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ABSTRACT

Superconducting electronic circuits have much to offer with regard to neuromorphic hardware. Superconducting quantum interference
devices (SQUIDs) can serve as an active element to perform the thresholding operation of a neuron’s soma. However, a SQUID has a
response function that is periodic in the applied signal. We show theoretically that if one restricts the total input to a SQUID to maintain a
monotonically increasing response, a large fraction of synapses must be active to drive a neuron to threshold. We then demonstrate that an
active dendritic tree (also based on SQUIDs) can significantly reduce the fraction of synapses that must be active to drive the neuron to
threshold. In this context, the inclusion of a dendritic tree provides dual benefits of enhancing computational abilities of each neuron and
allowing the neuron to spike with sparse input activity.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077142

Motivations for developing artificial spiking neural systems
include efficient hardware implementations of brain-inspired algo-
rithms and construction of large-scale systems for studying the mecha-
nisms of cognition. While much effort toward these ends employs
semiconductor hardware based on silicon transistors,1–5 supercon-
ducting electronics have also received considerable attention.
Superconducting circuits based on Josephson junctions (JJs6,7) have
strengths that make them appealing for neural systems, including high
speed, low energy consumption per operation, and native threshold-
ing/spiking behaviors. In particular, two-junction superconducting
quantum intereference devices (SQUIDs) are ubiquitous in supercon-
ducting electronics, and several efforts aim to utilize SQUIDs for vari-
ous neuromorphic operations.8–22

In this work, we will use the following component definitions. A
synapse is a circuit that receives a single input from another neuron
and produces an electrical current circulating in a storage loop. A den-
drite is a circuit that receives an input proportional to the electrical
output of one or more synapses and/or dendrites, performs a transfer
function on the sum of the inputs, and produces an electrical current
circulating in a storage loop as the output. A neuron cell body (also
known as a soma) receives input proportional to the electrical output

of one or more synapses and/or dendrites, performs a threshold opera-
tion on the sum of the inputs, and produces an output pulse if the
threshold is exceeded. Outputs from the neuron cell body are routed
to many downstream synapses. Fan-in is the collection and localiza-
tion of multiple synaptic or dendritic signals into a dendrite or neuron
cell body.

In SQUID-based neurons, magnetic flux applied to the SQUID
loop (Ua) serves as synaptic input. Only for Ua greater than some criti-
cal value of the flux (Uth

a ) will the SQUID produce a train of fluxons as
an output signal.23 For Ua < Uth

a , the SQUID will remain in a quies-
cent state. Additionally, Uth

a can be tuned with a current bias, Ib.
However, SQUID neurons differ significantly from their biological
counterparts in that the response to Ua is periodic with a period of the
single-flux quantum, U0 ¼ h=2e. In this work, we consider the ramifi-
cations on fan-in if we choose to limit the maximum applied flux of
the synapses to ensure a monotonic response and show that a den-
dritic arbor can significantly improve fan-in properties.

Fan-in was recently analyzed in superconducting neuromorphic
circuits, wherein single-flux quanta are used as signals between neu-
rons.24 However, that work was not concerned with the case in which
analog synaptic signals integrated and stored over time could drive a
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SQUID beyond the first half period of its response function. In the
present study, we analyze fan-in in the context of leaky-integrator neu-
ronal circuits that were originally designed for use in large-scale super-
conducting optoelectronic systems.25–28 However, the conclusions of
this paper should be applicable to a wide variety of SQUID neurons.

We begin by considering the simple SQUID circuit shown in Fig.
1(a). This is equivalent to a neuron in which synapses directly feed
into the neuron cell body, also known as a point neuron. We assume
that all net flux applied to the loop (Ua) is due to the weighted contri-
butions of synaptic inputs. This assumption may be realized in prac-
tice using gradiometer-style pickup coils,29 on-chip magnetic
shielding,30,31 and perhaps an additional tuning transformer and bias
line.29 Under such conditions, the response of the SQUID would be
monotonic for 0 < Ua < U0=2 as seen in Fig. 1(b). Unfortunately, for
this simple case, the cost of limiting Ua to the monotonic regime is
that a large fraction of synapses will need to be active to drive the neu-
ron to threshold. For a neuron with n synapses, each capable of apply-
ing a maximum flux of Usy, enforcing monotonicity requires that

nUsy �
U0

2
: (1)

To reach the threshold (Uth
a ), a critical number p of synaptic

inputs must be active. For simplicity, we assume that each active input
supplies the maximum value Usy of the flux. This implies Uth

a ¼ pUsy.
Combining with the upper-bound in Eq. (1) gives

p
n
¼ 2Uth

a

U0
: (2)

This value corresponds to the minimum synaptic activity fraction
required to generate an output on the SQUID. In other words, p/n
gives the minimum fraction of active synapses required for the neuron
to fire.

A crucial task is to determine how low Uth
a can be made in prac-

tice. The relevant control parameters are the SQUID bias current Ib,
the SQUID loop inductance L, and the critical current of a single
Josephson junction Ic. L and Ic are commonly combined in the dimen-
sionless parameter bL ¼ 2LIc=U0. A value of bL ¼ 1 is a standard
choice due to noise considerations.23 In the present work, we have
solved the SQUID circuit equations numerically (see Ref. 23 and the
supplementary material for model details). We have kept bL ¼ 1 fixed
and defined Uth

a as the minimum value of the applied flux for which at
least one fluxon is produced by the SQUID. An empirical fit to these
simulations gives p/n as a function of Ib=Ic

p
n
¼ A cos�1

Ib
2Ic

� �
þ B 2� Ib

Ic

� �
; (3)

where A¼ 0.540 and B¼ 0.466, and the form is inspired by the analyt-
ical solution available in the bL ¼ 0 case.23

Noise prohibits biasing with Ib aribitrarily close to 2Ic. Single JJs
are often biased in superconducting digital electronics with
Ib=Ic ¼ 0:7. In a SQUID, this would correspond to Ib=Ic ¼ 1:4, as the
SQUID comprises two JJs in parallel, and would require a minimum
activity fraction of about 71%. A bias of Ib=Ic ¼ 1:8 is an aggressive
operating point and corresponds to p=n � 34%. Such activity levels
are incommensurate with principles of efficient information process-
ing in spiking neural networks. Considerations for sparse coding sug-
gests that only 1%–16% of neurons in the brain may be active at any
time due to power considerations.32 Additionally, a recent study posits
that only 1% of synapses need be active to generate action potentials in
sensory neurons.33 It, thus, appears that biologically realistic activity
fractions and monotonic response are incompatible for superconduct-
ing point neurons.

However, the point neuron is not an accurate model of biological
neurons. Instead, synaptic inputs are processed and filtered by an
arbor of active dendrites that perform numerous computations,34–36

including intermediate threshold functions between subsets of
synapses and the soma37 and detection of synaptic sequences.38 Active
dendrites can be significant for adaptation and plasticity,39,40 can dra-
matically increase the information storage capacity relative to point
neurons,41 and when modulated by inhibitory neurons, the dendritic
tree can induce a given neuron to perform distinct computations at
different times, enabling a given structural network to dynamically
realize myriad functional networks.42 Active dendrites have also been
identified for their role in reducing the necessary activity fraction to
generate action potentials.33 Discussion of dendritic processing in
superconducting neural hardware is found in Ref. 27. We now turn
our attention to the effects of active dendrites on the fan-in properties
of SQUID neurons with monotonic response.

A schematic of a dendritic tree is shown in Fig. 2(a). The archi-
tecture consists of input synapses (shown in blue), multiple levels of
dendritic hierarchy (yellow), and the final cell body (green). These
components have been defined above, and all three can be imple-
mented with SQUID circuits, a self-similarity that facilitates scalable
design and fabrication.

We restrict attention to a homogeneous dendritic tree of the
form shown in Fig. 2(a), wherein all dendrites receive the same num-
ber of inputs, n, which we refer to as the fan-in factor. The neuron cell
body resides at level zero of the dendritic hierarchy, and synapses
reside at level H, so the total number of synapses is nH � N . In
Fig. 2(a), we show a tree with fan-in factor n¼ 2 and three levels of
hierarchy for a total of N¼ 8 synapses. For a homogeneous dendritic
tree, the relationship among the number of synapses, fan-in factor,
and hierarchy is plotted in Fig. 2(b). Biological neurons are less

FIG. 1. (a) SQUID circuit with DC bias (Ib)
and flux input (Ua) through a transformer.
(b) SQUID response function. Rfq is the
rate of flux-quantum production as a func-
tion of the applied flux to the SQUID loop
in units of the magnetic flux quantum
U0 ¼ h=2e. Different curves correspond
to different bias conditions.
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uniform and more complex, but homogeneous trees are a good start-
ing point for artificial systems. Figure 2(c) shows how the additional
hardware for the dendritic arbor scales a function of the number of
synapses.

Equation (3) is applicable to any dendrite or neuron cell body in
the dendritic tree, provided the maximum applied flux is limited to

U0=2. Working backward from the cell body, one can calculate that
the minimum number of active synapses required to drive the neuron
cell body to threshold is P ¼ pH , and the fraction of synaptic activity
for threshold is at least

P
N
¼ p

n

� �H

¼ A cos�1
Ib
2Ic

� �
þ B 2� Ib

Ic

� �� �H
: (4)

Equation (3) is recovered as the special case of H¼ 1. The exponential
dependence of the threshold activity fraction on H implies that
dendritic trees can improve fan-in even with limited depth of the tree.
This is illustrated in Fig. 3(a), where the activity fraction as a function
of bias is plotted for dendritic trees of varying depths. We see that the
point neuron case (H¼ 1) requires the highest activity fraction, but
that the situation improves quickly with depth of the dendritic tree.
For instance, with H¼ 5 and a conventional biasing of 1:4 Ic, only
17% of synapses need to be active—a significant decrease compared to
p=n ¼ 71% for a point neuron. Figure 3(b) shows the tree depth
required to hit a target activity fraction as a function of the bias current
for N ¼ 104. Again for Ib=Ic ¼ 1:4, we see that a 1% activity fraction
will require at leastH¼ 14, in which case the number of dendrites and
synapses are nearly the same. Neuromorphic superconducting systems
will almost certainly be more noise tolerant than their digital counter-
parts,24 so higher bias conditions may be tolerable or even optimal. At
these higher “neuromorphic biases,” the required depth of the tree for

FIG. 2. Dendritic tree. (a) Schematic illustration of the tree structure with blue syn-
apses input to yellow dendrites. The neuronal cell body is shown in green with fan-
out to downstream synapses. The fan-in factor (n) is labeled, as is the hierarchy
level (h), total depth of hierarchy (H), and the total number of synapses (N). (b) The
fan-in factor as a function of the total number of synapses for different values of the
hierarchy depth. (c) The number of dendrites, ND normalized by the number of syn-
apses for different values of H. ND grows as N1�1=H for large N, meaning that even
large dendritic arbors do not exorbitantly increase the area or complexity of high
fan-in neurons.

FIG. 3. (a) The fraction of synapses required to be saturated to drive a neuron to
the threshold as a function of the normalized bias to dendrites and the cell body.
H¼ 1 corresponds to a point neuron. (b) The required depth of the dendritic arbor
(H) for a neuron with 104 synapses to reach a given activity fraction as a function of
the bias current.
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a given activity fraction is significantly lower. If Ib=Ic is taken to be 1.8,
a tree depth of only H¼ 5 is necessary for sub-1% threshold activity
fraction. This dendritic tree would require dendrite fan-in of n � 6
and about 1900 intermediate dendrites. Considering that every syn-
apse requires a SQUID, the additional hardware fraction for this den-
dritic tree is less than 20%. In general, the number of dendrites, ND,
will scale as N1�1=H for large N [Fig. 2(c)]. The addition of dendritic
trees to high fan-in neurons will not be particularly cumbersome (area
estimates for synapses can be found in Appendix B of Ref. 43) but can
significantly reduce the activity fraction even down to 1%. Such biolog-
ical values are abjectly impossible for point neurons, whose applied
flux is limited to the range of monotonic response, providing a physi-
cal motivation for the use of dendritic trees in superconducting neu-
rons to complement the computational motivations discussed above.

The energy consumption of the dendritic arbor itself deserves
consideration. For future superconducting systems, dynamic power
will dominate static power consumption. The total fraction of all units
(synapses, dendrites, and soma) that must be active to reach the
threshold is given by

Ptot
Ntot
¼

XH
h¼0

ph

XH
h¼0

nh
: (5)

The energy consumption of synapses and dendrites is unlikely to
be the same for most technologies. In the optoelectronic case, for
example, synaptic events are likely to cost significantly more power
than an active dendrite. Additionally, it can be shown that the total
number of active units is likely to be higher in the point neuron case
for almost all reasonable bias conditions as the number of added den-
drites is compensated for by the greatly reduced number of active syn-
apses. This suggests that a dendritic arbor is unlikely to dominate the
power budget of high fan-in neurons. Neuronal circuits based on
superconducting loops have been proposed in the prior work, particu-
larly with regard to optoelectronic systems.26 We show here an appli-
cation of these fan-in considerations to the specific case of loop
neurons introduced in that work. A circuit diagram is shown in Fig. 4.
The dendritic integration (DI) loop integrates signals from activity
present at that dendrite (or synapse). The saturation current of the DI
loop corresponds to the maximally weighted active synapse discussed
previously. A mutual inductor (Mdcjdi) couples this signal into a sec-
ond loop, called the dendritic collection (DC) loop. This loop is not
strictly necessary but allows for a more standardized design procedure
as discussed below. The DC loop applies flux Udr

a (the weighted contri-
bution of afferent signals) through Mdrjdc to the dendritic receiving
(DR) loop. The DR loop forms the active component of the dendrite
that has been the subject of our discussion thus far. Its output, a train
of fluxons, is then coupled into another DI loop, allowing the chain to
continue indefinitely. A schematic layout is provided in Fig. 4(b) to
provide physical intuition about the circuit.

The question remains: How do we limit the applied flux Udr
a to

enforce monotonicity in practice? For this circuit, a careful choice of
inductances will suffice. The mathematical details are given in the sup-
plementary material, but ultimately only a single constraint among all
of the inductances is necessary. Additionally, the intermediate DC
loop allows the monotonic condition to be met across a wide range of

fan-in factors with only Ldi2 being a function of n; the SQUID and its
input coil need not to be redesigned for different choices of n. The
consequences of the DC loop are further explored in the supplemen-
tary material.

We have considered the implications of limiting the maximum
flux input to all SQUIDs in a superconducting neural circuit so the
response is monotonically increasing. We have found that limiting the
applied flux introduces a constraint on the activity fraction of synapses
required to reach the threshold, and the addition of a dendritic tree
ameliorates the situation. This behavior is independent of most details
of the circuit (such as whether or not a collection loop is used). The
physical arguments presented here are derived from this decision to
limit the applied flux to handle the ostensible “worst-case” scenario in
which all synaptic inputs are fully saturated simultaneously. It is fair to
question whether it is necessary to design our circuits around this
extreme situation. The monotonicity issue could, for instance, be
solved by immediately resetting all post-synaptic potentials to zero
upon threshold. This is the standard behavior exhibited by most leaky
integrate-and-fire models. However, implementing such a mechanism
in superconducting hardware without compromising the speed and
efficiency of superconducting neurons appears challenging.
Additionally, we have argued elsewhere27 that SQUID dendrites pro-
vide numerous opportunities for active, analog dendritic processing
independent of the fan-in benefits described here. In that context,
enforcement of monotonicity appears necessary. For these reasons, we
contend that the best course of action is to allow synaptic signals to
decay naturally without regard to thresholding events (which also pre-
serves information) while limiting the applied flux in the manner
described.

Still, one could argue we are over-preparing for the worst case
scenario. Perhaps, we could leave the maximum possible applied flux
to each SQUID unrestricted, and instances wherein SQUIDs are
driven past a half-period of their response function will be sufficiently
rare that we can ignore them in design. For general cognitive activity,
we are likely to seek networks balanced at a critical point44–46 between
excessive synchronization (order) and insufficient correlation (disor-
der). When cognitive circuits are poised close to this critical point,
neuronal avalanches47 or cell assemblies48,49 are observed to be charac-
terized by a power-law50 or lognormal51 distribution of sizes. A great
deal of contemporary research52 indicates that operation near this crit-
ical point is advantageous for maximizing dynamic range53,54 and the
number of accessible metastable states55 while supporting long-range
correlations in network activity.56 With either power-law or lognormal
distributions, network activity engaging many neurons is less probable
than the activity involving few neurons, but periods of the activity
involving large numbers of neurons are not so improbable as to be
neglected and may be crucial episodes for information integration
across the network. The probability of large events does not decay
exponentially and must, therefore, be accommodated in hardware.

We reiterate that the primary assumption entering Eq. (3) is that
the maximum applied signal is limited to a certain value. We have
considered the ramifications in the specific context of SQUID compo-
nents, but similar considerations may apply to other hardware. We
encourage the reader to consider whether similar arguments may
affect their favorite neuromorphic thresholding elements. We also
note that limiting the applied flux to U0=2 may not always be advis-
able. From the activation function of Fig. 1(b), it is evident that a
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dendrite with two synapses performs XOR if each synapse couples
U0=2 into the receiving SQUID. When both synapses are active, the
device operates outside the monotonic response. We hope this article
does not stifle investigation of the full neural utility of engineered
SQUID responses.

See the supplementary material for the following three sections:
the first gives a summary of the numerical solution to Uth

a . The second
walks through the circuit in Fig. 4, deriving a constraint among the
various inductances that will ensure monotonic operation.
Additionally, there is a description of likely parameter values for the
various components, informed by InductEx simulations. The third

section deals with a different circuit variant, in which the collection
loop is omitted and single flux operation is considered.

We thank Dr. Ken Segall and Dr. Michael Schneider for helpful
discussions. B.A.P. was supported under the financial assistance via
Award No. 70NANB18H006 from the U.S. Department of
Commerce, National Institute of Standards and Technology.
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FIG. 4. (a) Circuit under consideration.
Input dendritic integration (DI) loops cou-
ple the signal into the dendritic collection
(DC) loop via transformers. The net
induced signal in the DC loop couples into
the dendritic receiving (DR) loop, which is
a SQUID. This SQUID is embedded in its
own DI loop, which performs leaky inte-
gration on the accumulated signal. (b)
Schematic of the physical layout of the cir-
cuit with components playing the roles of
the circuit elements in (a). Circuit ele-
ments and loops are labeled to be consis-
tent with the text.
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