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Urbanized knowledge syndrome—erosion of diversity
and systems thinking in urbanites’ mental models
Payam Aminpour1,2✉, Steven A. Gray3, Michael W. Beck4, Kelsi L. Furman5, Ismini Tsakiri 5, Rachel K. Gittman6,
Jonathan H. Grabowski5, Jennifer Helgeson 2, Lauren Josephs7, Matthias Ruth8 and Steven B. Scyphers5

Coastal ecosystems nearby human societies collectively shape complex social-ecological systems (SESs). These ecosystems support
high levels of ecological biodiversity while providing resources and services to humans. However, shoreline armoring, land
transformation, and urban homogenization across urbanized coastal areas may degrade natural ecosystems and alter how humans
and nature are connected. We hypothesize that these alterations extend to residents’ knowledge of SESs. We explore evidence of
such cognitive outcomes in graphical mental models of more than 1350 coastal residents across eight states in the Northeast United
States. Our results revealed that, in more urbanized areas, residents’ mental models underrepresented complex interdependence
between humans and natural components, indicating limited systems thinking. Additionally, urbanization and shoreline armoring
were associated with homogenization of mental models. We refer to these results as Urbanized Knowledge Syndrome (UKS).
Importantly, respondents with more symptoms of UKS were less likely to self-report adoption of pro-environmental behaviors. These
results indicate a potential societal-level erosion of ecological knowledge associated with urbanization in the same way more
urbanized areas are associated with diminishing ecological function. Thus, diagnosing and treating UKS is an essential component of
urban sustainability.
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INTRODUCTION
The world’s population is rapidly urbanizing, particularly along
coastlines, where population density is now three times higher
than the global average1,2. According to the National Oceanic and
Atmospheric Administration (NOAA), almost 40% of the United
States (U.S.) population resides in coastal zones with population
density being over five times greater in coastal shoreline counties
than the national average. As a result, human encroachment on
coastal ecosystems is significantly modifying natural landscapes
and reducing intact coastal habitat. Along densely populated
coastlines, residential development often involves unsustainable
land-use planning and armoring of shorelines, where natural
habitats such as saltmarshes, mangroves, seagrasses and oyster
reefs, are replaced with artificial structures, including vertical
bulkheads, seawalls, boat ramps, and other gray infrastructures3.
In areas with dense residential development between 50–90% of
shorelines can be armored, whereby, on average, 14% of all U.S.
shorelines have been modified from their natural conditions and
replaced with artificial structures3. This transition represents an
extensive loss of natural coastal habitats and the critical
ecosystem services they provide.
As more ecologically harmful infrastructure is developed to

meet the demands of human population growth, urbanization
concurrently alters ecosystem services and functions by negatively
impacting biodiversity, ecological conditions and environmental
quality, specifically through a decrease in native habitat, increased
water pollution, and creation of impervious surfaces4. Urbaniza-
tion may also lead to less resilient and adaptable coastal

communities against natural hazards and climate change threats,
such as sea level rise and hurricanes. This is because in urban
areas, ecosystem functioning is reduced and associated services
are lost, resulting in increasing risk of shoreline erosion, saltwater
intrusion, storm surges, and coastal flooding2,5.
These human-environment interactions in coastal ecosystems

can lead to, and at the same time be derived by, decisions that will
shape the future structure, function, and sustainability of coastal
ecosystems6. These social decisions (e.g., large-scale policies or
individual level choices) can have long-lasting consequences for
both the environment and society, especially as coastal develop-
ment increases. Decisions that modify and change the biophysical
nature of the environment (e.g., waterfront residents’ decision to
use artificial structures for storm protection and shoreline
stabilization) impact its ecological functionality7. At the same
time, these alterations may change the degree of connectivity that
individual humans have to their environments, which might
extend to broader societies’ ecological knowledge8,9.
Few studies provide evidence that the removal and lack of

natural environments in urbanized environments reduces indivi-
duals’ environmental connectedness and ecological knowledge,
and subsequently lowers pro-environmental behaviors10–12. This is
of critical importance since a general lack of environmental
connectedness, and in particular, a lack of ecological knowledge is
a phenomenon often used to explain the non-appreciation of, and
deleterious behaviors toward, the natural environment, even
though many studies theorize these relationships opposed to
empirically test them (e.g., see refs. 13,14 and the discussion in ref. 15
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about “nature-deficit disorder”). Furthermore, if there exists a
general lack of ecological knowledge, social decisions at the
individual level that reflect these limited perceptions (e.g.,
utilitarian land-use decisions12 or waterfront homeowners’ pre-
ference to install a bulkhead) can often cascade to larger societal
impacts through domino-effects, where individual decisions trigger
similar, reactive decisions by neighbors leading to broader societal
patterns16. For example, Gittman et al.17 found that one of the
stronger predictors of an individual decision to have an armored
shoreline was presence of armoring on a neighboring parcel. When
considered across a community scale, such societal patterns can
alter natural coastal habitats significantly.
In this current study, we investigate the relationship between

residents’ knowledge, or mental models, of human-environment
interactions, their self-reported pro-environmental behavior, and
how these perceptions and behaviors are associated with
urbanization. A mental model is the cognitive internal representa-
tion of a system in the external world that articulates causal
relationships among system components (i.e., abstract con-
cepts)18,19. Mental models that represent causal knowledge can
be graphically obtained through cognitive mapping techniques in
the form of directed graphs, which are networks in which nodes
represent concepts (i.e., system components) and graph edges
(arrows) represent the causal relationships between the con-
cepts20. We combine methods from social science, data science,
and network science to conduct an analysis using mental models
of coastal residents along an urbanization gradient to better
understand the interconnections among urbanization, people's
knowledge of human-environment interactions, and their pro-
environmental behavior.
We surveyed residents across eight coastal states in the

northeast U.S., including Maine, New Hampshire, Massachusetts,
Rhode Island, Connecticut, New York, New Jersey, and Delaware.
We used a fuzzy cognitive mapping (FCM) approach21 to elicit
mental models of coastal ecosystems with a focus on environ-
mental connectedness, ecosystem health, human wellbeing,
climate, and sustainable coasts (see Methods). Here, we propose
a concept, Urbanized Knowledge Syndrome (UKS), which
represents recurring patterns in urban dwellers’ mental models
about natural ecosystems – their internal understanding of how
humans and environment interact. Here, syndrome should not
be interpreted as a set of medical signs and symptoms which are
associated with a particular disease or disorder. These recurring
patterns include (1) diminished systems thinking (e.g., complex-
ity of mental models decreases as degree of urban development
increases) and (2) the erosion of cognitive diversity (i.e., diversity
of mental models among residents decreases as degree of
urban development increases). These patterns demonstrate a
type of thinking that is simplified to some extent or otherwise
limited or focused on fewer social-ecological relationships
than exist in reality.
Systems thinking – a holistic view that considers factors and

interactions and how they result in a possible outcome – is an
important skillset that helps people better understand complex
systems and adapt to changes22. Individuals with higher degrees
of systems thinking are more likely to consider interdependen-
cies, identify leverage points to intervene within the system and
produce desired outcomes23, better anticipate system function
and emergence of patterns of behavior24, and avoid unintended
consequences18. As such, systems thinking may help coastal
residents develop mental models that enable more nuanced
reasoning about diverse causal pathways between humans and
natural coastal ecosystems25–28, which may lead to behaviors that
are driven by more predominant cognition of complex feedbacks,
trade-offs, and reciprocal interdependencies between humans
and nature. In contrast, bounded systems thinking (or linear
thinking) may lead humans to develop limited cognition of their
surrounding world, reduce their ability to accurately and

adequately perceive the complexity of the environment they
inhabit and interact with22, and thus may give rise to counter-
productive behaviors and decisions27,29. For example, a simple
causal relationship might be that seawall construction increases
coastal protection as a form of structural defense to control
shoreline erosion; whereas a more complex relationship might be
that seawalls lead to alterations in hydrodynamic processes,
which reduces erosion locally and accelerates coastal erosion
downstream30, and at the same time, shoreline armoring can also
lead to losses of natural coastal habitats and their critical
ecosystem functions3.
While cities are beneficial to human development, working as

engines of socioeconomic change, cultural transformation, and
technological innovation, their psychological influences on
people and how these influences drive urban residents’
perceptions and behavior must be noted. Firstly, the salience
of ecosystem services is limited for inhabitants of more
urbanized areas, as compared to rural areas. Exposure to nature
provides multiple opportunities for cognitive development
which increases the potential for stewardship of the environ-
ment and for a stronger recognition of ecosystem functions13.
Urban residents, however, are more routinely exposed to built
environment and gray infrastructure, such as armored shorelines
and artificial structures along coastlines, as opposed to natural
environment, and thus their local experience of, and connection
to, ecosystem services can be limited31.
Secondly, urbanization generally comes with complex technol-

ogy and commerce, allowing individuals to meet their needs
quickly and through many choices with less appreciation of, and
first hand experience with, provisioning ecosystem services (e.g.,
food comes from many grocery stores not a farm or garden; fish
comes over a counter not across a dock or the end of a spear; and
potable water comes from a pipeline not a spring or well). This
may cause the development of a wider gap in human perceptions
of benefits received from natural ecosystems32, fostering the
emergence of societies that are increasingly disconnected and
seemingly independent from ecosystem services31.
Finally, residents of urbanized areas may be exposed to a set of

social norms, information, and perspectives that encourage
anthropocentric values and thinking including human exemption-
alism (“the tendency to see human systems as exempt from the
constraints of natural environment”33) and human exceptionalism
(“the tendency to see humans as biologically unique and
discontinuous with the rest of the animal world”34), therefore
limiting their understanding of the importance and substantiality
of reciprocal interdependencies between humans and natural
environment13,34. These urbanization aspects may spark what we
call ‘limits to systems thinking’ in the social-ecological realm.
Therefore, we hypothesize (H1) that in more urbanized areas,

mental models are predominantly characterized by linear thinking
of coastal ecosystems, as opposed to systems thinking, where
components are connected mostly by simple causal patterns. This
class of mental models is associated with limited cognition of
synergies and trade-offs, emergence of global patterns from local
relationships, reciprocal interdependencies, and feedback loops
between humans and natural ecosystems, which may lead to a gap
in residents’ perception of nonlinear complex structures. To test
our hypothesis, we analyze the structure of causal relationships
using the network structure and graph-theoretic metrics of
cognitive maps (i.e., graphical representations of mental models).
We use cluster analysis to identify predominant classes of mental
models about coastal ecosystems. Distinct clusters of mental
models represent archetypal cognitions that individuals develop to
perceive human-environment interdependencies13,27. We then use
network analyses to measure the complexity of causal structures in
cognitive maps and determine the overall degree of systems
thinking in each cluster (see Methods). Finally, we investigate the
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association between urbanization and the degree of systems
thinking across those clusters.
The second important feature that helps systems adapt to

changes is diversity, ranging from ecosystems35 to economic
systems36. There is also evidence that these same relationships
between diversity and adaptability hold true for cultural knowl-
edge systems, governance systems, and among diverse commu-
nities and social institutions that function more effectively as
resilient collectives28,37,38.
In contrast, as cultural homogenization theories explain,

survival in cities depends on fitting in and adopting practices
that are considered socially normal by the dominant culture39.
Although cities are magnets for people from all corners of the
world with seemingly more diverse composition of race and
ethnicity compared to rural areas40, assimilation of diverse values,
beliefs, cultural knowledge, and social norms into a universal,
governing culture—sometimes referred to as “cultural colonial-
ism” or “cultural normalization” – is a major component of urban
societies41. This cultural normalization among urban dwellers is
exacerbated by dominant exposure to the universal language and
education system, greater access to the Internet, social media and
news outlets, and market-driven policies and global standardiza-
tions for laws and finance41.
In addition, an important characteristic of urbanization is the

centralization of the population into cities, “where neighborhoods
in different regions have similar patterns of roads, residential lots,
commercial areas, and aquatic features”42. Such physical and
environmental homogenization across urban areas, which is
visually evident, is influenced by monocentric land-management
and policies, economic pressures for land development and use,
engineering necessities, codes and standards, and preferences for
particular aesthetics and recreations. Prior studies have shown
that this homogenization extends to ecological structure, mean-
ing that across urbanized areas, similar built environment and
landscape structures can lead to homogenized ecological
characteristics, function, and the range of ecosystem services
they can supply42,43.
Here, we argue that homogenization in cultural, physical, and

ecological systems also extends to residents’ perceptions and
understanding of human-environment interactions. We, therefore,
hypothesize (H2) that increased urbanization is associated with
more homogenized mental models of coastal ecosystems. To test
our second hypothesis, we measure the structural dissimilarity of
individuals’mental models (i.e., cognitive maps) using some of the
widely used methods for comparing graphs44. We measure the
mean of pairwise cognitive distances (i.e., a quantitative metric
that represents the mean of graph dissimilarity between any two
individual cognitive maps) and compare this metric across clusters
of mental models, and thus, explore the correspondence between
urbanization and mental model homogenization (i.e., testing the
hypothesis that urbanization is associated with more similar
mental models in terms of causal structures represented in
cognitive maps) (see Methods).

RESULTS
Mental model clusters, demographics, and urbanization
A total of 1397 residents of shoreline counties from eight coastal
states in the U.S. participated in the survey study (see
Supplementary Fig. 1 for descriptive statistics). Of those, 1226
individuals responded satisfactorily to the questions that intended
to collect their FCMs. These responses were then translated to
graphical FCMs that represented participants’ mental models of
coastal ecosystems using networks of nodes and causal links with
a focus on human-environment interactions (see Supplementary
Fig. 2). We conducted a clustering analysis using the network
structural characteristics of these mental models (see Methods).

Two clusters of mental models were identified using this
approach (Fig. 1a), representing distinct typologies of cognition
(i.e., understanding of the human-environment system complex-
ities in a coastal ecosystem). We compared the characteristics of
individuals across two clusters in terms of their demographic
information, including education, income, home ownership,
political affiliation, gender, age, and race. None of those
demographic variables were statistically significantly different
across the two clusters of mental models, except for age and
race (see Supplementary Fig. 3 and Supplementary Table 1 for
the results of comparisons). The portion of white race in Cluster-
1 was smaller than Cluster-0, while the portions of black/African
American race and Asian race in Cluster-1 were larger than
Cluster-0, X2 (6, N= 1226)= 23.804, p < .001. In addition, age in
Cluster-1 (M= 41.84, SD= 13.83) compared to Cluster-0 (M=
47.49, SD= 13.61) was significantly younger, t(1224)= 7.211,
p < 0.001.
We also compared two other variables across clusters, including

the National Center for Health Statistics (NCHS) Urban–Rural
Classification (i.e., six-point categorical index for determining the
level of urbanization at the county scale),45 and the percent of
armored (hardened) shorelines7 (see Methods). A chi-square test
of independence indicated a significant relationship between
mental model clusters and NCHS urbanization levels, X2 (4, N=
1226)= 26.46, p < 0.001. Post hoc tests revealed that individuals in
Cluster-1, as compared to Cluster-0, were more likely to reside in
large central metros (level 6) and less likely to reside in small metros
(level 3) (Fig. 1b). Also, the independent-samples t-test revealed a
statistically significantly higher mean for Cluster-1 than Cluster-0,
regarding the percent of armored shorelines, t(1224)= 3.044, p=
0.002 (Fig. 1c). These findings, collectively, indicated that Cluster-1,
as compared to Cluster-0, more strongly represented the social
and physical attributes of coastal urban areas. Individuals living in
urbanized coastal areas in the U.S. often inhabit large central
metros with relatively larger racial diversity,40 younger popula-
tion,46,47 and with greater percentage of natural shorelines being
armored and replaced with artificial structures3.

Urbanization and the limits to systems thinking
To measure how each individual mental model represented (or
captured) complex, nonlinear relationships, we used methods for
measuring systems thinking using the network structure of the
mental models, developed by previous studies18,25 and applied to
multiple contexts27,28. Cognitive maps that represent higher levels
of systems thinking are expected to have higher prevalence of
complex system structures, meaning that they are more likely to
explain system trade-offs and synergies (as measured by a graph’s
Complexity Score), identify emergence of global patterns from
local interrelationships (as measured by a graph’s Cycles Basis),
understand reciprocal (or bidirectional) relationships (as measured
by a graph’s Reciprocal Micro-Motifs), and capture important
feedback loops (as measured by a graph’s Feedback Micro-Motifs)
(see Methods for more details).
Conversely, we gauged the level of linear thinking by measuring

the network hierarchy and structural linearity of cognitive maps
using indicators adapted from network-level statistics developed
by Krackhardt (1994)48 (see Methods). For all systems thinking
indicators (Fig. 2a), the mean in Cluster-0 was statistically
significantly higher than that of Cluster-1. Conversely, for all linear
thinking indicators, the relationship was reversed, with these
differences in three out of four indicators being statistically
significant (Fig. 2b). Given the finding that individuals in Cluster-1
were living in areas with stronger urban characteristics compared
to Cluster-0, our results can suggest that urbanization is associated
with less systems thinking, and more linear thinking, compared to
less urbanized areas.
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Urbanization and the erosion of cognitive diversity
To quantify the homogenization of mental models we used a
quantitative measure of cognitive distance between individuals
based on their mental models’ structural characteristics. To
compute this distance, we draw on graph and spectral-graph
theories to measure graph dissimilarity and assess how indivi-
duals’ cognitive maps (i.e., mental models) structurally differ from
one another (see Methods). The mean of pairwise cognitive
distances between mental models within Cluster-1 was statisti-
cally significantly smaller than that of Cluster-0 (Fig. 3). This
indicated that individuals in Cluster-1 had mental models of
coastal ecosystems that were more similar to one another (i.e.,
homogeneous), compared to mental models in Cluster-0 which
showed higher diversity. Importantly, given our findings that
Cluster-1 included individuals residing in areas with stronger
urban characteristics, Fig. 3 illustrates that urbanization is
associated with homogenization of mental models of human-
environment interactions.
Additionally, we asked participants to self-report whether they

have adopted any of a suite of pro-environmental behaviors
(Fig. 4). Here, adoption of each item is a binomial variable (those
who consider environmental concerns in their decisions = 1
versus those who do not = 0; this does not group individuals into
pro versus anti environmental). Importantly, we detected an
increase in odds of adopting pro-environmental behaviors for
individuals in Cluster-0 relative to the individuals in Cluster-1
(Fig. 4). Z-tests revealed that for three out of six environmental
behavior items, these increases were statistically significant (i.e.,
the 95% confidence interval did not overlap the null value OR= 1).
These results suggest that individuals in Cluster-1, those who
reside in areas with stronger urbanization attributes, whose

mental models also demonstrate stronger evidence of UKS, are
less likely to report the adoption of pro-environmental behaviors.

DISCUSSION
Using an example of coastal ecosystems and their underlying
social-ecological relationships, our results empirically demonstrate
that urbanization and its inherent attributes are positively
associated with the homogenization of residents’ mental models,
and negatively associated with their degree of systems thinking.
These findings are very important because homogenized and
linear thinking may limit urban coastal residents’ ability to
perceive complexities of human-environment interactions and
consciously choose behaviors that lead to harmony in their
relationships with their surrounding natural environments49. We
claim, though not empirically prove, that (1) a reduction in
understanding complexity (i.e., limit to systems thinking) may
cause people to oversimplify their impacts on, or connection to,
the natural ecosystems leading to environmentally harmful
decisions and counterproductive behavior, and (2) a pattern of
homogenization in ways of thinking (i.e., erosion of cognitive
diversity) may result in increased rigidity in decision making and
reduce resilience to social and environmental change in human
communities, in similar ways in which increasing rigidity and
homogenization reduce economic36 and ecological systems35

ability to respond and adapt to changes.
Our findings provide insights into better understanding the

dynamics of human-environment interactions. On the one hand,
our individual decisions that are shaped, in part, by our mental
models18 may trigger changes to the ecological characteristics of
our natural environment. On the other hand, these behaviors may
cascade to others through our social connections, which further

a b

c

p-value = 0.0023 

Fig. 1 Clusters of mental models. The dendrograms in (a) were cut to achieve two distinct clusters representing different types of mental
models based on their network structure. A hierarchical clustering approach using Ward’s minimum variance method was conducted on the
Euclidean distances between mental models on their general network structural metrics (see Methods). Level of urbanization (b) and percent
of armored shorelines (c) are shown across clusters (error bars denote standard errors).
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transform natural ecosystems16,17,49 and/or feedback to our
ecological knowledge, mental models, and decisions through
our environmental connections50,51. Therefore, the condition of
ecological health and the degree to which nature is allowed to
function in urban areas can largely be associated with human
perceptions, decisions, and practices at the individual or commu-
nity level through complex feedback dynamics.
People’s ecological knowledge and perceptions (i.e., mental

models) may vary across individuals depending on their cultural
values, life experiences, professions and socioeconomic status, but
are also affected by broader hierarchical structures, such as
community values, norms and rules, cultural identity, and political
and economic institutions52,53. In urban settings, institutions
typically support rules and norms that have a need for general
application and foster socioeconomic and political stability (land-
use planning, urban design, environmental management, and
development policies)54. A recent study has provided empirical
evidence that modification of the natural environment driven by
such monocentric land-management practices and human
dominance has led urban areas across the U.S. to represent
similar built environment characteristics and ecological homo-
genization, despite the fact that they differ in their regional
climate and biophysical characteristics42.
We expanded upon these previous findings and further tested

the hypothesis that human dominance of urban ecosystems and

A pair of individuals

Graph 
distance

Fig. 3 Pairwise cognitive distances between individual mental
models within each cluster. Comparison across clusters was done
using an independent sample t-test, showing a statistically
significant smaller mean for Cluster-1 than Cluster-0 (p < 0.001).
Lower and upper box boundaries denote 25th and 75th percentiles,
respectively. Line and dimond inside box denote median and mean,
respectively. Horizontal extending lines denote adjacent values (i.e.,
the most extreme values within 1.5 interquartile range of the 25th
and 75th percentile of each group). The shaded gray dots in the
background denote the cognitive distances between all possible
pairs of individuals in each cluster.

*
p ≤ α

p ≤ αp ≤ α p ≤ α p ≤ α

p > α p ≤ α p ≤ α

* * * *

**

a

b

Fig. 2 Comparison of network structural metrics across mental model clusters. Systems thinking (a) versus linear thinking (b) indicators and
their comparison across two distinct clusters of mental models (see Methods for details about each indicator). Independent sample t-tests
were used with Bonferroni correction for multiple comparisons and an acceptable family-wise error rate (FWER) of 5%. α= Bonferroni adjusted
alpha level per test = 0.05/8 = 0.00625. Asterisk denotes p-value ≤ α, which indicates statistical significance. Lower and upper box boundaries
denote 25th and 75th percentiles, respectively. Line and triangle inside box denote median and mean, respectively. Vertical extending lines
denote adjacent values (i.e., the most extreme values within 1.5 interquartile range of the 25th and 75th percentile of each group).
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their ecological homogenization extends to urban residents’
mental models of human-environment interactions within coastal
ecosystems. Importantly, this mental model homogenization can
encourage, or be encouraged by, environmental behavior and
knowledge in urban settings that embrace more homogeneity,
convention and norms, thereby potentially eroding already-
weakened human-nature connections and stewardship55,56.
One of the limitations of the current study is that it does not

determine the direction of causality, nor does it intend to make
causal inferences about the relationship between preference for
environmental attributes, ecological knowledge, and structure of
mental models. Yet, our results importantly suggest that a
reinforcing-feedback loop among these factors exists, as having
less experience and connectedness with the natural world can
result in ecological knowledge erosion that may then influence
behaviors and preferences that further degrade the environment
and impact ecosystems. However, it remains unclear which one
comes first. It is, therefore, possible that homogenized mental
models and the erosion of ecological knowledge —what we refer
to as UKS—results in further degradation of coastal ecosystem
services through a self-reinforcing trap56. This may contribute to
less resilient and adaptable ecosystems to future social-ecological
challenges. Also, we were more interested in capturing large-scale
phenomena independent of how and whether respondents
perceived to be living in an urban-to-rural gradient (and
independent of distance from green spaces or other amenities).
Projections suggest that by 2050, nearly 70% of the human

population will become urban dwellers57; therefore, beyond
identifying and diagnosing UKS, future work needs to focus more
on better treating it. Here, we identify three overarching, but not
mutually exclusive, treatments: (1) designing local institutions with
heterogeneous land-management policies in a decentralized
setting where local level decisions and governance systems
nested into higher level governance settings; (2) fostering
environmental connectedness through building cultural, architec-
tural and cognitive links between humans and the natural
environment; and (3) promoting adaptive learning and ecological
knowledge that accommodates biodiversity and enhances the

resilience of social-ecological coastal ecosystems42. These poten-
tial treatments are further explained below.
Firstly, moving away from centralized management towards a

more polycentric and nested system may favor sustainable
management of coastal urban areas58,59. Institutional diversity,
while nested into higher level governance settings, can theore-
tically enable a multi-level governance system that balances out
the dominance of highly centralized institutional arrangements
and therefore encourages enhanced institutional fit60. Addition-
ally, having greater diversity among environmental leadership
could lead to more innovative solutions with implications for
addressing racial and environmental justice issues61. It may better
preserve urban policy and decision heterogeneity at the local level
(i.e., multiple local institutions, each of which operates with some
degree of autonomy for decision making), while operationalizing
under governance settings with unified overarching goals, norms
and rules62. Polycentricity, thereby, may engage citizens with
more diverse institutional settings and decisions that can
potentially enable them to break the self-reinforcing UKS trap.
Secondly, It is of importance to recognize dominant values and

representations that lead to UKS and to identify how they can
evolve towards more satisfying environmental sustainability in
tandem with social and cultural flourishing in urbanized settings63.
Leveraging humans’ natural affinity towards nature (i.e., “Biophi-
lia”)64 and increasing urban vegetation can benefit people’s
physical and mental health. In addition, encouraging the
connection between humans and nature supports cognitive
function and helps to enhance systems thinking. In urban
locations, increased nature, green space, and nature-based
approaches can be considered a necessity, opposed to an
amenity. However, in more diverse urban areas, resources are
not distributed equally across society. Instead, the distribution of
such space often disproportionately benefits predominantly white
and higher-income communities65. Communities of color, in
contrast, are disproportionately impacted by environmental issues
and have historically been (and currently are) far more likely to live
in areas with less access to nature and less socioeconomic
investment in nature-based approaches (e.g., see refs. 65,66). To
apply an equity and environmental justice lens to addressing UKS,

Fig. 4 Odds ratio and 95% confidence intervals (i.e., error bars) for pro-environmental behavior in Cluster-0 relative to Cluster-1. Pro-
environmental behavior items whose 95% confidence intervals do not cross the null value (OR= 1) indicate statistically significantly different
odds across two clusters with p-value ≤ 0.05.
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green space and nature-based solutions within urban settings
would ideally be highly connected, of high ecological quality, and
widely accessible across socioeconomic sectors.
Finally, using programs like citizen science to enhance the

ability of individuals in urban settings to engage with nature may
contribute effectively to treating UKS67. These programs help
residents identify and respond to local environmental issues by
way of fostering adaptive learning about human-environment
interactions through evidence-based practices. In addition, Kransy
and Tidball (2012)13 presented a call to all institutions active in
cities, including governments, non-profits, the private sector and
universities to promote enhanced urban stewardship through
Civic Ecology; a process by which local environmental stewardship
actions can be initiated to enhance both the green infrastructure
and community wellbeing of urban and other human-dominated
systems.
While urbanization continues, as a result of the confluence of

several interacting factors, it will likely lead to more homogenized
social, economic, and indeed environmental systems. Hence,
recognizing and addressing UKS requires a multi-faceted
approach focused on establishing appreciation for, and under-
standing of, important human-environmental relationships that
maintain ecological quality and human wellbeing in balance.

METHODS
Survey design
To test our hypotheses, we report survey panel data representing more
than 1350 coastal residents. A primary section of the survey was designed
to elicit individual mental models through the use of fuzzy cognitive
mapping (FCM) method. Mental models that represent causal knowledge
(e.g., how social and ecological components are interconnected in a
coastal urban ecosystem) can be graphically obtained through cognitive
mapping techniques in the form of directed graphs, which are networks in
which nodes represent concepts (i.e., system components) and graph
edges (arrows) represent the causal relationships between the concepts.
Additionally, causal connections are assigned a negative or positive
numerical weight with an absolute value in the interval of zero and one,
corresponding to the magnitude and sign of the relationships. Our survey
instrument involved a series of questions designed to (step-1) select FCM
concepts, and (step-2) define causal relationships between the concepts
and assign edge weights. The first step provided participants with the
following prompt:

● In the next few questions, we would like for you to describe your view of
healthy and sustainable coastal shorelines. To start, please select all of
the components that you believe are important for coastal shorelines.
You may also enter one category that you believe is important but not
included in the list.

The list of concepts was: Marine life, Water Quality, Marshes & Natural
Habitats, Recreational & Cultural Activities, Beaches, Seawalls & Engineered
Shorelines, Protection from Storms, Water Access (boat ramps & piers), and
Commercial Fisheries & Livelihoods.
Next, to assign edge weights, we asked a series of pairwise questions

for all selected concepts, with an example being: How would you
describe the influence of Seawalls & Engineered Shorelines on
Recreational & Cultural Activities? (See Supplementary Fig. 2). In addition
to mental models, this paper also reports on survey questions on
environmentalism and demographics. The full survey instrument is
provided at the project’s Open Science Foundation (OSF) page.

Survey data collection
This study was conducted with approval of Northeastern University’s
Institutional Review Board (IRB), and written informed consent was
acquired from all participants. We used Qualtrics Research Panels to
recruit a sample of ~1400 individuals in coastal counties from Delaware to
Maine. Qualtrics panel samples are proportioned to the general public and
randomized before deployed. To evaluate and assure data quality, we
applied a multi-step process during and after survey implementation. First,
we included two attention check questions to detect “straight-lining” (i.e.,
respondents who repeatedly selected the same answer). Next, we set a

completion time threshold of 50% of the mean completion time to identify
‘speeders’ (i.e., respondents who rapidly answer questions without closely
reading them)68. Finally, after the survey closed, we reviewed all survey
responses to flag data quality issues. Following this review, all bad
responses were replaced by Qualtrics and new responses were subse-
quently reviewed. In addition, we excluded from mental model analyses
those respondents whose FCMs’ number of connections (i.e., edges) were
at the 10th percentile, which resulted in excluding FCMs with equal or
fewer than five edges.
After data collection, we appended county-level data on urbanization

and shoreline condition to the survey data. An urbanization gradient was
used to explore potential associations between residents’ mental models
and degree of urbanization. We used National Center for Health Statistics
(NCHS) Urban–Rural Classification Scheme for Counties. This urbanization
gradient consisted of six categories: two Nonmetropolitan categories and
four Metropolitan categories including small metro, medium metro, large
fringe metro, and large central metro. This urbanization gradient was
created from a series of factors but most closely associated with county
population density (see ref. 38 for more details). We also used Gittman et al.
(2015)’s county-level estimates of NOAA’s Environmental Sensitivity Index
(ESI) for the percent of armored (hardened) shorelines (see ref. 7 for more
details).

Mental model clustering
To analyze the mental model data, we drew on network analysis to
measure structural metrics of FCMs that provide important information
about how a person’s mental model represents interdependencies. The
general network structural metrics we used to cluster mental models
included total number of concepts (i.e., nodes in a graph), number of
connections (i.e., nonzero links between nodes), sum of the absolute value
of the edge weights, centrality of each concept (i.e., sum of the absolute
value of edge weights, for those edges entering or exiting that concept),
network density (i.e., number of nonzero edges proportion to the number
of all possible edges), the number of drivers (i.e., nodes with no edges
entering them), the number of receivers (i.e., nodes with no edges exiting
them), the ratio of receivers to drivers, and the number of ordinary
concepts (i.e., nodes that are neither drivers nor receivers). For more details
see Ozesmi & Ozesmi (2004; Table 1)69. These structural metrics of FCMs
have been widely used by prior studies to highlight differences in people’s
mental models (e.g., see refs. 69–72). We performed a hierarchical clustering
approach using Ward’s minimum variance method on the Euclidean
distances between mental models. Using this clustering approach, we
firstly converted each mental model to its vector of general structural
metrics and secondly searched for clusters of mental models such that the
variance of sum of squares between their vectors of structural metrics was
minimized73.

Systems thinking versus linear thinking
We used four “Systems Thinking” indicators to measure the extent to
which the structural relationships among system components indicate
complex versus simple causal thinking: Firstly (1), we calculated Complexity
score which measures the ratio of receiver nodes to the driver nodes. This
score can be a proxy for the potential occurrence (or the likelihood) of
causal structures that represent trade-offs (or synergies) where one action
affects multiple valued outcomes. Secondly (2), we found the Cycles Basis
of a mental model which is a minimal collection of fundamental cycles in
its underlying graph (i.e., undirected version of the digraph) such that any
cycle in this underlying graph can be written as a sum of cycles in the
basis74. The size of this collection is a positive number which can indicate
the extent to which a mental model considers local relationships that give
rise to global patterns—a complex system’s property called “emergence”24.
Thirdly (3), we calculated the frequency of Reciprocal Motifs that are
unique collections of two nodes (i.e., dyads), that are linked through
bidirectional causal relationships, and thus represent the cognition of
reciprocal relationships in a mental model. Finally (4), we calculated the
frequency of Feedback Motifs, that are unique collections of three nodes
(i.e., triads), that form a closed feedback loop, either clockwise or
counterclockwise. The higher the number of Feedback Motifs, the higher
the cognition of complex relationships that represent fundamental causal
feedback loops18.
Conversely, to gauge the level of linear thinking in cognitive maps, we

began by measuring indicators that are adapted from network dimensions
developed by Krackhardt (1994)48 to describe the amount of hierarchy in
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networks. Firstly (1), we used network Connectedness concept which
represents the probability that every pair of distinct nodes is joined by a
path. This condition can be approximated by measuring the fraction of
dyads (pairs of nodes) that are adjacent in a network, relative to the
maximum possible adjacent dyads (i.e., the higher the density of
connections, the higher the probability that every pair of distinct nodes
is joined by a path). Secondly (2), we used network Hierarchy concept
which represents the probability that a dyad with a connecting path in one
direction do not have a connecting path in the other direction. This can be
approximated by quantifying the fraction of dyads that are adjacent in
only one direction (i.e., they do not have bidirectional adjacency), relative
to the maximum possible adjacent dyads. Thirdly (3), we used the network
Efficiency concept which represents the probability that each component
of the underlying graph has exactly n-1 edges where n is the number of
nodes in that component. This can be approximated by reversing the
network inefficiency, which is the difference between actual number of
edges minus one and the maximum possible number of edges. And finally
(4), we used the least-upper boundedness (LUBedness) concept which
captures the probability that a dyad share an antecedent node, and if they
share multiple antecedents, whether those antecedents have a single
shared antecedent18,48. This can be approximated by counting the number
of dyads that have a common antecedent relative to the maximum
number of possible dyads that could potentially meet this criterion.
Independent sample t-tests were used to compare both systems

thinking and linear thinking indicators of cognitive maps across two
clusters of mental models.

Cognitive distances and mental model homogenization
To measure mental model homogenization, we perform network
comparisons by defining a measure of distance between FCM graphs.
Each FCM is a directed, weighted graph G(V,E), with V being the set of
nodes (i.e., concepts) and E being the set of edges (i.e., causal connections).
We compute the distance between a pair of FCMs by taking into account
two measures:

dJ ¼ 1� J Ad1 ; A
d
2

� �
(1)

Where Ad1 andAd2 , are the unweighted adjacency matrices.

(1) The Jaccard Distance between unweighted adjacency matrix (Ad) of
two FCMs. For each graph G, Ad is a n × n square matrix, where n is
the number of nodes, and the elements of the matrix [aij] indicate
whether pairs of nodes i and j are adjacent ([aij]= 1) or not ([aij]= 0)
in the graph. In FCMs, the presence and absence of the connections
is a binomial variable, representing the extent to which one
individual includes or excludes the directed causal relationship
between two concepts when representing a complex system. The

Jaccard coefficient J for two graphs is defined as Ad1 ;A
d
2

� � ¼ Ad1\Ad2
Ad1 ∪Ad2

,

and their Jaccard distance is calculated as follows:
(2) The Euclidian Squared Distance between underlying graphs’ spectra

of two FCMs. For each graph G, the spectrum is the set of
eigenvalues of its normalized Laplacian75,76 that contains useful
information about the principal properties and structure of a graph,
which has important implications for graph comparisons76–78. In
addition, one prior study38 demonstrated that the Euclidian squared
distance between the spectra of two FCMs perfectly matches the
differences in how individuals perceived the system dynamics.
Importantly, all eigenvalues of the normalized Laplacian are real and
non-negative76, thereby offering a practical tool for measuring
graph distances. Given two graphs G1(V1,E1) and G2(V2,E2) we find a
set of all eigenvalues for each normalized Laplacian as their spectra.
Similar to the approach outlined in refs. 79,80, we compute the
Euclidian squared distance between the graphs’ spectra as follows:

ds ¼
Xk�

i¼1

λ1i � λ2ið Þ2 (2)

Where ds is the Euclidian squared distance between underlying graphs’
spectra of two FCMs, λi is the ith largest eigenvalue and λi � 0 for 8i. We
find the smallest k such that the sum of the k largest eigenvalues
constitutes at least 90% of the sum of all of the eigenvalues. If the values of
k are different between the two graphs, we use the smaller one (k�).
These two measures of distance between pairs of FCMs are

complementary. Thus, to jointly acknowledge the weight and directionality
of causal connections in FCMs, we define the cognitive distance between

two FCMs as follows:

CD ¼ ds ´ dj ´φ (3)

Were φ is the standardization coefficient for mapping CD to a normalized
range between [0,1]. All individual FCMs were converted into adjacency
matrices (see Supplementary Fig. 2) and the cognitive distances between
any pairs of maps were computed using Eq. 3. For each cluster of cognitive
maps, we measured the cognitive distance between all pairs of individuals
within that cluster, that is, the dissimilarity of their mental models.
Independent sample t-tests were used to compare the means of cognitive
distances across two clusters.
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