterations, the designs finally converged on the yoke-
based permanent magnet system [34, 35]. The success of the yoke-based permanent
magnet system relies on two advantages over other designs. First, the yoke can provide
a well-defined boundary condition in both radial and azimuthal directions. In this
case, the magnetic field design is greatly simplified from a complex three-dimensional
problem to a one-dimensional optimization. Second, the permanent magnet system
does not contain components that must be powered. Instead, the rare-earth magnetic
material is magnetized during production and remains magnetized for the lifespan of the
experiment. Hence, such a system provides the magnetic flux with reduced complexity
(no power supplies needed) and maintenance cost. The different types of magnet systems
are reviewed in more detail in section 3.

Yoke-based permanent magnets supply an intense, uniform, and stable magnetic
field for Kibble balance measurement. Hence, these days they are the workhorse for
Kibble balances. Various designs for magnet systems exist, and each magnet system
has different design parameters that can be optimized. Section 4 discusses the most
important considerations for the magnet designer. Among the topics discussed are the
selection of the dimensions and the materials for the magnet system. The reader can
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find tips regarding the assembly, manufacturing, and final evaluation of the magnet
system.

Sometimes, the field profile of the assembled magnet is not satisfactory, and
adjustments must be made. Section 5 discusses how to shim the magnet to achieve
the desired profile. It further details different techniques to characterize the magnet
system.

Even a perfect magnet will have contributions to the uncertainty budget of the
Kibble balance. There will always be imperfections. The magnetic field will never be
perfectly symmetric. Furthermore, magnetic materials are inherently nonlinear, and
nonlinear effects can bias the measurement. The text in section 6 discusses the major
magnetic systematic concerns for different measurement schemes.

2. Brief review of the physics of magnetic fields

This section aims to make the reader familiar with the terminology used for the design
of static magnetic fields. We introduce the symbols and show basic formulas typically
used in textbooks about the subject. A reader that is familiar with the topic may skip
this section.

2.1. The magnetic flux density

The most used quantity in the context of the article is the magnetic flux density B. It
is a vectorial quantity ~B. If only the scalar is printed, the magnitude of the vector is
indicated B = | ~B|. The magnetic flux density is a source-free vector field. That means
the field lines have neither beginning nor end. They are closed. Maxwell’s second
equation describes this fact. It says that the divergence of the magnetic flux density is
0, ~∇ · ~B = 0.

In Cartesian coordinates, ~B has the components Bx, By, and Bz along the three
coordinate vectors ~ex, ~ey, and ~ez. However since most coils are wound on a circular
former it is often more convenient to use cylindrical coordinates, ~B = Br~er+Bϕ~eϕ+Bz~ez,
where r, ϕ and z are the cylindrical coordinates, and ~er, ~eϕ, ~ez are the corresponding
unit vectors.

In cylindrical coordinates, the divergence of ~B is given by

~∇ · ~B =
1

r

∂(rBr)

∂r
+

1

r

∂Bϕ

∂ϕ
+
∂Bz

∂z
= 0. (13)

This result leads to an important corollary. If the flux density has cylindrical
symmetry, that is, it is independent of the azimuth ϕ, then

Br

r
+
∂Br

∂r
= −∂Bz

∂z
. (14)
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If, furthermore, the radial component of the field is inverse proportional to r, that is,
Br = Bcrc/r, then ∂Bz/∂z = 0. Here, Bc is the radial field at the mean radius of the
coil rc, Br(rc) = Bc. For such a field, the vertical component of B does not change with
z.

2.2. The magnetic field

The magnetic field is abbreviated with ~H. In a vacuum, ~H is except a factor, named the
vacuum permeability, the same as ~B. It is ~H = µ−1

0
~B. Inside matter, however, the two

vectorial quantities differ. The magnetization of the material decreases the magnetic
field, ~H = µ−1

0
~B − ~M . Inside a permanent magnet, for example Samarium-Cobalt, the

~B and ~H are in opposite directions. The H field is an important quantity to analyze
magnetic circuits. Integrating ~H along a closed path yields∮

~H · d~l = It, (15)

where It is the total current flowing through the surface enclosed by the path.
Equation (15) makes it easy to remember that the unit of H is A/m. A typical case
here is the analysis of a magnetic circuit without current in the coil. In this case, the
enclosed integral evaluates to zero.

2.3. The magnetic circuit

A very simple magnetic circuit is shown in figure 2(a). It shows a permanent magnet of
width lm, an iron yoke, and an air gap of width la. The red line is the closed contour over
which the integral in equation (15) is calculated. There is no current enclosed inside the
contour and no external magnetic flux is considered, hence, the integral must evaluate
to zero. We can split the path along the contour into three regions, the permanent
magnet, the iron yoke (length ly), and the air gap. In the air gap ~H = µ−1

0
~B. In the

iron, ~H = (µ0µr)
−1 ~B (µr is the yoke relative permeability) and finally, in the magnet,

we have Hm. The complete integral is

Hmlm +
By

µ0µr

ly +
Ba

µ0

la = 0. (16)

If the cross-sectional areas in the air gap and the yoke and the magnet are the same, a
single symbol S is enough to denote this area. In this case, B is identical in the magnet,
the yoke, and the air gap, because the flux Φ = BS is conserved. Note, for simplicity
we ignore fringe fields here. It is B = By = Ba = Bm. Equation (16) can now be easily
solved for B, it is

B =
−Hmlm
ly
µ0µr

+
la
µ0

. (17)
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Figure 2. (a) is a simple magnetic circuit with a permanent magnet (PM) and an
air gap. The red line denotes a major magnetic flux line through the circuit. (b)
shows an equivalent electrical circuit for understanding the magnetic circuit, where
the permanent magnet, yoke, and air gap are turned into the battery (with an internal
resistance), wire resistance, and load reluctance, respectively.

The next question we would like to investigate is: What is the magnetomotive force
of permanent magnet material? Can it be doubled by doubling the length of the magnet?
As we shall see, it is not that simple. As the black curve in figure 3 shows, commonly
used modern magnet materials, e.g., Samarium Cobalt (SmCo) and Neodymium-Iron-
Boron (NdFeB), show a linear behavior in the second quadrant (positive B, negative
H). The magnetic flux is given by

B = µmµ0H +BR or B = µmµ0(H −HC), (18)

where µm is the relative permeability of the permanent magnet, BR its remanenence,
which is the magnetic flux in the absence of H, and HC the coercivity. Note that
BR = −µmµ0HC. Applying

Hm =
B

µmµ0

− BR

µmµ0

=
B

µmµ0

+HC (19)
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Figure 3. Measured demagnetization curve, i.e., the part of the magnetic hysteresis
that is in the second quadrant, for a SmCo sample [33]. The sample was measured
at 26 °C. B = µ0H + µ0M . Since the magnetization changes by less then 10% for
H ranging from −800 kA m−1 to 0 A m−1, the magnetic flux density is almost a linear
function of H in this range.

into equation (16) and using Φ = SB yields,

Φ

(
lm

Sµmµ0

+
ly

Sµ0µr

+
la
Sµ0

)
=

BR

µmµ0

lm = −HClm. (20)

Besides using Ampere’s law, Ohm’s law in magnetism can be used to understand
the magnetic circuit and derive (20). Similar to Ohm’s law, I = U/R, the magnetic
version is as

Φ =
F

R
, (21)

where R is the magnetic reluctance of the circuit, F the magnetomotive force (MMF).
The magnetomotive force corresponds to the voltage (electromotive force, EMF), the
flux to the current, and the reluctance to the resistance in the original law by Ohm.
The MMF is supplied by the permanent magnet and is given by F = −HC lm. While
the reluctances of three components form a serial circuit and add R = Ra + Ry + Rm.
The individual reluctances of the air gap, the yoke and the permanent magnet, are

Ra =
la
Sµ0

, Ry =
ly

Sµ0µr

, Rm =
lm

Sµ0µm

, (22)

respectively. Equation (20) is obtained by replacing R by the sum, of the components
in equation (22) and F by −HC lm.

The following points are helpful when using Ohm’s law to design or analyze a
magnet system:
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(i) The reluctance of the yoke is very low because the relative permeability of iron, µr

is very high, of order 1× 103 or even larger. So, Ry << Ra and Ry << Rm, and
hence R ≈ Ra + Rm. The yoke in the magnetic circuit plays a similar role to the
wire in the electric circuit. It guides the flux with very low reluctance, just as the
wire in an ideal electrical circuit is thought to have negligible resistance.

(ii) The permanent magnet corresponds to the voltage source (battery) as shown in
figure 2(b). The MMF supplied is F = −HClm. However, the magnet comes with
its own reluctance Rm, similar to the internal resistance in a voltage source.

(iii) With the last two items, the effect of doubling the length of the active magnetic
material on the flux can be analyzed. the flux is

Φ′ =
2F

2Rm +Ra

< 2
F

Rm +Ra

= 2Φ. (23)

A longer permanent magnet increases the MMF, but also the total reluctance.
Hence the flux increase is smaller than proportional to the length. In the limit
Ra << Rm, the magnetic flux remains constant and does not change with increasing
lm.

(iv) The load in the electric circuit corresponds to the air gap in the magnetic circuit.
Typically, it has the largest reluctance in the circuit, given by Ra. The ratio of the
reluctances is proportional to the length ratios (assuming identical area),

Rm

Ra

≈ lm
la
, (24)

because the relative permeabilities of rare earth magnets are close to one. While
for some electrical circuits, the internal resistance of the source can be neglected,
the same is not true for magnet systems.

2.4. The magnetic reluctance

Above, we have already used the equation for the reluctance of an element with a cross-
sectional area Sx, flux path length (thickness) of lx, and a relative magnetic permeability
µx is

Rx =
lx

µ0µxSx

. (25)

Equation (25) has a similar form as the resistance of a conductive block with the same
geometrical parameters (lx, Sx), i.e. R = ρ lx/Sx. To obtain the equation for the
magnetic reluctance one has to replace the resistivity ρ by the permeability 1/(µxµ0).

Designing a magnet for a Kibble balance, very often one has to work with cylindrical
gaps, inner radius ri, outer radius ro and height ha. For such a gap, the reluctance is

Ra =
1

µ0µaha2π
ln
ro

ri

≈ δ

µ0µaha2πri

, (26)
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(a) Magnet open (b) Magnet closed

Figure 4. An example of a magnet splitter. (a) and (b) show the open and close
status, respectively. Reproduced from [33].

where the approximation is a Taylor expansion of the natural logarithm for ro = ri + δ

and δ << ri.

2.5. The magnetic force required to split the magnet

In some magnet systems, the coil is surrounded by the yoke. In other words, the air
gap is inside the magnet with a few access holes that allow the coil suspension and
laser beams to penetrate. The advantage of such an internal air gap is that the coil is
shielded from fluctuating environmental magnetic fields. The disadvantage is that the
magnet needs to be taken apart to insert the coil. This process is known as “splitting
the magnet.”

An important parameter to design a magnet splitter is the size of the force that is
required to split the magnet. Figure 4 shows a rendering of such a device that is needed
to open the magnet.

The Maxwell stress tensor provides a simple method to calculate the force that acts
on an object in a given space [36]. The force is given by the surface integral,

F =

∮
T · dS. (27)

The nine components of the Maxwell stress tensor T are given by

Tij =
1

µ0

(
BiBj −

1

2
δij|B|2

)
, (28)

where i and j indicate the three directions of the Cartesian coordinates, x, y, and z,
or a permutation depending on how the problem is set up. The symbol δij denotes the
Kronecker delta, which is δij = 1 for i = j and δi,j = 0 for i 6= j.

An example of a force calculation using eq. (27) is given in section 4.5.



13

3. Evolution of different magnet systems

Before discussing the short historical evolution of magnet systems in Kibble balance, we
would like to put forward three generally accepted properties that these magnet systems
should have.

(i) The magnet system shall provide a large and uniform magnetic flux density
throughout the coil at the weighing position and in the volume that the coil traverses
in velocity mode.

(ii) The total magnetic flux penetrating the coil and its gradient shall be independent
of external (environmental) and internal factors, most importantly, the coil current.

(iii) Manufacturing, operation, and maintenance shall be simple and if possible,
economical.

Today, when Kibble’s idea is almost half a century old, the thinking on the magnet
system has clarified enough that these three points may sound trivial. Historically,
however, that has not always been the case. As is shown below, researchers were
reluctant to introduce iron to the magnet system out of worry that the nonlinear effects
may compromise Kibble’s idea. For the remainder of the text, we will use the three
points above to evaluate various types of magnet systems.

3.1. Conventional coil system

Long before the Kibble balance, a different type of electrical balance was used in
metrology to define the unit of current, the ampere. In the international system of units
that was valid until 20th May 2019, the ampere was defined as the constant current
that would produce a force of 2× 10−7 N m−1 between two straight parallel conductors
placed one meter apart. In the formal definition, these conductors have negligible cross-
section and extend to infinity. This definition links the only electrical unit in the SI
to the mechanical unit via the force between two current-carrying wires. The practical
realization of the unit of current was carried out with an Ampere balance, sometimes
also referred to as current balance or magnetometer [34].

In the Ampere balance, the force between a fixed and a movable coil connected to
a balance was measured [24, 25]. The electromagnetic force between the two coils can
be written as

F =
∂M

∂z
IFI = (Bl)wI, (29)

where IF and I are the currents through the fixed and movable coils, respectively. Here,
M is the mutual inductance of two coils and ∂M/∂z the gradient of M along the vertical
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direction z. Note, (∂M/∂z)IF is identical to the geometric factor Bl.
The four panels in figure 5 show typical coil configurations used in Ampere balances.

Each configuration requires three coils. The difference is whether one coil or two coils
are stationary and, correspondingly, two coils or one coil are moving. The coils in the
pair whether they are moving or not, have identical parameters (diameter and number
of turns) but are connected in serial opposition. In the left column of figure 5 the fixed
coil assembly is the coil pair, and in the right column, it is the single coil. The second
choice is which coil assembly has a smaller radius. In the top row of figure 5 the fixed coil
assembly is on the inside (smaller radius), whereas in the second row, it is on the outside
(larger radius). Interestingly, as long as the inner radii, outer radii, and coil separation
do not change, all four configurations produce the same Bl, shown in the last row of
figure 5. The fact that the four configurations produce the same Bl can be seen by
writing the mutual inductance as a sum of the inductances between the single-coil (S)
and two other individual coils (upper U and lower L), i.e. M(z) = MSU(z)−MSL(z). If
the mutual induction of one inner and one outer coil as a function of vertical separation
is given by M1(z), then MSU(z) = M1(d/2 − z) and MSL(z) = −M1(d/2 + z). Hence,
M(z) = M1(d/2− z) +M1(d/2 + z), and most importantly M(z) = M(−z).

One merit of these coil systems is that the field gradient is zero at the symmetry
plane, z = 0, since ∂2M/∂z2|z = − ∂2M/∂z2|−z, it follows that ∂2M/∂z2|z=0 = 0.
Typically, z = 0 is chosen as the weighing point. Then, the magnetic force F is
independent of small variations of the vertical position of the movable coil. The second
benefit of this position is that the magnetic flux density is inversely proportional to
the radius, B(r) ∝ r−1. In an azimuthally symmetric geometry, as is discussed here,
B(r) ∝ r−1 leads to an important consequence. The magnetic flux density is divergence-
free, ~∇ · ~B = 0, and hence ∂Bz/∂z = −1

r
∂(rB)/∂r. The term to the right of the equal

sign is identical to zero for B(r) ∝ r−1, and, therefore, ∂Bz/∂z = 0. So, no magnetic
flux is threading through the coil. This condition is true for the entire plane where
B(r) ∝ r−1, in this case, z = 0. The flux through the coil is zero independent of
coil radius and horizontal position. That means, in weighing, the result is to first-order
independent of the precise horizontal position and the coil radius [24,37]. The latter can
change slightly due to ohmic coil heating. The Bl conservation of a r−1 field is further
detailed in Appendix B. In summary, taking advantage of the symmetry at z = 0 makes
the measurement less susceptible to small deviations from the ideal system.

A magnet system employed for Kibble balance measurement should produce a flat
field region along z so that when the coil moves with constant velocity, the induced
voltage stays stable. For current-carrying coil systems, the easiest way to obtain a flat
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Figure 5. Panels (a)-(d) show four different coils that can be used in the Ampere
balances. The inner coil radius and outer coil radius are respectively r0 and r. The
distance between the coils that form a pair is d. Panel (e) shows the magnetic field
produced by the fixed coil arrangement with ampere-turns of each fixed segment
NIF = 200 A. In this case, r0 = 100 mm. Note the small magnitude of the produced
flux density.
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B(z) profile is to adjust the separation of the double coil d and the horizontal distance
of fixed and movable coils, see e.g. [38–40]. In figure 5 (e), we take an example to show
the magnetic profile distributions with different combinations of d and outer coil radius
r (the inner coil radius is fixed at r0 = 100 mm). It can be seen by either adjusting d
with a fixed r or the opposite (changing r when d is fixed), a flat magnetic profile (in
this case, d = 160 mm, r = 150 mm) can be achieved.

Figure 5(e) shows that the magnetic field produced is weak, below 1 mT, even with
comparably large ampere-turns NIF = 200 A. From the uncertainty relationship shown
in figure 1, the measurement error for the induced voltage is considerable at small Bl
values. However, choosing a longer wire l to increase the Bl value will also enlarge the
wire resistance and the ohmic heating. In summary, the weak field that is produced by
conventional coils is a major drawback. And, hence, these systems are no longer in use
for Kibble balances.

3.2. Multi-coil magnet system

Ohmic heating in the field generating coils and its adverse effect can be eliminated
by using superconducting wires. Researchers at the National Institute of Standards
and Technology (NIST, USA) developed a superconducting coil system for the third-
generation Kibble balance experiment (NIST-3) [41, 42]. The NIST-3 superconducting
magnet is shown in figure 6 (a). Two groups of superconducting coils were employed
to produce the magnetic field for the measurement. The main solenoids produced
a magnetic profile similar to the conventional coil system but with a much larger
manetic flux density (sub-Tesla level). Thanks to T.P. Olsen [24], a pair of trim
solenoids were used to compensate for the first order (z2) non-linearities of the main
solenoids. Compared to systems shown in figure 5, this double-layer design allows a
quasi-realization of 1/r field in a much wider range along z. Figure 6 (a) presents a
typical NIST-3 velocity measurement result. As is seen, the magnetic profile changes
only by a few parts in 104 over about 100 mm z travel.

Another novel idea implemented in NIST-3 system is that its induction coil consists
of two individual coils. One is movable and connected to the balance. The other is fixed
in space. In fact, the fixed coil itself consists of two coils that formed a virtual coil
with the same number of turns as the moving coil. By connecting the moving and the
virtually fixed coil in series opposition, the common electromagnetic noise, canceled [33],
improving significantly the signal-to-noise ratio. The idea is similar to a humbucker in
an electric guitar. The double movable coil shown in figure 5 can achieve a similar
feature. The NIST-3 superconducting magnet was a successful system. It met the
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Figure 6. (a) The NIST-3 superconducting magnetic system. The left plot shows a
measurement of the magnetic profile in the velocity phase (reproduced from [42]),
and the right plot is the spatial arrangement of superconducting solenoids. (b)
The permanent-magnet-only system was used in the Joule balance experiment. The
left shows the construction of the system, and the right presents the designed
(green) and achieved (red) magnetic profiles. Reproduced from [43]. The labeled
components in both systems are: 1©–upper main solenoid/magnet ring, 2©–lower
main solenoid/magnet ring, 3©–upper trim solenoid/magnet ring, 4©–lower trim
solenoid/magnet ring, 5©–main movable coil, 6©– upper fixed compensation coil, 7©–
lower fixed compensation coil.

magnetic requirements for Kibble balance measurement and produced one of the most
precise results for determining the Planck constant at the time [29, 41, 44]. One major
shortcoming of the superconducting system is the complexity of the operation. One
needs a stable current control for the solenoids and liquid helium to reach the transition
temperature for the superconductor. For NIST-3 about 250 L of liquid Helium were
necessary for a week of operation. The second problem is the lack of a defined and
stable metrological surface. Typically, in velocity mode, the velocity of the coil with
respect to the magnet needs to be measured. Very often, that measurement is performed
interferometrically with a surface of the magnet providing a mounting surface for the
reference arm. A superconducting coil, however, does not offer easy access to a defined
surface. The plane of interest, the magnetic center of the superconducting coil, is
immersed in liquid helium. A possible surface would be the top of the Dewar, but the
stability from that surface to the magnetic center of the coil is not great. For example,
vibration, magnetostrictive forces, and thermal expansion due to a change in Helium
level in the Dewar can affect the distance between the top of the Dewar and the center
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of the coil.
A second attempt to improve the field strength and reduce the ohmic heating for

the coil system was undertaken by researchers at the National Institute of Metrology
(NIM, China) for the Joule balance experiment [43]. The idea is to replace the field
generating coils with permanent magnets yielding two advantages: 1) the ohmic heating
of the field generating coils is removed, and 2) a stronger magnetic field is created. The
construction of the NIM-1 magnet system and the magnetic profile are shown in figure
6 (b). A flat magnetic profile of about 30 mT over 1 cm was obtained. Compared to
superconducting coils, the permanent-magnet-only system is simpler and more compact.
However, the field strength was several times weaker than that of the NIST-3 system,
and to produce a 4.9 N force (weight of 500 g mass), the ohmic heating caused by the
moving coil of 0.7 W was significant. In reality, a large-volume permanent magnet is
challenging to manufacture, and hence the rings are usually realized by gluing small
pieces together. Typically, the field strength of different parts can vary by as much
as 1%, and the magnetization difference can yield unknown field gradients in open
circuits, causing misalignment errors. Besides, the remanence of the permanent magnet
has a significant temperature coefficient of −3 × 10−4/K (SmCo magnet) to −10−3/K
(NdFeB magnet), without an efficient heat sink, the magnet temperature needs to be
well controlled during the measurement.

The magnet systems described above are open. The magnetic flux is not guided and,
therefore, can penetrate the entire room where the Kibble balance is installed. Thus,
the following considerations are essential: 1) There will be a vertical field gradient at
the mass. As a consequence, a considerable magnetization force occurs when the mass
is made from soft magnetic materials, such as stainless steel [45]. 2) The magnetic flux
density at the coil position can be influenced by iron in its vicinity. Great care has to
be taken to avoid iron, and if iron is unavoidable, it has to be mounted such that it does
not move with respect to the magnet system. A change of the relative positions may
alter the field profile and cause systematic effects. To suppress these effects and, at the
same time, further increase the field strength, controlling and aligning the magnetic flux
path by introducing soft yokes to the permanent magnet system became inevitable.

3.3. Flat permanent magnet system

The first yoke-based permanent magnet system was employed by the first generation
Kibble balance experiment (NPL-Mark I) at the National Physical Laboratory (NPL,
UK) [46]. The NPL-Mark I system is shown in figure 7(a) and (b). The construction was
similar to an air-gapped transformer, but permanent magnet disks created the flux. The
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Figure 7. (a) The NPL-Mark I magnet system. The arrows denote the path of
magnetic flux. (b) The right plot shows the figure-eight-shaped coil. The arrow is the
current flow in the weighing measurement. (a) and (b) are reproduced from [46]. (c)
The METAS-Mark I magnet system. The left plot is the original magnetic circuit,
and the right is the improved design. (d) shows the hysteresis effect of the original
METAS-Mark I magnetic circuit. (c) and (d) are reproduced from [47–49].

magnetic flux was guided horizontally through a 56 mm width, 0.3 m×0.3 m sectional
area air gap. The magnetic field in the air gap center was 0.68 T. A flat magnetic
profile was achieved with a figure-eight-shaped coil located vertically in the center of
the air gap. The total coil height was larger than the gap height, which ensured that in
velocity mode, the magnetic flux through one half of the coil increased while the other
half decreased. With symmetry, the difference between upper and lower segments gave
a linear change of magnetic flux over z.
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The strong magnetic field in the NPL Mark I system was achieved by compressing
the flux in a relatively small measurement region. Almost no flux was wasted to the
outside of the measurement region. Therefore, the dissipation in the coil during weighing
was no longer a limiting factor for the measurement. The magnetic shielding, compared
to coil systems, has been improved. The only downside of this design is that only
a tiny fraction of the wire length contributes to the force. The system was massive:
the magnet weighs 6000 kg, and the coil 30 kg. A large mass can increase the thermal
capacity and damp the effects of temperature. However, it is cumbersome to put such
an extensive magnet system in a vacuum. Another disadvantage is that the fringe field
goes through upper and lower coil segments. Hence, a large part of the fringe field is a
common mode in the velocity and the force measurement. The first generation Kibble
balance experiment (METAS Mark I) at the Federal Institute of Metrology (METAS,
Switzerland) employed a magnetic circuit that is similar to the one in NPL’s Mark I.
The original design is shown in the left plot of figure 7(c). The magnetic circuit principle
was the same as NPL Mark I, and a magnetic flux density in the 7 mm width air gap,
of about 0.5 T, was achieved [49]. The main difference was that the ’8’ shape coil was
arranged horizontally through the air gap. Note that this setup leaves a closed yoke
loop shown as the green dashed line in figure 7(c). Ideally, with the same ampere-
turns of two segments of the ’8’ shape movable coil, the total magnetic flux through the
closed loop is zero. However, the asymmetry during the weighing measurement, e.g., a
non-synchronization of loading or removing the coil current, can considerably shift the
yoke BH status and introduce a magnetic hysteresis during the mass-on and mass-off
measurement loop. Figure 7(d) presents a typical profile measurement after different
current polarities [49]. It shows the hysteresis effect was at the order of 10−5, which
became the major limitation for further improving the overall measurement accuracy.

Later, the METAS Mark I magnet system was redesigned to address the hysteresis
issue. As shown in figure 7(b), the permanent magnets (SmCo) were removed from the
center and inserted into respectively the upper and lower ends of the circuit [48]. In
this new design, the permanent magnets act also as spacers to cut the previously closed
yoke loop. With this increase in the magnetic reluctance for the coil flux path, the
hysteresis was significantly reduced [47]. The design used for METAS Mark I succeeded
in realizing a compact design using a one-dimension horizontal magnetic field. Still,
the ’8’ shape coil suffers from a bad active-to-passive coil ratio. Only ≈25% of the coil
contributes to the Kibble principle, but all 100% contribute to the resistive loss in the
weighing mode.
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3.4. Radial permanent magnet system

As shown in Figure 8(a), the second generation Kibble balance at the NPL [50, 51],
known as NPL Mark II, used a radial magnetic system and utilize all the wire in the
coil for the Kibble principle. In weighing mode, every piece of wire that has dissipation
also produces a force. The active-to-passive coil ratio is one. This design is the first with
a cylindrical air gap. The NPL Mark II design has up-down symmetry, and soft yokes
guide the magnetic flux of the permanent magnet ring (SmCo) through the upper and
lower air gaps. The movable coil, split into two segments in opposite connection similar
to the magnet shown in figure 5, uses the full wire length to produce an electromagnetic
force in the weighing and the induction in the velocity phase. The radial field in the
center part of each air gap is close to the 1/r field distribution, satisfying Olsen’s idea.
The splitting of the coil significantly suppresses the common noise and produces a very
quiet measurement in the velocity phase [6].

The shielding of the NPL Mark II system has been improved compared to the Mark
I system. But still, since the SmCo ring is located at the outer yoke and the air gaps
contain open ends on the top/bottom surfaces. Flux leaks out at these locations. After
the Mark II apparatus was transferred to the National Research Council (NRC, Canada)
in 2009, the NPL group started a new generation Kibble balance experiment [15],
referred to here as the NPL-NG system. The NPL-NG experiment still uses the two-coil
design with significant improvement on the magnet shielding: As shown in figure 8(b),
the permanent magnet ring is located inside the inner yoke. Additional shielding has
been considered for the NPL-NG design to cut the coupling between the magnet flux
and the external flux.

It is easy to imagine the NPL two-gap design with one gap closed. Closing one
gap further compresses the magnetic flux, and yields an increased flux density in
the remaining gap. This idea has been implemented at the Laboratoire National de
Métrologie et d’Essais (LNE, France). The LNE magnet is shown in figure 8(c). With
a 9 mm width air gap, an average field in the air gap of 0.95 T was obtained [32]. This
field strength is the strongest magnetic field used in Kibble balance experiments by far.
As a result of the broken up-down symmetry, the theoretical magnetic profile over z
in the air gap will be sloped (shown in figure 12(d)) because the inner flux path has a
lower reluctance compared to that of the far-end path. To correct it, fine adjustments,
detailed in section 5, are required. ‘ As shown in figure 8(d), in 2006, researchers at the
Bureau International des Poids et Mesures (BIPM) proposed a novel permanent magnet
circuit design that guides the magnetic flux of two permanent magnets (SmCo) rings
through one air gap [31]. Its construction is equivalent to the symmetrical assembly of
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two LNE-type magnets with SmCo rings inserted in the inner yoke. This design has
three advantages: 1) Soft yokes entirely surround the magnet circuit, and therefore the
magnetic shielding is nearly perfect [52]. Imperfections in the shielding are created by
holes that are required to connect to the coil. 2) Similar to the LNE design, since there
is only one gap, the flux density in the gap is high and almost no flux is wasted. 3)
Since the geometry is symmetric about z = 0, so is the profile. Hence at that vertical
position, the radial field is proportional to 1/r. Due to the symmetry, several systematic
errors such as nonlinear magnetic effects [53,54] are reduced.

The attractive force at a horizontal plane where the magnet can be opened for coil
installation can be very strong (kN level). Therefore in the BIPM magnet system, the
coil should be inserted before the circuit is closed. Accessing the coil is difficult after
the magnetic circuit is closed, which may be inconvenient for in-situ coil adjustments.
By far, the BIPM type magnet design is the most popular magnetic system applied in
worldwide Kibble balance experiments, e.g., [9, 11, 13,14,33].

The Kibble balance experiment at the Measurement Standards Laboratory (MSL,
New Zealand) employs a magnetic circuit as shown in figure 8(e) [12]. The permanent
magnet is a cylinder with a radial magnetization inserted in the outer yoke pole in the
one-gap structure. This design can lower the coil flux coupling around the air gap [55].
However, similar to the original METAS Mark I design, a low reluctance path exists
along the yoke. The addition of two spacers in the inner yoke reduces the magnetic
hysteresis. The spacers increase the magnetic reluctance for the main flux path and
lower the magnetic field in the measurement gap.

In summary, yoke-based radial magnetic systems can produce a strong (sub-Tesla),
robust and uniform magnetic fields for Kibble balance measurements. In addition to
the high field quality, the magnet size is compact, and its operation cost, compared to
the superconducting system, is low. Hence, the popularity of these designs in current
ongoing Kibble balances. Figure 9 compares the performance of different yoke-based
radial systems, including the NIST-3 superconducting system. Three features are
compared: 1) the efficiency of creating the required magnetic field. 2) the magnetic
shielding. 3) the symmetry for Kibble balance measurement. It can be seen that the
BIPM-type magnet system has good performances for all three features. We believe the
BIPM-type circuit is one of the best Kibble balance magnetic systems, and it will be
taken as examples in most cases of the following discussions.
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4. Design of a permanent magnet

In this section, we discuss the design of the magnet system in more detail. The equations
that were introduced in section 3 are now applied. We start by discussing the material
selection. Next, we will provide an example calculation of the magnetic flux density in
the gap. Then, we show how to calculate the working point of the yoke. After that, we
will consider several ways to improve the flatness of the profile. In the subsection that
follows that we provide a more detailed analysis of the force that is required to open
the magnet and how to reduce this force. We will end the section with an examination
of the thermal properties of the magnet.

4.1. Selecting materials

The primary components of the air-gap type magnet are the active magnetic material
(rare earth) and the yokes. For the active magnetic materials, the critical graph is
the demagnetization curve. That is the part of the B-H relationship, also called the
hysteresis curve, in the second quadrant (negative H, positive B.) Figure 10(a) shows
the demagnetization curves of several commercially available magnet materials. The
rare-earth magnet materials have two unique features. (1) their demagnetization curves
are almost straight lines. (2) they have a large maximum energy product (BH)max. The
maximum energy product is the largest rectangle with sides parallel to B and H that
can be found underneath the magnetization curve.
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Since, at the percent level, the demagnetization curve for rare earth magnet
materials can be considered linear, only two parameters are required to describe it.
The magnetic flux produced by the magnet Bm as a function of Hm is given by

Bm = µmµ0(Hm −HC), (30)

where µm is the relative permeability of the material, and HC the coercivity, i.e., the
magnetic field required to drive the magnetic flux produced by the magnet to 0. For most
of today’s magnet materials, µm ≈ 1. We use this approximation for all calculations
below.

A larger HC value will create a stronger flux density in the air gap in Kibble
balance magnetic circuits (details are discussed in 4.2). A large magnetic flux B is
desired for Kibble balance magnets according to the considerations in section 1. Hence,
high HC materials, such as NdFeB and SmCo, are great candidates for the magnetic
material for a Kibble balance magnet. To date, the highest possible HC is achieved
with sintered NdFeB magnets. Its HC is about 10 % larger than the HC achieved with
Sm2Co17, and, hence produces 10 % more magnet flux with the same volume of the
permanent magnet material. So, it seems NdFeB would be the best material to use in
a Kibble balance. However, there is a second parameter that should be considered, the
temperature coefficient.

In general, the magnetic flux in the Kibble balance must be as stable as possible
for environmental influences. One such influence is temperature. The sensitivity of the
magnetic materials to temperature changes is expressed in the temperature coefficient of
the magnetic material. It denotes the fractional change of the remanence per one-kelvin
change of temperature and is often abbreviated by α. For NdFeB, α ≈ −1×10−3/K and
for Sm2Co17, α ≈ −3 × 10−4/K. Hence, the SmCo is about three times more stable to
temperature changes. Most designers prefer the smaller (in absolute, irrespective of the
sign, terms, |α|) temperature coefficient of SmCo and accept a 10% smaller remanence.
This decision was made even harder with the recent discovery of (Gd,Sm)2Co17. There,
Gadolinium (Gd) is alloyed with Samarium before sintering it with Cobalt, and the result
is a magnetic material with an even smaller temperature coefficient, α ≈ −1× 10−5/K.
However, using (Gd,Sm)2Co17, instead of Sm2Co17, will reduce the magnetic flux by
another 20 % [56,57].

A good proxy to quickly evaluate the temperature sensitivity of any magnetic
material if the temperature coefficient is not readily available is the Curie temperature,
Tc. At the Curie temperature, the magnet loses all its magnetization. The lower the
Curie temperature, the higher the temperature coefficient. For SmCo, Tc = 825 °C, for
NdFeB, Tc = 310 °C.
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Figure 10. (a) Demagnetization curves for some commercially available rare earth
magnetic materials along with ferrites and AlNiCo. (b) B-H curve and (c) µr-H
curve of three typical soft yoke materials. The low-carbon steel, pure iron, and
Fe-Ni alloy (50/50) are respectively used for building NIST-4, NIM-2, and BIPM
magnets [30,33,58].

Another way to decrease the temperature coefficient of the complete magnet system
is to use a shunt. This technique is described in the last part of this section. A lower
temperature coefficient is achieved, but also the magnetic flux density at the coil is
smaller because some of the flux is diverted from the air gap through the shunt.

Having discussed the magnetic material, it is time to say a few things about
the second component in the magnet system, the yoke. The yoke aims to guide the
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magnetic flux from the permanent magnet to the air gap and back. For this purpose,
the reluctance of the yoke has to be small according to equation (21). The reluctance is
Ry = ly/(µ0µrS). Hence besides a large cross-sectional area S and a short magnetic path
ly, a large relative permeability µr is desired. Including the small reluctance, choosing
a material with a large relative permeability has the following three advantages:

(i) It conducts more flux, and it increases the efficiency of the circuit.

(ii) It is easier to engineer the profile in the gap, as the side walls made from high µr

are at more uniform potentials [59].

(iii) It helps to reduce nonlinear magnetic errors [53, 54], because the weighing current
influences the magnetic flux in the air gap to a lesser extent.

Note that although some sheet materials can have very high permeability, such as
µ-metal, steel sheet, they are typically not used in Kibble balance magnet systems for
two reasons. First, the yoke needs to withstand a typical attraction force at the kN
level [33]. Therefore solid material instead of sheet stock is preferred. Second, while
the stack of sheets seems feasible, the tiny air gaps in the stack structure increase the
reluctance of the yoke and decrease the uniformity of the flux in the air gap.

In practice, materials with relative permeabilities of 1000 or more are suitable
for yokes in Kibble balance magnets. Figure 10(b) and (c) reproduce the B-H curve
and the permeability of three typical yoke materials, i.e., low-carbon steel, pure iron,
and Fe-Ni alloy (50/50), which were used respectively in NIST-4, NIM-2, and BIPM
systems [30, 33, 58]. It is recommended to heat-treat the parts after machining. The
machining process can lower the permeability, and heat treatment can reverse the loss
in permeability [33,58].

4.2. Magnetic flux density in the air gap

In the following paragraphs, we calculate B in the gap using the BIPM type magnet as
an example. Other magnetic circuits can be analyzed similarly.

The first step in the design process is to find the dependence of the magnetic flux
density in the air gap on the dimensions of the system. The symmetry of the magnet
system can simplify this process. The number of green flux paths in figure 8 shows the
symmetry of the system. For the BIPM type magnet, only a quarter of the complete
circuit needs to be analyzed as indicated in figure 11(a) and (b). As we show in section
2.3, the easiest way to analyze this circuit is to convert it into an equivalent electrical
circuit. The permanent ring is providing the MMF (similar to the voltage source),
and the reluctance (resistance in an electrical circuit) of three components, i.e., the
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Figure 11. (a) shows the 3D construction of a BIPM-type magnetic circuit. (b) The
analysis unit for the BIPM-type magnet. (c) The equivalent electrical circuit. The
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and C indicate cut-planes at three different locations, see text.

permanent magnet, the yoke, and the air gap, is written as

Rm =
δm

µmµ0Sm

, Ry =
δy

µyµ0Sy

, Ra =
δa

µ0Sa

, (31)

where δm, δy, δa denote the length; Sm, Sy and Sa the cross-sectional areas; and µm, µy,
and µ0 the relative permeabilities of the permanent magnet, the yoke and the air gap.
For now, we assume the flux completely penetrates the air gap, ignoring fringe fields at
the upper and lower end of the air gap. It is shown in section 2.3 that a permanent ring
can be seen as a battery with MMF F = −HCδm while leaving the space as vacuum
(air), i.e. µm ≈ 1. The three reluctances form a series connection, hence by Ohm’s law,

(Rm +Ry +Ra)φ = −HCδm. (32)

For a high permeability yoke, Ry << Ra, Rm. Without loss in generality, we set Ry = 0.
The total flux through the air gap and the magnet is the same and can be written as
the product of the cross-sectional area and the flux density, i.e.,

φ = SmBm = BaSa. (33)

Substituting equations (31) and (33) into (32), the magnetic flux density in the air
gap can be solved [23]. It is

Ba =
−HC

Sa

Sm

1

µmµ0

+
δa

δm

1

µ0

≈ −µ0HC

Sa

Sm

+
δa

δm

≈ 1 T

Sa

Sm

+
δa

δm

. (34)
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Note that the last result is for Sm2Co17 magnets, for which µ0HC ≈ −1 T [33]. It
can be seen the air gap magnetic field strength Ba is determined mainly by two ratios,
Sa/Sm and δa/δm. As mentioned above, the fringe fields at the edge of the air gap have
been neglected. It can be taken into account by multiplying Sa with a geometrical factor
γ > 1. This mathematical trick pretends that the air gap is taller than it actually is.
More on this topic and how to reduce the fringe field can be found in section 4.4.1.

4.3. Magnetic working point of the yoke

Two conditions are desired for the yoke. First, the yoke should not be saturated at any
point. Second, the average yoke permeability should be high.

One can investigate the first condition by examining the cross-sectional area of the
yoke along the flux path. In figure 11(b), three sectional planes are indicated by the
letters A, B, and C. The cross-sectional areas are SA, SB, and SC, respectively. Since
flux is conserved the flux density in one area, here for example in region B, is given by

BB = Ba
Sa

SB

. (35)

The area SB needs to be large enough to keep the BB below saturation in the yoke’s B-H
curve. The size and the weight of the magnet can be kept small by setting SA = SB [60].
SC is determined by dimensions of the permanent magnet and the air gap, and for
most cases, SC > SA, SB to obtain enough coil movement range with a uniform field
distribution.

Maintaining a large average permeability in the yoke is important for three reasons.
(1) To keep the MMF drop over the yoke small, delivering more flux to the air gap, (2)
to minimize nonlinear errors that occur when the coil carries current [53,54,58] and (3)
to achieve a flat field profile. A high yoke permeability makes the two sides of the air
gap equipotential surfaces, and the flux transverses uniformly through the gap. Yoke
materials, such as the Fe-Ni whose B-H curve is shown in figure 10, have very high
permeabilities so that all three points can be achieved.

4.4. Profile flatness

The phrase “flatness of the field” or ”flatness of the magnetic profile” includes two related
goals. (1) the radial component of the magnetic flux density Br should be constant with
the traveling range of the coil along z. (2) the radial component of the flux density
multiplied by the radius, rBr should be constant along r. The first property ensures
that the Bl is independent of the exact weighing position along z, see 3.1. With the
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second property, Bl becomes independent of the coil radius and, hence, of the coil’s
thermal expansion during weighing.

Maxwell’s equation link the the two components of the flux density together via,
1

r

∂(rBr)

∂r
+
∂Bz

∂z
= 0, (36)

∂Br

∂z
− ∂Bz

∂r
= 0. (37)

If Bz were constant, the two properties for a flat field would be met. However, this
perfection cannot be achieved over the entirety of the gap. Thinking about this property
reveals three sources of deviation from field flatness. (1) the fringe field at the end of
the gap (edge effect), (2) magnet asymmetry, and (3) the flux path length. All three
effects are summarized in figure 12 (a).

4.4.1. Reducing the fringe field The field inside the gap depends on the aspect ratio
of the gap. A narrow and tall air gap has a much more uniform field than a wide and
short air gap. This effect is analog to a similar problem in electrostatics, the field in a
parallel plate capacitor. At the end of the air gaps, the flux lines bulge outward. Per
unit area, the yoke near the end of the air gaps carries less flux than in the center of
the gap. In other words, the reluctance near the air gap end is larger, and hence the
magnetic flux density is smaller. The edge effect can easily lead to a magnetic field
reduction at the percentage level. With the edge effect, the region where the field is
uniform, e.g., ∆B/B < 5× 10−4, can be significantly smaller. As a result, a flat profile
can only be obtained near the center of the magnet, and only about 50% of the gap
may be usable [33, 59]. For a gap with parallel sides of equal height, ha, [61] gives an
equation for the relative deviation of the radial magnetic flux as a function of vertical
position. It is,

Br(z)

Br(0)
− 1 = − exp

[
−
(

1 +
π(ha − 2|z|)

δa

)]
+ exp

[
−
(

1 +
πha

δa

)]
, (38)

where ha and δa denote the air gap height and width, respectively.
In a BIPM-type magnet, the yoke-air boundary at the end of the air gap, however,

is not symmetric even when the heights of inner and outer yokes are equal (hi = ho) [62].
The difference is noticeable: the inner boundary contains the permanent ring and the
yoke, while the outer yoke has only yoke material. As a result, the magnetic flux lines
at the gap end will slope further towards the outer yoke. Because of this, magnetically,
the outer yoke is higher than the inner yoke, even when they are geometrically the same.
The red line in figure 12(b) and the right top plot i) present the Br and Bz distribution
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Figure 12. (a) general factors that affect the magnetic field flatness along the vertical
direction. The scales are obtained by FEM simulations based on the NIST-4 system.
(b) compares the magnetic profiles with several different designs of air gaps. The right
subplots show the flatness of rBr and Bz components, respectively. The plots are
reproduced from [61]. (c) presents how the magnetic profile is related to the magnet
asymmetry with different yoke permeability. Reproduced from [59]. (d) shows the
magnetic profile of the LNE Kibble balance magnet. Reproduced from [32].
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in the central region of the air gap with hi = ho. Large Bz gradients are seen in both r

and z directions, and therefore the profile quality in this case (hi = ho) is not high.
So far, we tacitly assumed that the air gap is bounded by vertically aligned iron

pieces of the same height. In other words, the air gap has perfect symmetry. However,
as described above, the MMF is not symmetrically placed to the air gap. The source
of the magnetic field is closer to the inner yoke. Hence, the path to the outer yoke
has more reluctance, and the symmetry is broken. As a consequence, the flux lines
bend towards the outer yoke. It appears that the magnetic height of the outer yoke is
higher than the physical height. This phenomenon can be remedied in two ways. First,
the symmetry can be restored by adding additional magnetic material on the outside
yoke [62]. Second, the magnetic symmetry can be restored by lowering the outer yoke
such that magnetically the two sides of the air gap have identical heights. This idea is
described in [63].

The effect of changing the outer yoke height is illustrated in figure 12. On the right
side of the figure, the magnetic flux in the air gap is shown. The top row shows it for the
case where both heights are identical. The second row shows it for ho < hi. Lowering
the outer yoke improves Bz. The top right surface plot in the figure shows all shades
from dark red to blue, where the plot one row below only shows the colors in the middle
of the range. Disappointingly, the radial field is not much improved. This point is also
illustrated in panel (b) of figure 12. The orange line shows Br(z)− Br(0) as a function
of z. The orange line is calculated for ho < hi and the red line ho = hi. There is a small
but not significant gain in uniformity for ho < hi compared to ho = hi. A similar (small)
effect can be achieved by adding a pair of SmCo magnets to the outer yoke. However,
doing so will compromise the shielding property of the yoke. Fluctuating external fields
will be able to reach the coil.

Reference [61] proposes another technical solution to improve field flatness: Adding
a piece of iron rings with a rectangular cross-section at the upper and lower edges of the
gap. These features decrease the gap size at the end of the gap, effectively reducing the
reluctance and increasing the flux. The flatness of Br(z) can be optimized by adjusting
the two parameters of the rectangle, the height, and the width of the rectangle. An
example (parameters were shown in [61]) is shown in the third right subplot iii) and
magenta curve in figure 12(b). It can be seen in this case the 1/r field distribution for
Br(r) has better quality than is achieved by lowering ho. More important, the usable
measurement range for Br(z) has been greatly increased compared to the original design
(hi = ho). As shown in subplot iv) and the green curve in figure 12(b), a flatter field
distribution of rBr andBz can be obtained if both techniques of lowering ho and widening
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ri are applied.

4.4.2. Improving magnet symmetry The second factor that can significantly improve
field flatness is, in general, the overall symmetry, and more specifically, the up-down
symmetry of the magnet system. By design, the BIPM type magnet system exhibits
perfect mirror symmetry around z = 0. However, this symmetry can be broken due to
machining tolerances, assembly, and material inhomogeneities. Concrete examples that
break the symmetries are

• The gap could be slightly tapered due to machining tolerances.

• Dowel pins or bolts used to align and fasten components of the magnet system
could introduce magnetic asymmetries.

• The magnetization of the upper SmCo ring could be different from the lower ring.

• The permeability of the iron could be inhomogeneous.

The latter is especially troublesome because the permeability depends not only on the
stresses induced during fabrication but also on the magnetic history. For example,
during the construction of NIST-4, it was discovered that the procedure used to close the
magnet had an effect on the permeability of the yoke and changed the profile flatness [33].

Materials with high permeability ease some of these problems. Ideally, the two sides
of the gap are equipotential surfaces. So the MMF-drop is the same between any points
on each side of the gap. Materials with a high µr, such as Fe-Ni (50/50) alloy, can be
used to achieve the equipotential surface. An impressive illustration of the power of high
µr materials is the BIPM magnet [59]. The top cover of the BIPM magnet is missing,
but the field is reasonably flat. This fact is demonstrated in panel (c) of figure 12.
These four curves are compared. The curves are obtained with an FEA calculation.
The magnet is either half-open or complete. When the magnet is complete, the bottom
SmCo disk has 10% more magnetization than the top disk. For each case, the field
was calculated for µr = 1000 (soft iron) or µr = 160000 (50%Fe-50%Ni). For the latter
case, there is no difference if the magnet is open or closed. This graph impressively
demonstrates how a lack of symmetry can be overcome with a high permeable material.
It recovers a perfect field even with half the flux path missing or, in the other case, with
a 10% difference in magnetization.

In summary, we would advise the designer to start with a symmetric plan and
build the yoke with high permeable materials if the construction budget allows these
materials. The use of these more expensive materials can compensate for unwanted
deviations in the production process.
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4.4.3. Equalizing the flux paths The third factor that has an influence on the shape of
the magnetic profile is the length of the flux path. The length of the flux path changes
the profile, independent of the presence of a fringe field at the end of the gap. As shown
in figure 11, the reluctance along the solid green line is greater than that of the dashed
green line, and hence, the magnetic field in the gap center, Br(z), distributes as an ’M’
shape. The Br is lower at the center of the gap and then increases before it rolls off to
the end of the gap.

The length of the flux path is a powerful but yet simple argument, and it can guide
our intuition for the pot magnet system employed by LNE [32]. The field at the top of
the gap has to be smaller because of the larger reluctance in the flux path necessary to
reach the top. The reluctance increase can be counteracted by making the gap smaller
by introducing a taper. The Br of a parallel and tapered gap of the LNE magnet is
shown in panel (d) in figure 12. The taper runs from the center of the gap to the top.
The gap with a nominal width of 9 mm is 8 µm smaller at the top. The yoke material
used here does not have an exceptionally high µr.

In summary, visualizing the length of the flux path in the magnet is a valuable
tool to get a qualitative understanding of the profile in the magnet. Differences in flux
paths can be compensated by adjusting the gap size. The effect that different length
flux paths have on the profile is more pronounced if the permeability of the yoke is low.
So, these differences can be evened out by using high permeable materials.

4.5. Force required to open the magnet

Magnet systems that entirely enclose the coil apart from a few holes to attach the coil
are called closed yokes. These designs have superior shielding performance compared to
the open-yoke designs. However, the yoke needs to be opened and closed at least once
to install the coil. The force required to open the magnet can be large, on the order of
several kN. Therefore, a dedicated device called a magnet splitter is required to open
and close the magnet system in a controlled way. The magnet splitter, such as the one
used for NIST-4 [33] can only be used when the magnet is not installed in the balance.
It is difficult to integrate such a device into the balance for in-situ adjustments.

Here we follow the Maxwell stress tensor method and the derivation given in the
appendix of [57] and show how to reduce the splitting force as much as possible. It is
assumed that the split plane is horizontal, and, hence, dS is vertical. In this case, only
the last row of T is relevant. As it is shown in figure 13, the vertical force simplifies to,

Fz(z) =
πraB

2

µ0

(
δa −

2πra(Si + So)

SiSo

z2

)
, (39)
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Figure 13. Schematic integration of the Maxwell stress tensor to determine the force
required to split the magnet. The symmetry plane is given by the horizontal dashed
line. The split plane is a distance z away from the split plane.

where ra = (ri + ro)/2 is the mean radius of the air gap, B the average magnetic flux
density in the air gap, So, Si the cross-sectional area of the outer and inner yokes at the
splitting plane, and Bo, Bi the magnetic flux density at these surfaces. The distance of
the split plane to the symmetry plane of the magnet is denoted by z.

The force calculated with equation (39) occurs at the initial separation, at the
moment when the contact between the metal surfaces breaks, i.e, d = 0. This force can
be made zero by choosing

|z| = z0 :=

√
δaSiSo

2πra(Si + So)
. (40)

With increasing |z|, the direction of the force changes. For |z| < z0, Fz(d = 0, z) is
repulsive and for |z| > z0, it is attractive.

Equation (39) gives an analytical expressions for the force required to open the
magnet [57]. In reality, however, the magnetic force changes as the gap opens, because
Bzi, Bzo and B are functions of the yoke separation d. In order to insert the coil
into the magnet, a separation greater than the coil height, i.e. d > hc is required.
Therefore, the magnetic force Fz should also contain the dependence on d. Here we
take the NIST-4 magnet system as an example. By finite element analysis (FEA), the
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Figure 14. The main plot shows the splitting force Fz as a function of two parameters,
the position of the splitting surface z and the separation between the yokes d. The
unit of the force is kN. A positive (negative) force means the two parts of the magnet
repel (attract) each other. For this magnet, the precision gap is between −50 mm

and 50 mm. The right plot presents the magnetic force Fz along two vertical lines at
d = 0 mm and d = 20 mm, as well as the force boundaries (maximum and minimum
values of Fz) required to open the magnet within 20 mm at different splitting planes.
The top subplot shows the magnetic force as a function of the separation distance d
at the two locations, z = ±25 mm and z = ±35.5 mm.
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distribution magnetic force Fz as a function of the two parameters z ∈ (−80, 80) mm
and d ∈ (0, 20) mm is shown in figure 14. At the start of the separation, d = 0, the force
calculated by FEA agrees with (39), see the cyan curve in the right subplot. In red, this
subplot also contains a calculation of Fz for d = 20mm. It can be seen that the latter
curve has a similar behavior to the one at d = 0, but is much flatter.

For the construction of the splitter, it is necessary to know how much the force
changes during the splitting process. The yellow shaded area in the right subplot of figure
14 indicates the dynamic range of the force. For a given z the yellow shading extends
from the Fz,min to Fz,max. The reader can identify three regions. For |z| > 68.5 mm,
both extreme forces are negative. Hence, during the splitting process, there will always
be an attractive force between the two parts of the magnet. For |z| < 35.5 mm, the
splitting force is repulsive for all d. For all other z values, the splitting force changes
sign. It is attractive at first when the magnet opens (d = 0) and becomes repulsive with
increasing d. Such a load change is important to take into account when designing the
splitter. Interestingly, with the split plane at z ≈ 25 mm, the force stays fairly constant
for the entire opening process.

The forces required to split the magnet (several kN) are about the same order of
magnitude as the weight of the whole or at least part of the magnet (g times several
100 kg). The weight of one of the two parts that the magnet is split into, can be used
to reduce the force that the splitter must generate. For example, the total mass of the
NIST-4 magnet is 850 kg. If the splitting is performed at z = 25 mm, the weight of the
upper piece is ≈ 3.3 kN and that of the lower ≈ 5.2 kN. Conceivably, one could use the
3.3 kN to work against the repulsive force and reduce the maximum Fz(d = 5 mm, z =

25 mm) = 2.57 kN and the minimum Fz(d = 0 mm, z = 25 mm) = 2.03 kN to combined
downward forces of 0.73 kN and 1.27 kN, respectively. Note, this is not what researchers
at NIST are doing. The split plane was chosen at z = −50 mm to be outside of the
precision gap, and the heavier two-thirds of the magnet is lifted off. The theoretical Fz
at z = −50 mm has a minimum value of 4 kN. Adding the weight of the top piece, the
maximum splitting force required is 9.2 kN. The example should show, however, that by
clever selection of the location of the split plane and use of the weight, the split force
can be well minimized. A force at 1 kN level is achievable with lead screws. Therefore, it
seems possible that such a system can be integrated into the Kibble balance. Then, the
splitting and maintenance of the coil could be made in situ. One significant advantage
would be that the Kibble balance can be used to measure the profile, and one does not
need to have a dedicated profile measurement system for fine adjustments of the profile.

Note, the smallest splitting force, including the weight, occurs at z = ±25 mm,
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but the precision gap extends from −50 mm to 50 mm. If the split plane is located at
one of these locations, the magnetic field profile near the break is disturbed. Hence,
the magnetic flux will only be smooth in a length of 75 mm. Placing the break in the
magnet is a trade-off. As can be seen in figure 14, the smallest splitting force occurs in
or near the region of the precision gap. However, that is the location where the split
plane is least desirable.

4.6. Thermal considerations

The magnetization of the SmCo material has a temperature coefficient of about
−3 × 10−4/K. Although the magnetic field drift is very smooth due to a large thermal
capacity and can be removed by ABA [64] measurement in Kibble balance, it is preferred
to reduce the temperature coefficient to a smaller level. While this step is optional for
SmCo, it is mandatory for NdFeB because its temperature coefficient is much higher.

Besides potentially adding a systematic bias to the measurement, a large
temperature coefficient has another significant downside. At pump down, most surfaces
cool down due to the evaporation of a thin water film. Since the magnet’s thermal mass is
large and is well insulated in a vacuum, it takes weeks for the magnet to equilibrate fully
thermally. Thus, if the temperature coefficient of the magnetic material is significant, the
measurement will drift for a long time. The drift adds uncertainty to the measurement,
makes the investigation of systematic effects difficult, and is commonly not desired.

In general, there are two avenues to reduce the temperature coefficient of the
magnet. First, one can choose an active magnetic material with a very low temperature
coefficient, for example, (Sm,Gd)Co [9,57], see section 4.1. Second, the magnetic circuit
can be designed to be less sensitive to temperature. The latter idea is illustrated by
the blue rectangle in figure 11. Part of the magnetic flux is routed through a shunt
whose reluctance varies with temperature. Given the temperature dependence of its
reluctance, the geometry of the shunt can be finely tuned such that the flux in the air
gap is relatively independent of temperature at the design temperature.

As is shown in the equivalent circuit in 11, an additional reluctance, the shunt, is
parallel to the permanent magnet. A small amount of magnetic flux φ′ goes through the
shunt with reluctance Rt. The circuit, now, has two loops. One is carrying the main
flux φ, the other the shunted flux φ′. Using Kirchhoff’s laws, one obtains,

(φ+ φ′)Rm + φ(Ra +Ry) = F (41)

(φ+ φ′)Rm + φ′Rt = F . (42)
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Eliminating φ′ in equation (42) and ignoring Ry yields

φ ≈ F

Rm +Ra +
RmRa

Rt

. (43)

To keep φ insensitive to temperature T , i.e. ∂φ/∂T = 0, equation (43) is written as
1

F

∂F

∂T
= − 1

Rm +Ra

RmRa

R2
t

∂Rt

∂T
,[

1

F

∂F

∂T

]
= − RmRa

(Rm +Ra)Rt

[
1

Rt

∂Rt

∂T

]
. (44)

The expressions in square brackets denote the relative temperature coefficient of the
MMF and the shunt reluctance. Temperature compensation with a shunt is possible
because the relative temperature coefficient of the MMF is negative, but that of the
shunt is positive, typically a few percent per kelvin. Hence, Rt can be chosen such that
equation (44) is valid. In that case, the temperature dependence of the flux in the gap
vanishes.

5. Delivering design to reality

Once the magnet has been designed, it’s time to build it. Once it’s made, it must be
verified. The engineers and scientists have to determine the field and the flatness of
the profile. Perhaps the magnet must be split open to insert the coil. The shielding
properties of the magnet system must be measured, and finally, the temperature
coefficient of the complete system must be determined. This section explains all these
tasks in detail. So far, we have dealt with an ideal magnet. Here, reality sets in.

5.1. Mechanical assembly and alignment

Ideally, on the horizontal plane xy at z = 0, the magnetic flux density should be uniform
in the azimuthal direction and be proportional to 1/r in the radial direction. A deviation
from these two desired goals could be caused by a nonuniformity of the magnetic
materials, machining defects, misalignment during assembly, and other problems that
break the symmetry. Although a slightly different coil placing can minimize these effects
(see below), the best is to use good design to avoid these problems from the start with
the following three tips:

(i) Use symmetric magnet rings. If two rings are employed, they should be as identical
as possible in size and magnetization. Very often, these rings are much larger
than the size that can be reasonably magnetized. In this case, each ring will be
composed of smaller segments that can be magnetized. It’s best to measure each
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segment and assemble each ring such that the average magnetization is identical.
Also, scramble the segments in each ring so that azimuthal uniformity is achieved
as best as possible.

(ii) Use high permeability yokes. High yoke permeability helps create equal potential
boundaries and, therefore, can largely average out the asymmetry. As the
machining process could significantly lower the yoke permeability, heat treatment
before assembly is necessary.

(iii) Keep the assembly as symmetrical as possible. The magnetic working point on any
material depends on its magnetic history. During the assembly, two yoke pieces
touch at one point instead of evenly around the circumference. The flux that flows
through the point of contact can be very high, altering the magnetic working point
at that spot. With the altered magnetic working point, the reluctance of the section
has been changed, and the azimuthal symmetry of the magnet system is broken.
Hence, try to assemble the pieces that carry magnetic flux in an even, symmetric,
and controlled fashion.

Next, we discuss how the geometric factor depends on the mechanical assembly
and how it is affected by the coil alignment. The magnetic flux density in the air gap,
Br, is determined by the width of the gap. As we will see below, asymmetries can
be compensated by placing the coil eccentrically in the gap. However, the amount of
eccentricity for the coil placement is limited since the coil should not touch the yoke.
Therefore, this argument gives an upper bound on how much asymmetry can be allowed.
For now, the inner and outer yokes are assumed to be perfect cylinders. In this case,
misalignment can occur when (a) the cylinder axes are not parallel with one another,
or (b) if the cylinder axes are not coincident at z = 0 and (c) a combination of (a) and
(b). All three cases will cause an azimuthal variation of Br. In a perfect symmetrical
magnet, Br is independent of the azimuth, i.e., ∂Br/∂ϕ = 0. Let’s assume that this
assumption is no longer true. An example where the inner yoke is displaced along the
negative x axis is shown in Fig. 15(a). Since the gap is smallest along the positive x
axis, the force is largest. The force on a coil carrying current is indicated by the black
vectors and the red curve connecting the tips of the vectors. The force is no longer
isotropic but is larger at ϕ = 0◦ and smaller at ϕ = 180◦. Interestingly, the total Bl
along the whole coil is conserved, as is shown in [37]. This is because, to first order, the
reluctance of the gap does not change by displacing the inner yoke and hence the flux
through the coil and with that the flux gradient or Bl (see Appendix A) remains the
same.

If one were to plot the vertical force Fz as a function of azimuthal angle ϕ, one
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would obtain a cosine shifted by an offset. The maximum would occur at 0◦ and the
minimum at 180◦. This relationship can be visualized by a polar plot, as shown in
Fig. 15 (c). The force on the right side of the coil is larger than on the left. Hence, a
torque τy about the y axis occurs. Correspondingly, in velocity mode, an induced EMF
can arise if the coil rotates around y while sweeping vertically [35]. This additional EMF
can lead to a bias in the measurement.

There is an easy way to avoid the bias in velocity mode and eliminate τy: Place the
coil eccentric to the coordinate center. The amount the coil needs to be moved is

∆r =
∆Br

2Br

rc, (45)

where Br is the average radial magnetic flux density at the coil and ∆Br is the difference
between the maximum and the minimum of Br. The coil has to be moved toward the
maximum field. So, in the above example, in the direction of +x. Note an analytic
equation for ∆Br based on the eccentricity of the inner yoke can be found in [37].

The gap width is given by the difference in radius of the outer and inner yoke,
δa = ro− ri. By subtracting the width of the coil from δ the air space around the coil is
obtained. If the coil is centered, which is usually the case, half of the air space is inside
and the other half outside of the coil. The maximum distance the coil can be moved is
given by

∆r <
δa − wc

2
. (46)

Hence, the maximum relative asymmetry that can be cancelled with this technique is
given by

∆Br

Br

<
δa − wc

rc

. (47)

The second coil misalignment discussed here is a tilt. One can tilt the coil to reduce
the angle between the coil and the magnetic field plane so that the horizontal motion of
the coil is minimum. As shown in figure 15 (d), when the coil is tilted with respect to
the Br field, a horizontal force is generated due to the vertical current. Here, we assume
the Br to be horizontal. The distribution of the horizontal force component along the
wire circular is shown in figure 15(f). To fix this, it requires to tilt the coil to where the
coil displacement (proportional to horizontal force) is zero during mass-on and mass-off.
Note, the same is true if the magnetic field is inclined. Then one can find a coil tilt,
where the horizontal force is zero. But, ideally, of course, both coil and magnetic field
are horizontal.

For a perfectly machined magnetic circuit, all reference surfaces are either parallel
or perpendicular to each other. Especially, the top surface is parallel to the magnetic
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Figure 15. The schematic of the coil alignment. For the left column, the coil is
horizontal, but the inner yoke of the magnet is eccentric, such that the flux is higher
on the right side. For the right column, the magnet is perfect but the coil is initially
tilted. The first row shows the coil and the forces on the coil in the original alignment.
In all cases, the flux is purely horizontal. The situation on the left can be ameliorated
by displacing the coil and the situation on the right by tilting the coil. The improved
situation is shown in the middle row. The last row shows the vertical and horizontal
force for the left and right scenarios, respectively. The dashed line shows the force in
the original and the solid line in the improved situation. The forces are shown as polar
plots.

flux density at the center of the magnet. It can be used to align the field horizontal which
is important to produce only a vertical force in weighing mode. In some experiments,
the weighing is performed at multiple vertical positions [65–67]. In such cases, the top
surface of the magnet is not good enough to be used as the field reference. Reference
[63] gives a practical and elegant way to measure the field inclination. A rotating
magnetometer that is instrumented with capacitive probes is lowered into the gap at
different positions. At each position, the probe is centered in the gap using the signal of
the capacitive probes. From the reading of the magnetometer, the tilt of the magnetic
field can be obtained. Finally, the experimenter has to be aware that changing the tilt
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of the magnet will also require changing the position of the coil if one wants to generate
a purely vertical force in the weighing mode, see (46). Hence, one has to be aware of the
available parameter space. Is it possible to tilt the magnet by the desired angle without
the coil touching the yoke? Only if the answer is in the affirmative, does it make sense
to carry on with the experiment.

5.2. Profile measurements

After the magnet is assembled, it is advisable to measure the flatness of the profile before
integrating the system into the experiment. In this way, it is much easier to tweak the
magnetic profile, i.e., shim the magnet, should it become necessary.

There are two principal ways one can measure the profile of the magnetic flux
density. The measurement can be performed at selected points with a probe, or an
integrated flux (Bl) can be measured with a coil. The information provided by the latter
measurement is more applicable to the Kibble balance experiment. The measurement
at discrete points is often easier to carry out and does not require dedicated hardware.

Using a probe, one must be aware that the field gradient along r direction is large,
and thus the probe measurement requires a perfect vertical motion relative to the yoke
surface. For example, the field gradient of the NIST-4 system is ∆B/B = −∆r/rc, and
for a ∆B/B resolution of 1×10−4, the probe variation along the r direction, ∆r, should
be less than 10−4 · rc = 21.5 µm.

Unlike a probe that can be used to spot-check the profile, a coil can be used to get
an integrated result along a path. Similar to the Kibble balance experiment, voltages U
and velocities v are measured along the trajectory. However, since the measurement is
performed before the magnet is integrated into the balance, an auxiliary device must be
used to move the coil. As a result, the velocity cannot be measured precisely and may
not be constant along the trajectory. Furthermore, the measurement is often noisy due
to vibrations. The noise is further exacerbated by the fact that the velocity and voltage
measurements are typically and, unlike in a Kibble balance measurement, not perfectly
synchronized. Hence, vibrations do not cancel when the quotient U/v is calculated.
This is illustrated by the green curves shown in figure 16 (a) and (c). The data in this
figure are from actual data measured at NIST [33]. The peak-peak value of ∆B/B is
over 5× 10−2, and even with careful averaging, it is difficult to measure a change in the
magnetic flux density with relative uncertainties below 1× 10−3.

Reference [33] provides an excellent solution to overcome these measurement
challenges. The idea is to use a gradiometer coil to detect the field variation
in small ranges. Then, a detailed profile can be obtained by merging the field
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Figure 16. An example of measurement result obtained with the gradiometer coil. (a)
shows the absolute induced voltage and (b) is the differential signal of upper and lower
coils. (c) compares the magnetic profiles represented by the single coil measurement
and the gradiometer coil measurement.

gradient information with an averaged absolute profile determination (deduced from
U/v measurement). A gradiometer coil contains coils with the same parameters (number
of turns, average radius) separated by a vertical distance ∆z. In the measurement,
the induced voltages in one of the two coils, U , and their differential output ∆U are
measured simultaneously. Note that it is easier to measure voltages simultaneously
than to measure voltage and velocity at the same time. The ratio of two signals can be
written as

∆U

U
=
Br(z)−Br(z −∆z)

Br(z)
≈ ∆z

Br(z)

∂Br

∂z
. (48)

Using Br(z) = U/(2πrcNv), the magnetic profile Br(z) can be solved by numerically
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integrating equation (48) along the measurement interval, i.e.,

Br(z) =
1

2πrcNv∆z

∫ z

zstart

∆U(z′)dz′ +O, (49)

where the constant O is a chosen such that Br(0) = U/(2πrcNv). Figure 16 (b) shows
the differential voltage ∆U in the same example, and (c) compares the magnetic profiles
obtained by U/v measurement and the gradiometer coil determination. It can be seen
that the signal-to-noise ratio has been improved by three orders of magnitude by the
simple gradiometer coil.

It is also possible to build a radial gradiometer coil. Here two coils are placed
radially separated. The researchers may use a radial gradiometer coil to check the 1/r

dependence of the magnetic flux density [33].
We want to add a few words to the uncertainty consideration. For the gradiometer

to work, the researcher has to know the spacing ∆z, and the two coils have to be nearly
identical. For example, if ∆z is misstated by 10 %, then according to equation (49),
the calculated Br is off by 10 % also. Hence, an uncertainty in ∆z does not change the
shape of the obtained curves but the absolute calibration.

If one coil, has more turns or produces relatively more voltage by the factor δ, then
∆U

U
=
Br(z)− (1 + δ)Br(z −∆z)

Br(z)
≈ ∆z

Br(z)

∂Br

∂z
− δ. (50)

Using this result in equation (49) will produce a linear slope. So the higher polynomial
terms of the profile are correct, but a linear term could be produced by a difference
in the technical data of the coils. Such a difference can be found out by installing the
coil upside down. In this case, the linear term would flip sign. By precise machining,
the coils can be made very close to being the same, and in practice, these concerns are
small. The profile obtained with a gradiometer coil is superior to that obtained by other
methods.

5.3. Flattening the profile

The magnetic profile obtained after assembly may not be flat over the desired
measurement range. If this is the case, experimenters need to tweak the profile slope to
achieve two requirements. (1) There exists at least one point in the sweep range of the
coil where the derivative of Br with respect to z is zero (flat spot). This location will be
used as the weighing position. (2) The Br(z) profile is uniform with relative variations
of a few parts in 104 over the sweep range of the velocity measurements.

The magnetic field is inversely proportional to the air gap width, and hence, the
profile slope can be reduced by slightly enlarging the gap width at regions with a stronger
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magnetic field. As shown in figure 12(d), this technique has been successfully applied
in flattening the Br(z) profile in the LNE Kibble balance magnet system [32]. For
example, to remove a relative slope of 1 × 10−3, the gap width a must be changed by
10−3δa. For the LNE case, the maximum yoke radius difference at the top end of the
air gap is only 4µm. Therefore, this approach requires precise control of machining, and
even with great care, several iterations (measurement, grinding, measurement) may be
necessary. Note, there is no guarantee that this method will ultimately converge to a
flat profile because the magnetic working point of the yoke can change during assembly
after grinding. The profile changes caused by this parasitic magnetization can be similar
in order of magnitude to the original problem. [33].

Researchers of the NIST-4 Kibble balance team proposed a novel method, so-called
’shimming,’ to flatten the magnetic profile [33]. This method was invented after the
measuring and grinding iteration did not converge, as is discussed above. The method
takes advantage of the yoke hysteresis. By creating at least one point with a high flux
density in the yoke, the equivalent BH working point of the yoke can then walk towards a
higher H direction and lower the average permeability and, hence, more reluctance. The
higher reluctance causes a lower field at the gap in the vicinity of the point. This process
is repeatedly applied around the gap. The process is explained in the magnetization
curve of the yoke in figure 17(a). The shimming reduces the field strength near the point
under consideration. At this point, the initial magnetic status of the yoke, with the yoke
fully closed, is given by I©. The magnet is then opened and a small non-magnetic piece
is inserted at the opposite side of the point under consideration. With the piece in
place, the yoke closes on the opposite side first. All the flux from the lower permanent
magnet has to go from one part of the yoke to the other. The reluctance through the
contact point is lower, and hence a majority of the flux is conducted there. The point
under consideration is in that area. The yoke BH working point at the contact surface
goes from I© to S1© while the other non-contact out yoke has less H, which will go from
I© to W1© on the hysteresis curve. After we remove the shim and close the magnet,

the working point of the yoke will have shifted from S1© to S2© at the contact surface.
Opposite the contact surface, the working point will have shifted from W1© to W2© . Due
to the yoke hysteresis, the final yoke states at the two opposite sides are different. They
are shown as S2© and W2© in the figure. Note both started out at I©, but the hysteresis
prevents the states from returning to the initial point. At the end, the average state
of the yoke is in the middle between S2© and W2© , denotes as F©. The initial and final
states are also drawn on the red µ-H curve. The magnet field of the final state is higher
than the initial state. The change of the permeability depends on where the maximum
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Figure 17. (a) shows the schematic procedure of one typical shimming operation. The
black and red curves represent the main magnetization BH curve and the µH curve.
The gray curves are hysteresis BH curves. The two 3D renderings show the magnetic
status during shimming (left) and after shimming is removed (right). Note W© is the
shimming point while S© is the magnetic saturation point. The points I© and F© denote
the initial and final states of the shimming procedure. The two states are shown on
the µH curve and BH curve. (b) presents the profile adjustment using different shim
thicknesses with the NIST-4 magnet system. (c) and (d) are the magnetic profile slope
change (at z = 0 mm) as a function of shim thickness and shim position number.
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of the permeability is. In figure 17(a) the maximum is to the left of the initial state,
hence the yoke permeability will decrease with the shimming procedure.

When the magnet is fully opened and left there for a while, the procedure is reset.
Its final state will depend on the exact closing. Where will the two yokes make contact
first? If the magnet splitter is not perfect and brings to yoke to touch at one point, then,
unbeknownst to the user, a shimming step has been executed. Hence, we recommend
not to fully open the magnet during the shimming procedure but instead keep the gap
small and be aware of the contact points between the yokes.

As shown in figure 17(b)-(d), the magnetic profile change is a function of shim
thickness and shim position number. It can be seen that the change in profile is
approximately proportional to the shim thickness. The shimming is also more effective
the more points are used, see (d). Therefore, we recommend evenly distributing the
shim points along the azimuthal direction. We also suggest using more points (at least
four) and a thin shim instead of a thick shim that is only inserted at a few locations.
The described shimming procedure is a customizable and valuable tool to flatten the
Br(z) curve.

Other methods to balance the magnetic flux between the upper and lower air gap
exist. For example, leaving a small air gap in the splitting plane also results in a flat
profile [33]. The gap functions as an added reluctance to the lower part of the magnet
circuit. The disadvantage, however, is that the shielding of the magnet is compromised.
The shimming and the introduction of the gap add reluctance to the stronger, here,
the lower part of the magnet. The stronger magnet can also be weakened by adding
a magnetic shunt in parallel to the permanent magnet. As shown in figure 11 and
equation (43), the magnetic shunt returns part of the magnetic flux, which is then no
longer available for the gap. The NIM-2 magnet system used both shimming and a
magnetic shunt to remove the Br(z) slope [68]. Since it is difficult to demagnetize the
shunt once it is saturated, we recommended to use high-saturation material for the
shunt, such as HiperCo50 (saturation magnetic flux density is about 2.4 T).

5.4. Shielding performance

A magnet with an enclosed air gap has better shielding performance than a magnet
whose gap is open to the environment. Here, we briefly discuss the two aspects of the
term “shielding performance”. First, the magnetic flux originating from the permanent
magnets should stay inside the magnet system and not leak outside. Second, any
external flux produced, for example, by electrical currents in the vicinity, should not
flow through the coil. Both aspects are related. A yoke that contains the internal flux
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does not admit outside flux to the precision gap.
Flux leaking outside the magnet is more problematic for the Kibble balance because

it can produce a magnetic force on the test mass. The vertical force on the mass with
a volume susceptibility χ and a permanent magnetization M is, according to [45],

Fχ = −χ
2

∂

∂z

∫
B ·HdV − µ0

∂

∂z

∫
M ·HdV. (51)

To achieve relative uncertainties below 10−8, the researchers must evaluate Fχ in their
Kibble balance. First, the magnetic flux density and its derivative at the mass position
must be measured. Then, a combination of these measurements with the magnetic
properties of the test mass (χ, M) allows the determination of Fχ. The magnetic field
on the symmetry axis central (x = 0, y = 0) is close to vertical and decays rapidly with
increasing distance to the surface of the magnet. A typical safe distance for the test
mass from the top of the magnet is approximately 10 cm. For a BIPM-type magnet,
the effect is at the order of 10−9 for a E1 class steel mass [33]. For an open gap circuit,
the relative contribution of the parasitic magnetic force to Fz can reach ≈ 1× 10−6. In
this case, a mass with low magnetic susceptibility, such as one made from PtIr, should
be used for the measurement [6, 59].

Regarding shielding flux from the outside, reference [52] shows that a BIPM-type
magnet rejects flux from sources that are far away, e.g. the earth magnetic flux, very well.
Magnetic flux from close sources can, however, penetrate the magnet system [69]. Not
always does such parasitic flux lead to systematic effects. The effect cancels, for example,
if the parasitic flux stays constant between velocity and weighing mode. Nevertheless,
the time-changing parasitic flux will increase the noise, especially in the velocity mode.
We recommend placing sources of varying magnetic flux, such as power supplies, away
from the Kibble balance to avoid interference. For experiments where the magnet, as
opposed to the coil, is moving, e.g., [11, 14], sources of external flux should be handled
even more carefully. For these systems, not only does the external flux interfere with
the velocity mode, but it will also affect the weighing measurement because the force,
F = IBl, does not distinguish between a B produced by the magnet system or an
external source. The relative bias caused by an external field can reach the ∼ 10−7. By
adding additional shielding, the relative bias can be reduced to ∼ 10−8 [69, 70].

One way to test the quality of the shielding is to measure the power spectrum
of the induced voltage in the coil when the coil position is fixed [33]. As an added
benefit from the obtained spectrum, quiet regions may be found. These quiet regions
should be exploited in the measurement by choosing an integration time in the voltage
measurement that corresponds to these quiet regions. This practice will improve the
signal-to-noise ratio, especially in velocity mode.
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5.5. Determining the actual temperature coefficient

Without compensation, the temperature coefficient of a typical SmCo magnet is
≈ −3 × 10−4/K. It is good practice to measure the temperature coefficient on the
actual magnet to verify that the true coefficient is not significantly larger than that. An
easy way to measure the temperature coefficient is to introduce a temperature change
and continuously measure the magnet field and the temperature. If a Hall effect sensor
is used to measure the magnetic field, its temperature coefficient must be known and
calibrated out. For the temperature measurement, the coupling to the magnet is also a
concern. Since the magnet system has a large thermal mass, its temperature is delayed
from the room’s temperature. Hence it is recommended to clamp the temperature
sensor to the metal of the yoke and shield it from air currents. If the measurement is
carried out in a vacuum, physical contact with the temperature sensor is not optional
but essential. Once a reliable temperature sensor is installed in a vacuum, the Kibble
balance measurement can be used to determine the temperature coefficient [7].

In that context, we would like to consider the typical temperature drift that the
experimenter can expect. Typically, after the system is evacuated, the temperature of
the magnet drops from room temperature. The latent heat required to evaporate a
water film on the surface of the magnet is the cause of the temperature drop. After
that, the magnet will slowly drift back to ambient temperature. Since the magnet
is very often insulated in a vacuum, it takes several days for the magnet to become
thermalized. During the thermal recovery, the drift is large, and one must employ
techniques to suppress the drift, such as ABA-type measurements [64] for the Kibble
balance. Another technique that is, for example, employed at the NRC Kibble balance
is to pre-heat the magnet before pumping. This technique can considerably shorten the
time required to achieve thermal equilibrium.

6. Effects of the magnet on the result

As we have discussed, the core idea of the Kibble balance is that the geometric factors
in the weighing and velocity mode are identical, and hence, cancel in the final result.
In this section, we examine how well this idea holds up. The geometric factor in
velocity measurement, (Bl)v, is usually taken as a reference, and the geometric factor
in weighing is compared to it. This choice is usually made because the geometric factor
in weighing mode, (Bl)w, depends on more factors, such as, the current in the coil,
the coil expansion due to ohmic heating, and so forth. In the weighing mode, usually
two measurements, one with the mass on the balance pan (mass-on) and one without
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(mass-off) are made. The average currents in the coil required to balance the system
are Ioff and Ion, respectively. Usually, the tare mass on the balance is chosen such that
the currents are equal and Ioff = −Ion which yields

Fon = (Bl)wIon, (52)

Foff = (Bl)wIoff (53)

with I = Ioff = −Ion it is,

Foff − Fon = (Bl)wI + (Bl)wI. (54)

If (Bl)w depends linearly on the current, i.e., BLw = Bl0(1+α1I), the force difference is
independent of α1. In general, all odd powers of I in (Bl)w will cancel in the Foff −Fon.
In the following section, only one state in the weighing is discussed, and we use I to
describe the current in the coil. The other important variable is the vertical position of
the coil, abbreviated with z. Similar to [50], we expand Bl to second order in I and z.
We obtain

(Bl)w

(Bl)v

− 1 ≈ α1I + α2z + α3(Iz) + β1I
2 + β2z

2 + β3(Iz)2, (55)

where α1, α2, α3 are respectively the linear coefficients of coil current I, coil position
z and the mixed term Iz; β1, β2, β3 are the quadratic coefficients for the same terms.
Note, we assume these coefficients to be constant, neither dependent on I nor z. The
following subsections discuss the effects associated with these terms.

6.1. Coil self-inductance

Any current-carrying coil has energy due to its self-inductance. The energy is given by
E = 1

2
I2L(z), where L(z) is the self-inductance of the coil (dc value) at the weighing

position z. Since the energy depends on z, a force appears in the direction where L has
a maximum. The negative derivative of the energy gives this force on the coil

FL = −1

2
I2∂L

∂z
− IL∂I

∂z
. (56)

Here, we assume constant current, and the second term vanishes. Still, the force depends
on z. If the measurements in force mode were used to calculate a (Bl)w, one would obtain
a relative change of

∆(Bl)

Bl
:=

(Bl)w

(Bl)v

− 1 = −1

2
I
∂L

∂z
. (57)

The additional parasitic force is proportional to the current squared and would drop
out if the currents are perfectly balanced. Recall, how odd powers of I in Bl cancel in
equation (54). In an up-down symmetrical magnet, L can be assumed to be a quadratic
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function of coil position z with L being maximal with the coil in the middle, i.e.,
L(z) = L0 − kz2. More specifically, L(z) can be written as

L(z) =
µ0πraN

2

γha

[(γha)2 − z2], (58)

where ra is the mean radius of the air gap, ha half-height of the air gap, and γ is a factor
that corrects the height of the air gap for the fringe fields. Typical values of L(z) can
be seen in figure 18.

The L(z) function can be measured with different methods. For example, the
ac parameters of the coil (complex impedance) can be measured at different vertical
positions at different low frequencies. The measurements can then be extrapolated to
f = 0 [33, 55]. Alternatively, the force-current ratio, mg/(I+ − I−), can be measured
at different weighing positions z. The ∂L/∂z and finally L(z) can be obtained by
comparing the profile change to the voltage-velocity ratio over the range. Figure 18 (a)
shows such a determination of L(z) carried out with the BIPM Kibble balance [55]. Note,
measurements in [33] show that L has a considerable frequency dependence, related to
the skin effect. Therefore, it is important to keep the coil current stable during the
weighing measurement to suppress unwanted electrical noise or systematic bias.

The position, z0, where L has the maximum value (typically at the Henry level
depending on the coil parameter and the gap dimensions), is named the yoke center. At
this location, the inductance force FL = 0 and therefore, the Bl value is independent of
the coil current I. Note that the yoke center may neither coincide with the maximum
in Bl nor with z = 0. On either side of z0, the inductance force acts in the opposite
direction. The coil is always pulled toward the center of the yoke. The situation is
analog to a solenoid actuator, where an iron slug is drawn into an energized coil. The
only difference is that the iron piece is on the outside and the coil on the inside in a
Kibble balance.

The sum of the forces, BlI + FL, is different from BLI by FL that is primarily
linear in z. Hence, the measured maxima of (Bl)w and (Bl)v differ by the effect that
this additional slope has. That relative difference is illustrated in Figure 18(b), where
the baseline shown in green is Bl without current, i.e., (U/v)0. The (F/I)+ (solid red)
and (F/I)− (solid blue) curves are obtained with the weighing measurement. Different
from most Kibble balances, the BIPM balance uses a so-called ’one-mode, two-phase’
measurement scheme [10]. There, the weighing current is flowing through the coil also
in velocity measurements. Hence, a bifilar coil is required. One coil is employed for
induction while the other coil provides the current to counterbalance the test mass. For
an ideal bifilar coil, the inductance of each coil L equals the mutual inductance of the
two coils M . Hence, an additional term appears in the induced voltage of the velocity
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Figure 18. (a) is an experimental termination of the dc value coil inductance
by the frequency extrapolation method for the BIPM Kibble balance. (b) shows
the magnetic profile change related to the coil current, where (U/v)0, the velocity
measurement profile without current, is used as a reference. Conventional Kibble
balances employ (U/v)0, (F/I)+ and (F/I)− profiles, while one-mode measurement
scheme uses (U/v)+, (U/v)−, (F/I)+ and (F/I)−. (c) shows the actual magnetic
distribution along z in the weighing measurement at different coil positions. Note the
yoke center z0 = −3.7 mm due to asymmetrical construction, i.e., the top cover of the
magnet was not installed. Reproduced from [55].
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mode. It is

∆U = I
∂L

∂z
v + L

∂I

∂z
v. (59)

Again, assuming constant current, only the first term remains. Hence, ∆(Bl)v = ∂L/∂z.
Comparing this term to equation (56) yields ∆(Bl)v = 2∆(Bl)w. This effect is
demonstrated by the dashed lines in figure 18(b). It can be seen that the lines
representing (U/v)+ and (U/v)− have twice the slope of the lines (F/I)+, (F/I)−. Even
though the corrections are different in weighing and velocity, the true magnetic field
changes follow the weighing profile, see [71]. As shown in Figure 18(c), the weighing
profile change is resulted by an average of the magnetic field over the coil wire region.
We discuss below two systematic effects that appear in weighing mode due to self-
inductance. These effects are present in both the traditional, two-mode, and newer,
one-mode measurements. We write the relative change in (Bl)w as

∆(Bl)

(Bl)w

=

I2
+

(
∂L

∂z

)
z+

− I2
−

(
∂L

∂z

)
z−

2(Bl)v(I+ − I−)

≈
(I+ + I−)

(
∂L

∂z

)
za

2(Bl)v

+

(
I2

+ + I2
−

2

)(
∂2L

∂z2

)
za

(z+ − z−)

2(Bl)v(I+ − I−)
, (60)

where za = (z+ + z−)/2 is the average weighing position. The first term in the sum can
be reduced, potentially even to zero, by symmetrizing the current, I+ = −I−. Even
if the currents can not be made perfectly equal, the term can vanish if the average
weighing position is close to the magnetic center, where ∂L/∂z = 0. Unfortunately, the
second term in the sum depends on the second derivative of the inductance with respect
to the vertical position. Of the three factors of the second term, only z+ − z− can be
made small. The reason z+ 6= z− is because of the finite stiffness of the coil suspension.
Suppose the balance is controlled to the same position. In that case, the coil can be at
slightly different positions because the forces acting on the coil suspension differ by mg
and can lead, depending on the suspension stiffness, to a change in position of a few up
to a few tens micrometers. It was shown in a typical Kibble balance configuration, 1µm
coil position change would cause a bias of 1 × 10−8 [55, 59]. A possible solution would
be to slightly change the target in the feedback mechanism for the balance control to
maintain a constant coil position instead of a constant balance position. If that cannot
be achieved, a correction of the size of the second term in equation (60) including a
reasonable uncertainty must be applied. Another concern that applies for the one-mode
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measurement is increased noise. The term (∂I/∂z)v in equation (59) is identical to
∂I/∂t. Hence noise in the current flowing through one coil will give rise to noise in the
voltage measurement. Researchers at the BIPM noticed a significant increase in noise of
the U/v measurements when the current source was powered by the mains and not by
batteries. We recommend using a current supply with low internal noise and adding a
low pass filter between the current source and the coil to minimize the additional noise.

To summarize this section, the bias caused by the coil inductance is proportional
to the coil current I and the weighing position z. It is minimized by keeping these two
variables as close as possible for the two weighing measurements, mass-on and mass-off.
Its effect is summarized by α3(Iz) in in equation (55).

6.2. Diamagnetic force

Diamagnetic material suspended from the balance inside the magnet is inevitable for any
Kibble balance. For example, the coil wire is made of copper, whose volume magnetic
susceptibility is about −1 × 10−5. In addition, glass and ceramic pieces are typically
mounted on the coil. Ceramic is often used as a coil former. On the former, flat or corner
cube mirrors are mounted to allow the researchers to determine the coil’s position and
velocity. These elements are made from glass. The diamagnetic force acting on a part
in the air gap can be written as [72]

Fd =

∫
χdV

µ0

1

2

∂

∂z
(B + b)2 , (61)

where
∫
χdV denotes the magnetic susceptibility integrated over the volume of the part,

B and b (∝ I) the magnetic flux density created by the magnetic circuit and the coil
itself. Typically b is much smaller than B, with the ratio b/B being usually ≈ 10−3.

As shown in figure 19, the effect of Fd ought to be analyzed in two different regions:
Inside the precision gap and near the end of the gap. The latter is the region that
is not part of the precision air gap but is still inside the yoke. Figure 19 (a) shows
the magnetic field distribution along with the whole gap space in the NIST-4 system.
At the end of the gap end, the magnetic gradient |∂B/∂z| is large and dominates the
diamagnetic force.

In figure 19(b), the diamagnetic force calculated to act on a copper ( χ = −1×10−5)
coil with a cross-section of 20 mm×20 mm is shown. At the very end of the gap, the
diamagnetic force is considerable, 20 mN, or relatively 2 × 10−3. Of course, in the
actual experiment, the coil would not move into this region. However, other mechanical
elements, most importantly the suspension rods, have to transverse this region. Hence,
a significant diamagnetic force on the coil stirrup is possible. In 2017, researchers at
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Figure 19. (a) presents the magnetic flux density distribution along z in the middle
of the air gap. Br and Bz denote the radial and vertical components, respectively.
These results are obtained by FEA calculation using the NIST-4 parameters [33]. (b)
shows the vertical diamagnetic force based on Br and Bz. For the calculation a coil
wit a 20 mm×20 mm cross-section entirely made from copper (χ = −1 × 10−5) was
assumed. The drawing above both plots shows schematically the cross-section of the
gap. The coil is presented as the light green rectangle. The with is scaled differently
than the length to save space. The shaded blue area indicates the support rods for the
coil. Note, the diamagnetic force on them is not included for the calculation of Fd.

METAS measured this diamagnetic force on their experiment and found the diamagnetic
force to change by about 100 mg per centimeter of travel. This number corresponds to a
relative change of (Bl)w per length of about 1×10−8/µm. To keep the effect at or below
the target uncertainty of the balance, the suspension position change during mass-on
and mass-off should be less than 1µm.

The effect discussed here is captured by the term α2z in equation (55). In reality, the
relationship between systematic force and the diamagnetic effect is more complicated.
As mentioned above, the force acting on the coil suspension changes by mg between
the mass-on and mass-off measurement. Since the coil suspension has a finite stiffness,
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movement occurs between the two measurement states. Typically, the force feedback
is designed to maintain a constant balance position. Hence, the stretching of the coil
support causes the coil to move by a small amount, a few µm. With that, the amount
of material that is in the end region of the gap changes. To our knowledge, this effect
has not been described in the literature. Therefore, we believe that the change of the
diamagnetic force due to coil support stretching should be investigated in the near
future.

Inside the precision air gap, the profile is flat, and ∂B
∂z

has a much lower value than
at the end of the gap. The weighing position is usually chosen where ∂B

∂z
≈ 0. The only

term that remains is the flux gradient that is produced by the coil, ∂b
∂z

. In contrast to
the ∂B

∂z
, the term ∂b

∂z
is proportional to the coil current I, and therefore, does not drop

out in the difference between mass-on and mass-off measurement. A relative bias of
∆(Bl)

(Bl)w
= − ra

γSa

∫
χ

r
dS (62)

is introduced to the weighing measurement. Here, S denotes the cross-sectional area of
the segments in the air gap, and γ the factor to correct the height of the gap for the
fringe fields, as defined in equation (58).

The bias given in equation (62) is by far the most dominant bias discussed in this
section. Using the BIPM magnet system as an example, the term ∆(Bl)

(Bl)w
can be as large

as 1×10−6 for a copper coil. Details on how to calculate this effect can be found in [73].
Because the term is 100 times larger than the smallest uncertainties reported Kibble
balances, there was considerable debate in the community if such a diamagnetic force
exists in the real world. This dilemma has recently been solved [73]: The diamagnetic
force does exist, but the analysis found the same bias in the velocity measurement when
weak magnetization materials are used. It turns out that two effects perfectly cancel
each other. At most, a relative bias of order 10−9 may result due to small asymmetries.

In the end, the last two effects discussed here are minimal. Referring back to
equation (61), they are captured by b · ∂b/∂z and b · ∂B/∂z. Since b is so much smaller
than B they can be considered second-order effects.

6.3. Nonlinear effects

Going back to equation (55), there are three terms that have quadratic, i.e., nonlinear
behaviors, β1I

2, β2z
2, and β3(zI)2. These effects are, however, small, as can be seen

from the following simple consideration. The differences in the linear counterparts of
these same terms between the mass-on and mass-off measurements contribute an effect
that is of order 1× 10−5. Hence the quadratic effects must be well below 1× 10−9. As
shown in figure 18, the flux contributed by the coil is between 10−4 and 10−3 of the
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magnetic flux contributed by the magnet. As a result, the nonlinear term, β1I
2, should

be checked. We know of three nonlinear current effects that could contribute to β1I
2,

and they are:

• Yoke magnetic reluctance change. The flux produced by the coil traverses the
air gap twice. A small amount of the coil-produced flux flows through the
whole magnetic circuit. The ratio of these two magnetic fluxes depends on the
reluctance ratio Ra/Rm. Here Ra is the reluctance of the air gap Rm that of the
magnetic circuit for the coil produced flux. Inside the iron, the former/latter flux
is parallel/perpendicular to the flux produced by the permanent magnet. The
additional flux in the yoke changes its reluctance due to the µr dependence on H

and, as a consequence, the magnetic flux density inside the air gap. A detailed
description of these effects and how they can introduce a systematic error is given
in [53, 54]. For here, it is sufficient to know that the relative effects are well below
the typical uncertainty of Kibble balances.

• Yoke hysteresis effect. The effect described in the previous paragraph assumes
that the magnetic state of the yoke changes along the primary hysteresis loop of
the material. However, this is not the case. The magnetic state is only slightly
disturbed by the weighing current—the magnetic and the state changes along a
minor hysteresis loop. Reference [58] investigated the Bl shift caused by a change
in yoke hysteresis. It shows that a possible relative bias of order 10−8 can occur
in a BIPM-style magnet system in the conventional operation scheme. For large
dimensional air gaps, e.g., [6, 33], this effect is negligible. But for magnets with
smaller air gaps, a careful investigation of this effect should be conducted.

• Coil heating effect. The coil heating contributes to the β1I
2 term in equation (55).

In contrast to the aforementioned effects, the coupling of the current to the magnet
is not magnetic but thermal. In conventional two-mode measurement, there is no
current flowing through the coil in velocity mode and the coil cools. Once the
balance is switched to force mode, current flows in the coil and the ohmic power
dissipation causes heating. This effect can be readily measured by observing the
coil resistance, i.e., the voltage drop over the coil divided by the current in the
coil. The coil resistance goes up as the coil heats up. Typically the heat transfer
between the coil wire and the magnet is very weak because it is radiation only.
Still, the magnet temperature can rise, and due to the temperature coefficient of
the permanent magnet material, the magnetic flux density drops. For the wire, the
temperature change is below 1 K, and the time constant for this effect is several
minutes. The effect is much smaller for the permanent magnet system, and the time
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constant is much longer. Yet, this effect should not be forgotten in comprehensive
uncertainty analysis of a Kibble balance measurement.

In addition to a theoretical study, the size of the term β1I
2 in equation (55) can also

be determined experimentally. For that, masses with different nominal values need to
be measured and the results compared to results obtained by the classical sub-division
scheme using standard balances. Before the redefinition, one would simply measure the
Planck constant with different nominal values. The researchers at NIST and NRC have
done that [6,7]. Both systems employ wide air gaps, and as predicted by the theoretical
analysis, the β1I

2 is very small, only a few parts in 109, as is predicted by theoretical
analysis [53, 54, 58]. For magnet systems with narrower air gaps, careful theoretical
evaluations and experimental checks of the nonlinear terms should be carried out.

The heating effect can be checked similarly but has an additional parameter that
can be used to our advantage. While the magnetic effect is nearly instantaneous, the
heating effect is delayed. Hence, time should be a variable in the investigation in one
of the following two ways. (1) a delay of varying length can be added between the
weighing and velocity modes. (2) the duration of each of both modes can be changed.
Balances utilizing the one-mode scheme are not subject to any of the current related
effects discussed above. In that case, the current is present while measuring the U/v. All
current effects on the magnet system are already included in the measurement, and the
researcher does not have to worry about it — a significant advantage of the single-mode
scheme.

7. Summary

The magnet system supplies the magnetic flux density B that is part of the geometric
factor, Bl for the Kibble balance. Kibble’s theory relies on the fact that the Bl factors
in force mode and velocity mode are identical. Hence, it will cancel out in the final
equation that equates electrical power to mechanical power. One would think that
because Bl cancels out, not much thought should be given to designing the magnet
system. However, the opposite is true. Because the Bl in weighing mode, where current
is present, cannot differ by more than is tolerable in the final uncertainty budget from
the Bl in velocity mode, where there is no current, a good design is crucial. The
requirements ease somewhat for Kibble balances that use the one-mode measurement,
where the measurements with and without current are conducted simultaneously using
a bifilar coil.

In this article, we have attempted to collect the physics and engineering principles
that are important for the magnet designer. About ten years ago, the literature lacked
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articles on magnets for Kibble balances. Since then, many articles have been written,
and the bibliography gives a comprehensive overview of this body of work.

This article is structured in six chapters. The introduction gives the basic equations
of the Kibble balance and makes clear what role the magnet system plays. In the second
chapter, we introduce the basic quantities that are needed to analyze a magnetic circuit.
The third chapter shows how the magnet system of the Kibble balance has evolved over
the decades. It classifies the known predominant yoke-based permanent magnets with a
radial field. The fourth chapter shows the choices that must be made designing a magnet
system. These include material choices but also choices of geometry. The fifth chapter
titled ”Delivering design to reality” gives insight on how to deal with imperfections of
the final magnet system. Designing something on paper is one thing, but the reality
is another due to machining tolerances and material flaws. The chapter shows how to
overcome some of these problems.

Last but not least, the effects of the magnet system on the result are discussed.
In the sixth chapter, several systematic effects are described. In addition, it contains
valuable tips and procedures to determine the size of these effects.

After working through the seven chapters, it may appear intimidating to design
a magnet system. However, we would like to remind the reader: The difficulty comes
because of the exquisite small uncertainty that the Kibble balance is aiming for. The
best ones achieve relative uncertainties of 1× 10−8. At this level, all metrology is hard.
If it weren’t for the ambitious measurement goal, the design of the magnet system would
be easy, because of the inherent symmetry of Maxwells’ equation. It’s not only that the
Bl cancels out in the final Kibble equation but also most parasitic effects, at least at
the 1× 10−6 level. Below that, the hard work begins.

Appendix A. Bl integral and flux derivative

Assuming a coil with a single turn, the force on a small segment of wire is given by

d~F = Id~l × ~B. (A.1)

The total force on the wire loop is the integral over the closed contour C,
~F = −I

∮
C

~B × d~l. (A.2)

We are interested in the z component of the force and we perform the integral in
Cartesian coordinates. Hence,

Fz = −I
∮
C

(Bxdy −Bydx). (A.3)
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According to Green’s theorem the line integral over the closed contour can be written
as the 2d integral over the enclosed area A,∮

C

(Bxdy −Bydx) = −
∫ ∫
A

(
∂Bx

∂x
+
∂By

∂y

)
dx dy. (A.4)

Since, B is divergence free,
∂Bx

∂x
+
∂By

∂y
= −∂Bz

∂z
, (A.5)

the following equivalency can be obtained∮
C

(Bxdy −Bydx) =

∫ ∫
A

∂Bz

∂z
dx dy =

∂

∂z

∫ ∫
A

Bzdx dy =
∂Φ

∂z
(A.6)

Hence, for a closed contour,

Bl :=
(∮
C

~B × d~l
)

z
=
∂Φ

∂z
. (A.7)

Appendix B. Bl conservation in a 1/r field

Without loss in generality, we consider a coil with a single turn. The magnetic flux
density is given in the range of ri < r < ro, where ri and ro denote the inner and outer
radii of the air gap, respectively. The mean radius of the coil is rc, where the magnetic
flux density is Bc. Let B(r) = G

r
, where G is a constant. At the coil position, G = Bcrc

and Bl0 = 2πrcBc = 2πG. Using this notation, we investigate four scenarios.

(i) Coil thermal expansion under ideal alignment. Assume that the coil is aligned to the
air gap center, and now consider the coil radius is changed by thermal expansion,
r′c = rc + ∆r. Then the Bl = B′l of the coil with radius r′c is,

Bl = B′ · 2π(r + ∆r) =
G

r + ∆r
· 2π(r + ∆r) = 2πG = Bl0, (B.1)

is independent to ∆r.

(ii) Horizontal displacement of the coil. Here we assume that the coil is no longer
centered, but horizontally displaced by δr =

√
∆x2 + ∆y2. This case was discussed

in [74]. For an eccentric coil, the flux integral is

Bl =
Bl0
2π

∫ 2π

0

r2
c + rc(∆x cos θ + ∆y sin θ)

(rc cos θ + ∆x)2 + (rc sin θ + ∆y)2
dθ,

= Bl0. (B.2)

The integral evaluates to 2π. This relationship has been proven in appendix A
of [74]. The Bl is independent of horizontal displacement in a 1/r flux density.
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(iii) A coil of non-circular shape. Without losing generality, we consider a coil with a
shape as the red curve in figure B1. The shape is approximated by n arcs that are
aligned to the center. The magnetic flux density at these arc radii is B0, ..., Bn.
The Bl of such an approximation can be written as

Bl =
n∑
i=0

Biriθi, (B.3)

where θi and ri denote the angle and radius of the ith arc. As shown above,
Biriθi = Bcrcθi. Hence, Bl can be written as

Bl = Bcrc

n∑
i=0

θi = 2πrcBc = Bl0. (B.4)

The exact expression Bl = Bl0 is obtained with n → ∞. In summary, the Bl is
independent of the coil shape in a 1/r magnetic field. Note, the logic used here can
also be applied to prove (ii).

(iv) A tilted coil of non-circular shape. It can be deduced from equations (36) and (37)
that in an 1/r B-field, ∂B

∂z
= 0 and hence B is uniform along z. Hence, only the xy

projection of the coil contributed to the Bl. As we have shown in (iii), the Bl is
conservation and equal to Bl0.

Strictly speaking, the yoke-based radial magnet has the 1/r field distribution only
at the z planes where ∂B

∂z
= 0. For other z values, the field has a vertical gradient

component and hence is no longer proportional to r−1. The related effects on Bl for
different parasitic motions are described in [74].
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