
Michael Hoffman
Department of Industrial and Manufacturing

Engineering,
Pennsylvania State University,

University Park, PA 16802
e-mail: hoffman@psu.edu

Eunhye Song
Department of Industrial and Manufacturing

Engineering,
Pennsylvania State University,

University Park, PA 16802
e-mail: eus358@psu.edu

Michael Brundage
National Institute of Standards and Technology,

Gaithersburg, MD 20899
e-mail: mpb1@nist.gov

Soundar Kumara
Department of Industrial and Manufacturing

Engineering,
Pennsylvania State University,

University Park, PA 16802
e-mail: skumara@psu.edu

Online Maintenance Prioritization
Via Monte Carlo Tree Search
and Case-Based Reasoning
When maintenance resources in a manufacturing system are limited, a challenge arises in
determining how to allocate these resources among multiple competing maintenance jobs.
This work formulates an online prioritization problem to tackle this challenge using a
Markov decision process (MDP) to model the system behavior and Monte Carlo tree
search (MCTS) to seek optimal maintenance actions in various states of the system.
Further, case-based reasoning (CBR) is adopted to retain and reuse search experience
gathered from MCTS to reduce the computational effort needed over time and to improve
decision-making efficiency. The proposed method results in increased system throughput
when compared to existing methods of maintenance prioritization while also reducing
the computation time needed to identify optimal maintenance actions as more information
is gathered. This is especially beneficial in manufacturing settings where maintenance deci-
sions must be made quickly to minimize the negative performance impact of machine down-
time. [DOI: 10.1115/1.4053408]

Keywords: artificial intelligence, case-based reasoning, machine learning for engineering
applications, manufacturing planning, Monte Carlo tree search

1 Introduction
In this work, we examine the problem of online maintenance pri-

oritization in a manufacturing setting with capacity-constrained
maintenance resources. Under this setting, periodic maintenance
conflicts may occur where the number of machines that require
maintenance exceeds the currently available maintenance capacity.
The goal is then to determine where to allocate the limited mainte-
nance resources in these instances in order to maximize the
expected system performance. This maintenance prioritization
problem may arise in any system where maintenance resources
are limited, regardless of the maintenance strategy that is in place.
When a machine fails in a manufacturing system, it is unable to

continue production until it is restored to a healthy state by a main-
tenance action. Downtime of a machine results in lost production
time and may also force other machines in the system to become
starved or blocked [1]. In complex systems with many machines,
there can be a large number of alternative maintenance actions to
consider. Thoroughly evaluating the resulting performance of
each alternative course of action is computationally demanding
and may require a substantial amount of time. Meanwhile, as down-
time accumulates in the system the negative impact to performance
increases. Therefore, selecting proper maintenance actions is a
crucial task that should be done as quickly as possible so as to min-
imize machine downtime.
We formulate the maintenance prioritization problem as a

Markov decision process (MDP) and seek the best action using
Monte Carlo tree search (MCTS). A search for the optimal decision
in the form of which immediate maintenance action to perform is
conducted each time a maintenance conflict occurs. Additionally,
we retain the information from each search for the best action to
learn an effective policy and improve the decision-making
process over time. As more information is gathered, the reasoner

will be able to predict the best action in some states of the
system, reducing the rate at which simulation effort is expended.
The following criteria are given by Ref. [2] to classify a mainte-

nance scheduling problem as “online”: (1) jobs arrive as an input
stream over time and scheduling decisions must be made without
knowledge of future jobs, (2) duration of jobs are unknown until
the job is completed, and (3) machine failure and maintenance inter-
vals are unknown [2]. Since our problem setting of interest meets
each of these criteria, we consider the proposed maintenance prior-
itization method to be online.
The rest of this document is organized as follows: Sec. 2 contains

a review of relevant existing work in both maintenance prioritiza-
tion and simulation-based planning. Section 3 gives a more detailed
description of the problem setting and the assumed behavior of the
target system. The methodology is described in Sec. 4, and experi-
mental results of the proposed method are presented in Sec. 5.
Lastly, conclusions are given in Sec. 6.

2 Background
Maintenance priority management addresses the problem of allo-

cating limited resources among competing maintenance needs.
These resources can include labor, time, material and spare parts,
or funds. We focus mainly on a limited number of maintenance
workers which imposes a limit on the number of maintenance
jobs that may be carried out simultaneously.
A review of recent work in maintenance optimization is given by

Ref. [3] which identifies several references that consider optimiza-
tion under constrained maintenance capacity. However, in each
case, there are additional simplifying assumptions such as negligi-
ble time to repair or identical machines. Such assumptions are
often made for mathematical convenience and are not representative
of many real-world manufacturing systems [4]. Maintenance prior-
itization subject to limited resources is also examined by Ref. [5] in
a variety of industries, including manufacturing. They identify the
following four prioritization methods as the most common among
recent literature: analytical hierarchy process, priority criterion,
matrix-based priority, and failure mode, and effect analysis.
Analytical hierarchy process (AHP) is a method of evaluating

alternative decisions using pairwise comparisons of weighted

Contributed by the Computers and Information Division of ASME for publication
in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received August 9, 2021; final manuscript received December 30, 2021; published
online February 7, 2022. Assoc. Editor: Matthew I. Campbell.

This work is in part a work of the U.S. Government. ASME disclaims all interest in
the U.S. Government’s contributions.

Journal of Computing and Information Science in Engineering AUGUST 2022, Vol. 22 / 041005-1
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

mailto:hoffman@psu.edu
mailto:eus358@psu.edu
mailto:mpb1@nist.gov
mailto:skumara@psu.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4053408&domain=pdf&date_stamp=2022-02-07

criteria and sub-criteria [6]. Each criterion is compared against all
others and assigned a relative numeric importance. Then, each can-
didate decision is evaluated against the criteria and the alternative
with the highest score is selected as the best. The criteria and
weights are typically selected by expert opinion. References [7,8]
apply AHP in a maintenance setting using production disruption,
mean time between failure, mean time to repair, and resource avail-
ability as selection criteria. Each maintainable asset is evaluated
using these criteria resulting in a fixed priority ranking of assets.
This approach does not account for the changing dynamics of a pro-
duction system, where the criteria score may change depending on
the state of the system. For example, as shown in Refs. [9,10], the
production disruption that results from machine downtime will
depend on the distribution of buffer contents throughout the
system which will change over time.
Similar to AHP, both priority criterion and matrix-based priority

use expert opinion to establish relevant criteria and evaluate com-
peting maintenance needs [11]. Several case studies using priority
criterion for maintenance are presented by Ref. [12]. Priority crite-
rion for both long-term strategic planning and short-term opera-
tional decision support is considered. In complex production
systems, however, it is not feasible to establish maintenance prior-
ities for all operating states of the system even if expert input is
available.
Failure mode and effects analysis (FMEA) aims to identify poten-

tial machine failures and their impact on the system [13]. It involves
measuring the risk priority number (RPN) of each possible failure
which is based on the likelihood of occurrence of the failure, the
severity of the failure, and the ability to detect the failure. Generally,
maintenance of failure modes with a greater risk of occurrence and
severe impact are prioritized over lower-risk failures. Maintenance
of a manufacturing system using FMEA is presented by Ref. [14].
This approach again relies heavily on expert opinion to evaluate
maintenance actions against the RPN criteria. Doing so can be dif-
ficult or impossible for complex systems where the consequence of
downtime is not easily inferred.
In each method of maintenance priority management discussed

so far, priority criteria are developed and evaluated for a specific
instance of a system. If the system is modified, the criteria will
need to be reevaluated within the context of the new system. This
can be costly and time-consuming, especially if inputs from
experts and stakeholders are required. Additionally, an expert
may struggle to identify optimal maintenance actions in a
complex system with a high degree of interactions among compo-
nents. The system may also encounter rare or unforeseen conditions
with which an expert has no experience.
To alleviate the need for expert input when prioritizing mainte-

nance, traditional queueing service disciplines have also been
applied to real-time operational maintenance decision making. For
instance, several common scheduling rules are compared by
Ref. [15] including first-in, first-out (FIFO), shortest processing
time first (SPTF), longest processing time first (LPTF), and an
expert-derived static heuristic. Birnbaum importance is another heu-
ristic metric that prioritizes machines according to their structural
importance [16]. When used as a maintenance rule, Birnbaum
importance prefers maintaining machines that have a greater likeli-
hood of disrupting the system-level production, as demonstrated in
Refs. [17,18]. While these scheduling rules may perform well in
some scenarios, they do not consider the evolving state of the
system. Reference [15] further proposes a dynamic priority that is
found using an evolutionary algorithm for a single state of the
system. Another dynamic scheduling priority measure based on
the concept of a maintenance opportunity window [9] is proposed
by Ref. [19]. The objective is to minimize the throughput disruption
caused by machine downtime due to maintenance, although no sub-
stantial improvement is shown over a static FIFO rule.
While simple to implement, it is unlikely that a static priority will

yield the optimal maintenance action in all states of a complex
system. Monte Carlo planning algorithms aim to improve upon
static rules for the action selection problem in systems with a

large state space. They use simulation to evaluate alternative
sequences of actions in order to identify the optimal action in the
current state. These algorithms typically require a generative
model, or simulator, of the target system and strategically sample
this model to estimate the expected performance of alternatives.
The behavior of the generative model as well as the Markov deci-
sion process (MDP) model of the manufacturing system is formal-
ized for our system of interest in Sec. 3.2.
Several methods exists to find optimal actions for an MDP. Value

iteration, policy iteration, and Q-learning are common methods that
involve exploring the state space and improving an agent’s ability to
choose rewarding actions as it gathers more experience [20].
However, the space complexity of each of these algorithms is a func-
tion of the system state space size, which limits their applicability to
complex settings. To overcome this limitation, Kearns et al. propose
a method of seeking optimal actions for large or infinite MDPs using
an online search in the current state of the system. Their approach
involves constructing a search tree by sampling each possible
action afixed number of times at each level of the tree until a specified
depth is reached [21]. While this method provides useful theoretical
guarantees on the optimality of the result, it is possible that significant
simulation effort could be expended on suboptimal action trajec-
tories. Reference [22] proposed the upper confidence bound for
trees (UCT) algorithm to improve the efficiency at which simulation
effort is expended during the tree search. UCT offers an action selec-
tion criterion that balances the exploitation of promising actions with
the exploration of those that have been sampled less often. Monte
Carlo tree search (MCTS) combines the UCT selection criteria
with progressive tree building to effectively seek actions in large
state space MDP settings and is the principal planning algorithm
used throughout this work [23].
In Ref. [24], we have applied MCTS to the maintenance prioriti-

zation problem for a system subject to condition-based mainte-
nance. Each time a maintenance conflict occurs, that is, in each
instance, where the number of maintenance requests exceeds the
currently available maintenance capacity, we apply MCTS to seek
the optimal maintenance action. This approach has demonstrated
an improvement in system throughput for a variety of system con-
figurations. In this paper, we aim to improve upon this method by
retaining and reusing experience that is gathered during each search.
Case-based reasoning (CBR) is a framework for using past expe-

rience to understand and solve newly encountered problems and is
founded on the idea that similar problems have similar solutions
[25–27]. CBR reflects the everyday human reasoning process that
is often used when we attempt to solve problems. For example,
from Ref. [25]:

When we order a meal in a restaurant, we often base decisions about
what might be good on our other experiences in that restaurant and
those like it. As we plan our household activities, we remember
what worked and didn’t work previously, and use that to create our
new plans. A childcare provider mediating an argument between two
children remembers what worked and didn’t work previously in
calming such situations, and bases her suggestion on that.

In a maintenance setting, when we encounter a state for which a
maintenance decision is needed, we use CBR to identify past states
that are sufficiently similar to the current state. Two system states
might be considered similar if, for example, they share a similar dis-
tribution of buffer contents or if the same set of machines requires
maintenance. We then examine the maintenance decisions that were
made in those previously encountered similar states and determine
if there is an action that can be retrieved and applied in the current
state. Over time, as we gather more experience, we can retrieve
existing actions more frequently which reduces the computational
effort that is spent conducting an online search for the best action.
A CBR agent, therefore, acts as a virtual expert that can provide
the expert judgement needed in some maintenance priority manage-
ment methods.
CBR has been applied to some areas of maintenance in past work.

For example, in fault diagnosis for manufacturing equipment and

041005-2 / Vol. 22, AUGUST 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

identification of the proper corrective action, as in Refs. [28–30].
Planning under limited maintenance resources is not considered,
however. Reference [31] develops a maintenance decision support
system that uses CBR but focuses on using cases to represent
human expert knowledge rather than the results of an autonomous
heuristic search.
CBR has also been effectively applied in some reinforcement

learning (RL) settings which share a similar formulation as our
maintenance planning problem. Many RL problems are also formu-
lated as an MDP with the goal of choosing the best action in each
state of the system. For example, Ref. [32] uses CBR to estimate
the expected reward of actions in an episodic RL task. They
address several challenges of using CBR for real-time decision
support that are also important considerations in this work, such
as storage and management of information in the case base. Refer-
ence [33] also examines the real-time decision support problem and
proposes a general CBR framework for such settings which we
adapt to our maintenance planning problem.

3 Problem Description
In this section, we elaborate on the manufacturing system beha-

vior and the maintenance planning problem formulation.

3.1 System Description. The system studied in this work is a
discrete manufacturing system consisting of multiple machines and
buffers. While in a working state, each machine will retrieve a part
from an upstream buffer (if one is available), process that part for
some amount of time, and then place the completed part in a down-
stream buffer (if there is available space). The system has a single
source of incoming unprocessed parts as well as a single sink to
collect finished parts that leave the system. The overall system-level
production is measured as the number of parts that traverse from
source to sink over a specified time frame. The system can be
viewed as a directed graph where each node represents either a
machine or buffer and edges define possible routings through the
system. Several real-world case studies that adopt this model of a
manufacturing system are presented in Ref. [34].
Each machine is also subject to random failures, at which point

the machine can no longer process parts and a corrective mainte-
nance action is needed to restore the machine to a healthy state. It
is assumed that failures are immediately observable and that a
request for maintenance is generated as soon as a failure occurs.
The set of current maintenance requests forms a virtual “mainte-

nance queue” of machines that are waiting to be repaired. When
maintenance resources are limited, periodically situations may
arise where the number of machines in the maintenance queue
exceeds the available maintenance capacity. That is, at time t for
the current maintenance queue L(t) and available maintenance
capacity cidle(t), the system encounters a maintenance conflict if

1 ≤ cidle(t) < |L(t)| (1)

In these instances, we must decide where to allocate the limited
maintenance resources among the currently pending jobs. When a
machine is chosen for maintenance, it is removed from the queue
and seizes an available maintenance resource until the job is
complete.
In the following, we consider only binary state machines

(a machine is either working or failed) under a corrective mainte-
nance strategy. This is to emphasize the contributions of the proposed
planning methodology, which is easily extendable to any mainte-
nance policy by using the maintenance queue formulation. The
proposed method is agnostic to how or why maintenance jobs are
placed in the queue so long as the other stated assumptions are met.

3.2 Markov Decision Processes. We model the underlying
behavior of the manufacturing system as a Markov decision
process (MDP), defined by the tuple M= 〈S, A, T, R, γ〉 where

• S is the state space
• A is the action space and A(s) is the set of actions available in

state s
• T is the transition probability function such that

T(s, a, s′) = Pr(st+1 = s′|st = s, at = a)

• R is the reward function where R(s, a, s′) is the immediate
reward obtained after transitioning from s to s′ as a result of
taking action a

• γ∈ [0, 1] is the discount factor over the time horizon

MDP behavior is defined by a policy π that specifies the action to
take in each state, π = {πt|πt : S 7! A, t ≥ 0}. From an initial state
s0, the expected reward of following policy π at each step is
given by

Q(s0, π(s0)) =
∑
s′∈S

T(s0, π(s0), s′) · (R(s, π(s0), s′) + γQ(s′, π(s′)))

(2)

whereQ(s, a) is the action-value function. It represents the expected
discounted return when starting in a state s and following π indefi-
nitely. The optimal policy π* will maximize the reward in each
state, defined as

π∗ =max
π

Q(s, π(s)) ∀ s ∈ S (3)

For our problem and many others, T and R are unknown but a
generative model, or simulator, G is available. When given a state
and an action, the generative model is able to sample a resulting
future state via G(s, a) → s′. The immediate reward is observable
upon this transition to s′. This “single step” simulation can be
chained together to obtain a trajectory of states and actions that
emulates the system behavior over some (potentially infinite) time
horizon. The problem then becomes to determine how to best allo-
cate calls to the simulator in order to find a good sequence of
actions.
The online prioritization problem is formulated with s0 represent-

ing the current state of the system when Eq. (1) becomes true. We
are interested in finding the action a that maximizes the expected
return in the current state, Q(s0, a), given that our only knowledge
of the system dynamics comes from G.
The overall objective in selecting maintenance actions is to max-

imize the rate at which parts are produced by the system over an
indefinite time horizon. We therefore model the reward function
to represent the number of finished parts that leave the system.
For example, R(s, a, s′) would be equal to the difference in produc-
tion in state s′ and s. By choosing γ< 1, we place preference on
obtaining rewards earlier instead of deferring rewards.

4 Methodology
The state space of the system grows exponentially with the

number of machines and buffers, which precludes the application
of classical dynamic programming algorithms for MDPs such as
value iteration and policy iteration. The complexity of these algo-
rithms is a function of the size of the state space, making them
intractable for even moderately-sized systems. Instead, we turn to
simulation-based decision tree search algorithms, namely Monte
Carlo tree search (MCTS), to strategically sample the state space
using the generative function G and evaluate alternative actions.
In addition to using MCTS to seek an action from a given state,

we would like to be able to learn from past experience to improve
our decision making while reducing the computational effort
needed over time. The proposed approach uses MCTS along with
Case-based Reasoning (CBR) to retain and reuse the information
that is gained over time. This approach is illustrated in Fig. 1,
where the problem space consists of system states that are
mapped to a point in the solution space representing the results of
a search, including the estimated best action for that state. When

Journal of Computing and Information Science in Engineering AUGUST 2022, Vol. 22 / 041005-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

encountering a new state for which we need to determine the best
action, we query the gathered information to determine if we
have previously found a good solution for similar states and
attempt to adapt that solution to the current state.
A high-level overview of the combined MCTS and CBR

approach is as follows:

(1) Operate the system until a state is encountered for which we
want to find the optimal action.

(2) Determine if the case base contains sufficient experience
related to the current state. Sufficient experience is the
ability to predict the optimal action in the current system
state with an acceptable statistical confidence, as will be
explained in Sec. 4.2.1.

(3) If sufficient experience exists, retrieve the solution from the
existing relevant cases, go to 4.

(4) Formulate MCTS to seek a solution.
(a) Update the case base with experience gained during this

search.
(5) Return the estimated optimal action as the best action as for

the current state, go to 0.

This procedure can be run indefinitely for a specified system so
long as a simulator G is available and accurately reflects the
system’s behavior. The following sections describe the steps of
this approach in more detail.

4.1 Monte Carlo Tree Search. The general MCTS algorithm
is initialized by creating a root node v0 representing the current state
of the physical system, s0. At each successive iteration, a leaf node
vℓ is selected according to a “tree policy.” A simulation result is
obtained from the state of this node, s(vℓ), using the “default
policy” and then backed up through the tree from vℓ to v0. Once
the specified search budget is exhausted, we choose the best esti-
mated action from the current state.
Upper confidence bound for trees (UCT) [22] is the typical node

selection criterion for the tree policy of MCTS. According to UCT,
at each node vi, the action a should be chosen that maximizes the
quantity

UCT(vi, a, Cp) = Q̂i(s(vi), a) + 2Cp

������
ln �n

Ns(vi)
a,i

√
(4)

where Q̂i(s(vi), a) is the estimated expected reward from choosing
action a in state s(vi) as defined by Eq. (2), Cp is the exploration
constant, �n is the number of times node vi has been visited so far,
and Ns(vi)

a,i is the number of times action a has been chosen from
node vi.
At termination, we choose the action that maximizes Eq. (4) with

Cp= 0 as the best action. For each candidate action, MCTS also

returns the mean reward, reward variance, and number of times
that action was sampled from the initial state. These statistics are
used during the CBR procedure to conduct a statistical comparison
of action rewards.

4.2 Case-Based Reasoning. In general, experience is stored in
a case base CB which is a set of cases describing problem instances
and their associated solutions. Initially, CB= and new cases are
added over time as new problem instances are solved. As additional
experience is gathered, the case base can be used to predict the
optimal action in newly encountered states with greater confidence.
There are four main steps in the CBR process when a new

problem instance is encountered:

(1) Retrieve: Identify the existing cases most relevant to the
target problem.

(2) Reuse: Adapt a solution from the existing cases to be applied
to the target problem.

(3) Revise: Adjust the implemented solution based on observa-
tion of the results.

(4) Retain: Add the new problem-solution pair to the case base
as a new case.

We use the numeric system state vector described in Ref. [24] for
problem descriptions in the case base under a manufacturing setting.
To summarize, the state of a manufacturing system is determined by
the level of each buffer in the system, the elapsed processing time of
each machine that currently has a part in progress, the degradation
state of each machine, and the elapsed repair time for machines cur-
rently under repair. We encode each of these attributes with numeric
values to create a numeric state-space vector. The solutions are
stored as the results of each search in the form of the mean, var-
iance, and sample size of each candidate action in the initial state.
Given input as a vector of state variables representing the current

system state, the case-based reasoner will return an output in the
form of a prediction of the best action for that state. The following
section will describe the formulation of this prediction problem in
more detail.

4.2.1 Action Label Prediction Task. In this section, we formu-
late the problem of predicting the best action for a queried state
given the set of experience that has been gathered so far. We
assume that each state can be represented by a numeric vector of
state variables.
This task can be viewed as a classification problem where our

goal is to classify each state according to its optimal action. The
action space A= {a1, a2, …, am} is the set of possible labels and
states that share the same optimal action, therefore, belong to the
same class. In order to train a classifier, we first need to gather expe-
rience by applying MCTS in various states to seek the best action.
Using a traditional statistical classification approach, the best action
as determined by MCTS is used as a label for the initial state of the
search and this state-solution pair becomes a case in CB and one
instance in the classifier training set. Each training instance, or
case, for the classification problem is defined as

ci = (si, ai) (5)

where si is the vector of state variables defining a particular state and
ai is the best action label assigned to that state. Once a sufficiently
large training set is established, a classifier can be trained on these
instances and used to generate predictions for newly observed
states.
A significant limitation of this approach is that it does not account

for the uncertainty of MCTS. In some cases, MCTS may be unable
to distinguish which action is best if multiple actions from the
current state yield a similar estimated reward. Conversely, MCTS
may very easily distinguish an action that is clearly better than
the others, so our predictions should ideally reflect these cases as
well. To account for this uncertainty, we can instead aim to
predict the likelihood that any particular action is optimal in the

Fig. 1 Experience storage and retrieval

041005-4 / Vol. 22, AUGUST 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

current state. This requires assigning some probabilistic measure to
the labels for each state. The cases are then represented by

ci =
(
si, 〈a1, q1〉, . . . 〈am, qm〉

)
(6)

where qi∈ [0, 1] is a measure of our belief that action label ai is
optimal. Since we are now aiming to predict the continuous qi
values, we are faced with a regression problem. This problem
setting is referred to by Ref. [35] as “learning classification with
auxiliary probabilistic information.”
Predicting qi for each action ai at a queried state instance

requires |A|=m regressors. To perform the regression, we use
instance-based learning methods which avoids generalizing the
training data until a query is made to the predictor. Instance-based
learning algorithms (also sometimes called “lazy learning”) do not
require a training period which is especially beneficial for case-
based reasoning since we do not need to explicitly retrain each
regressor when the experience stored in the case base changes
[36]. In this work, we use k-nearest neighbor regression, which
fits these criteria and has been successful in many previous appli-
cations of CBR.
Once the predicted action label confidence q̂i is calculated for

each action of a queried state, we choose that with the greatest con-
fidence exceeding some specified threshold ζ as the predicted
optimal action. If no predicted action label confidence exceeds
this threshold, we formulate and solve MCTS to seek the best
action. The experience obtained from this MCTS instance is then
potentially added to the case base to aid future predictions.

4.2.2 Measuring Action Label Confidence. For a set of m alter-
native actions, we want to find the optimal action ai* where

a∗i : = argmax
1≤i≤m

E[Xi] (7)

where Xi is the return of taking action ai in the current state.
However, with the uncertainty of MCTS we instead aim to deter-
mine the probability that an action ai is optimal given the observa-
tions gathered from a search. This probability will serve as the
auxiliary probabilistic information for the action labels of each
state in the case base.
We introduce a stochastic process ηi to model the uncertainty

regarding E[Xi]. By adopting a normal-normal model for ηi as
described by Ref. [37], we assume

Xi ∼ N(ηi, λ
2
i), ηi ∼ N(μi, σ

2
i) (8)

where λ2i is the simulation error variance, and μi and σ2i are the mean
and variance of the prior distribution of ηi, respectively.
Each instance of MCTS returns a set of statistics from sampling

each candidate action ai from the initial state including mean reward
�Xi, sample size ni, and sample variance S2i . We choose the noninfor-
mative prior σ2i =∞ and use S2i as a plug-in estimate of λ2i . We then
update the posterior mean and variance of ηi in

μi = �Xi, σ2i = S2i /ni (9)

The probability that an action ai is optimal in the current state is
therefore given by

qi = Pr ηi ≥ max
j≠i

ηj

()

=
∫
Pr(x ≥ max

j≠i
ηj) · fi(x) dx

=
∫ ∏

j≠i
Pr(ηj ≤ x)

[]
· fi(x) dx

(10)

where fi(·) is the probability density function of the distribution
N(μi, σ

2
i) as defined in Eq. (8). We then set qi to indicate our confi-

dence that action ai is optimal in the current state.

Additionally, we may be interested in finding the probability that
the estimated reward of an action is within δ of the best alternative
for some user-specified δ > 0. We refer to δ as the optimality indif-
ference parameter reflecting that the decision maker is indifferent
about the optimality gap as long as it is within δ. This probability
is given by

qi = Pr |ηi − max
1≤j≤m

ηj| ≤ δ

()

= Pr ηi + δ ≥ max
1≤j≤m

ηj

()

= Pr
(
i isbest

)
+ Pr ηi + δ ≥ max

1≤j≤m
ηj, i is not best

()
(11)

The term Pr(i isbest) is given in Eq. (10). The second term of
Eq. (11) is

Pr ηi ≤ max
j≠i

ηj ≤ ηi + δ

()
=
∫
Pr x ≤ max

j≠i
ηj ≤ x + δ

()
· fi(x) dx

=
∫ ∑

ℓ≠i
bℓ

[]
· fi(x) dx (12)

where

bℓ = Pr x ≤ ηℓ ≤ x + δ, ηℓ ≥ max
j≠i,j≠ℓ

ηj

()

=
∫x+δ
x

∏
j≠i, j≠ℓ

Pr(ηj ≤ y)

[]
· fℓ(y) dy

(13)

We use Eq. (11) to calculate qi for each alternative action whenever
a new case is added to the case base or the statistics of an existing
case are updated.

4.2.3 CBR Procedure. In this section, we describe each step of
the CBR procedure as it applies to our problem.
Retrieval. The retrieval step involves identifying the set of cases

that are most similar to the queried case. We use the Minkowski dis-
tance metric, defined as

D(xi, xj) =
∑n
k=1

|xik − x jk| p
()1/p

(14)

for state vectors of variables scaled to the interval [0, 1]. We con-
sider p= 1 (Manhattan distance) and p= 2 (Euclidean distance) in
our experiments. A lesser distance between two states indicates a
higher degree of similarity.
Reuse. Using a probabilistic classification approach, we attempt

to reuse experience in the case base by predicting the likelihood
that each available action is optimal in a particular state by training
regression models using training examples of the form given by
Eq. (6).
For each action and its associated regressor, we predict the action

label confidence for the queried state. If the predicted confidence for
action ai is greater than or equal to the specified retrieval threshold
ζ, then this action is eligible for retrieval in the current state. If there
is more than one action whose predicted confidence exceeds the
threshold, we choose the action with the highest predicted value.
We use k-nearest neighbor (kNN) regression to predict the confi-

dence for each action in the queried state. Under this method, we
identify the k cases in CB with the minimum distance to the
queried case according to Eq. (14). The predicted confidence for
action ai is then the average value qi among the k neighbors. We
also consider the distance-weighted average where neighbors
closer to the queried point have a greater influence on the predicted
value than those further away.

Journal of Computing and Information Science in Engineering AUGUST 2022, Vol. 22 / 041005-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

Revision. Once a solution for the queried state is identified, we
may choose to revise that solution based on the observed
outcome of implementing that solution. Necessary revisions are
applied to the solution before storing this new problem-solution
pair in the case base.
In our setting, however, it is difficult to retroactively determine if

good (or poor) system performance was due to the action selected or
the random behavior of the system. Newly encountered cases for
which we retrieve an existing solution are therefore not stored in
the case base. Experience is stored only if it is obtained as a
result of MCTS.
Retention. After each instance of MCTS, if the initial state is

represented in the case base, we update the case with the results
from the new search. These include the mean reward, variance,
and sample size of each candidate action in that state. Each statistic
is updated incrementally, so that the statistics in the case base reflect
the results of every search conducted from that state. As the number
of samples for each action increases, we become more confident in
the estimation of that action’s reward.
If the initial state of an MCTS instance is not already in the case

base, we create a new case from the initial state vector and the
search statistics and add it to CB. Limiting the number of cases in
CB is necessary to limit the time needed to query the case base
and to avoid exceeding memory constraints. Once the case base
exceeds its maximum specified size, we must determine which
cases to keep and which ones to discard.
Three factors are identified by Ref. [32] to determine the overall

“value” of each case stored in the case base:

• the age of the case,
• the density of cases in the neighborhood in which the case

resides, and
• the accuracy of predictions generated by the case.

Given that we are interested in studying a system in its
steady-state over an indefinite time horizon, the age of a case is
less relevant than the other criteria. We therefore only consider
the case neighborhood score and the regress error score when eval-
uating each case.
The first term, the case neighborhood score, determines the

density of cases surrounding ci and is given by

Sn(c
i) = φ(ci) · σ(ci) (15)

where

φ(ci) =
1
k

∑
c j∈NNk (ci)

sim(ci, c j) (16)

σ(ci) =
1
k

∑
c j∈NNk (ci)

1 − κ(ci, c j) (17)

NNk(c
i) is the set of k nearest neighbors of ci, and κ(ci, cj) is the pro-

portion of actions in A(si) ∩ A(sj) for which ci and cj agree on
whether or not confidence in the action should be above or below
the retrieval threshold ζ. If A(si) ∩ A(sj)= then κ(ci, cj)= 0. A
greater value of φ(ci) indicates that a case is very similar to its
neighbors on average, while a greater σv(c

i) indicates greater rate
of disagreement (and therefore greater variability) among cases in
the neighborhood.
The second term, the regress error score, is given by

Se(c
i) =

∑
c j∈NNk (ci)

sim(ci, c j) · (1 − κ(c j, ĉ j)) (18)

where ĉ jv is the prediction of c jv using CB \ c j. A lower value of
Se(c

i) indicates that ci is more useful for predicting the state value
of its neighbors.
These components are then combined into a single heuristic:

S(ci) = Sn(c
i) + Se(c

i) (19)

A higher score relative to other cases indicates that a case is “worse”
with regards to each of these criteria. We remove the case with the
greatest score until the number of cases is within the limit.

5 Results
To demonstrate the proposed methodology, we examine the per-

formance of several maintainers, or “agents,” by evaluating (1) the
average production (reward) rate obtained by the agent and (2) the
simulation effort that is expended over time. If the CBR approach is
effective, an agent should be able to maintain a relatively constant
reward rate while reducing its simulation effort. This would indicate
that an agent is effectively learning from its experience as it inter-
acts with the environment. Throughout our experiments, we use
the PYTHON discrete event simulation package Simantha to model
and simulate the system of interest [38]. This package was devel-
oped by the authors to support maintenance optimization via simu-
lation for complex manufacturing systems.
We apply the following procedure to evaluate each CBR

maintainer:

(1) Simulate each system while applying MCTS at each decision
point to gather initial experience.

(2) Tune CBR retrieval regressor parameters using the initial
experience.

(3) Continue simulating the system using the proposed
MCTS + CBR method.

The structure of the system studied in this example is shown in
Fig. 2. We set the maintenance capacity in each experiment to
1. This system includes a complex arrangement of machines for
which effective maintenance planning is not easily derived by
inspection or achieved by analytical methods.
To model machine degradation we use the notion of Bernoulli

machines as described by Ref. [34]. Under this reliability model,
each machine has some probability of failure at the beginning of
each discrete time-step. The time to failure for each machine is
therefore geometrically distributed. If a failure occurs, then that
machine can no longer function until it receives maintenance that
restores it to a healthy state. We can therefore represent the health
state of each machine with a binary state variable indicating
whether or not the machine is failed. Similarly, the time to repair
is geometrically distributed and the repair state of a machine is
also a binary variable indicating whether or not the machine is cur-
rently under repair.
The proposed method may be used with any discrete distribution

of cycle time, time to failure, and time to repair as long as the state
variable is chosen such that it is adequate for representing a
machine’s condition. Choosing a geometric distribution for each
of these quantities and the use of binary state variables allows us
to reduce the size of the state space. MCTS is therefore able to con-
verge to an optimal solution more quickly which is convenient for
our illustrative example.
The production status of each machine must also be captured in

the state representation. Assuming geometrically distributed cycle
times for each machine again allows us to use binary state variables

Fig. 2 Nine-machine complex production line

041005-6 / Vol. 22, AUGUST 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

to indicate whether a machine has a part, and also whether or not
that part has finished processing. Considering each of these
machine state variables, there are five unique machine states as sum-
marized in Table 1. Our method also allows for a more complex
system state space, such as that examined by Ref. [24] where
state variables are integer-valued rather than binary. If machines
do not abide by the Benoulli reliability model, for example, the
degradation state of each machine can be represented by a variable
indicating the time since the last repair.
Table 2 shows the cycle time distribution for each machine that is

used throughout the following example. Each buffer has a
maximum capacity of five units. The time to repair distribution
for machines M1, M6, M7, M8, and M9 is Geom(1/10) minutes.
For machines M2, M3, M4, M5, the time to repair distribution is
Geom(1/20) minutes. The time to failure for each machine is distrib-
uted Geom(1/100) minutes.
We evaluate FIFO, Birnbaum importance (BI), and the expert

heuristic (EH) suggested by Ref. [15] as static heuristics for main-
tenance prioritization in this system. The Birnbaum importance
measure for each machine in this arrangement is given in Table 3
where a greater value indicates a higher priority for maintenance.
We defer to Ref. [16] for details of this calculation and resolve
ties using FIFO.
The expert heuristic gives the following list of rules that are used

to determine which machine should be prioritized for maintenance:

(1) A machine with a longer cycle time should be prioritized
over a machine with a shorter cycle time.

(2) Machines in a serial section of the line should be prioritized
over machines in a parallel section.

(3) A machine in a parallel station containing a fewer number of
machines should be prioritized over machines in parallel sta-
tions with a greater number of machines.

To apply this heuristic, we first use rule (1) to find the machine in
the maintenance queue with the greatest average cycle time. If there
is a tie, we then consider rule (2), and finally rule (3). If a tie remains
after applying each rule, we defer to FIFO. The priorities of each
machine under this method are given in Table 3, where again a
greater value indicates a higher priority. Lastly, we also include a
random selection policy for reference.
We consider two factors when creating maintainers using the pro-

posed MCTS+CBR method: the retrieval threshold ζ and the
maximum size of the case base. We use three levels of ζ in our
experiments, 0.5, 0.9, and 0.95. A smaller ζ increases the likelihood
that we will be able to retrieve an action from the case base,
although we run the risk of retrieving an action that is suboptimal.
On the other hand, a greater ζ will force the reasoner to be more
selective in the actions it retrieves. We also consider the case
with no limit on the maximum case base size as well as a limit of
100 cases. In our experiments, instances with a limited case base
size are denoted kNN100. Three levels of ζ and two levels of case
base capacity results in six total maintainers that we evaluate
using our approach. For each case, we set the optimality indiffer-
ence (δ in Eq. (11)) to be 10% of the maximum average observed
reward. The confidence label of each action, therefore, represents
the probability that an action is within 10% of the best given the
observations so far.
Lastly, we also evaluate a maintainer that resolves every mainte-

nance conflict using MCTS and does not retain any experience from
the search. For each instance of MCTS, including the searches con-
ducted by the CBR maintainers, we use a search budget of 200 iter-
ations, discount factor γ= 0.95, and exploration constant Cp= 10.
These settings performed well throughout our experimentation.

5.1 Case-Based Reasoning Maintainer Tuning. We simu-
late for an initial period of 12 weeks to obtain experience that is
used to tune the regression parameters of the CBR maintainers.
After 12 weeks, 3268 unique states were encountered where
MCTS was conducted to determine a maintenance action. When
tuning the parameters of the action label confidence regression
models, we aim to maximize the probabilistic classification accu-
racy of each model. For a given set of case instances with known
action confidence levels, the probabilistic classification accuracy
is the proportion of predictions that are correctly above or below
the retrieval threshold ζ.
Since we have nine possible maintenance actions corresponding

to the nine machines in the system, we tune nine regressors indepen-
dently so that each predict the likelihood of a particular action is
optimal in each state. We perform a grid search of parameters for
the kNN regression model and use K-fold validation with K= 5
to find the best parameters. Tables 4–6 show the resulting best
parameters for ζ= 0.50, 0.90, and 0.95, respectively. In each of
these tables, the parameter k is the number of neighbors to consider
for kNN regression and p is the Minkowski distance metric

Table 1 Machine state summary

Has part Processing Failed Under repair State description

0 0 0 0 Starved
1 1 0 0 Processing
1 0 0 0 Blocked
0 0 1 0 Awaiting repair
0 0 1 1 Under repair

Table 2 Machine cycle time distribution in minutes

Machine Cycle time

M1, M9 Geom(1/5)
M2 Geom(1/30)
M3, M4, M5 Geom(1/90)
M6, M7 Geom(1/20)
M8 Geom(1/10)

Table 3 Static Birnbaum importance (BI) and expert heuristic
(EH) priorities for the nine-machine line where a higher priority
value indicates a machine should be repaired earlier

Priority

Machine BI EH

M1, M9 5 1
M2 2 4
M3, M4, M5 1 5
M6, M7 3 3
M8 4 2

Table 4 kNN regressor tuning results for ζ=0.50

Best model

Training instances k p Weights Accuracy

M1 1119 33 1 Distance 76.85%
M2 1357 25 2 Distance 74.73%
M3 1411 33 2 Distance 74.34%
M4 1358 25 1 Distance 74.96%
M5 1413 29 1 Distance 75.31%
M6 1148 13 1 Distance 74.82%
M7 1103 33 1 Distance 72.26%
M8 637 5 1 Uniform 87.28%
M9 628 9 2 Uniform 85.51%

Note: Overall accuracy: 76.21%.

Journal of Computing and Information Science in Engineering AUGUST 2022, Vol. 22 / 041005-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

parameter. p= 1 is equivalent to the Manhattan distance while p= 2
is Euclidean distance.

5.2 Maintainer Comparison Results. The system is simu-
lated under each maintainer for a period of one week for 48 inde-
pendent replications. The resulting average throughput for each of
the static heuristic maintenance priority rules is shown in Fig. 3.
The Birnbaum importance heuristic yields the greatest average
throughput with 1.0225 parts per hour.
Figure 4 compares the throughput of each of the online prioriti-

zation maintainers. The average throughput of the best static heuris-
tic maintainer is also included for reference. In each case, online
prioritization via MCTS and CBR outperforms the static priority

scheduling rules. The average throughput of each maintainer is
given in Table 7.
We also consider the rate at which simulation effort is expended

by examining the frequency at which MCTS is conducted over time
as shown in Fig. 5. The vertical axis gives the average proportion of
maintenance actions that are retrieved from the case base at the

Table 5 kNN regressor tuning results for ζ=0.90

Best model

Training instances k p Weights Accuracy

M1 1119 5 2 Distance 66.93%
M2 1357 5 1 Distance 78.78%
M3 1411 9 2 Distance 79.73%
M4 1358 9 2 Distance 80.48%
M5 1413 9 1 Uniform 81.31%
M6 1148 5 2 Distance 67.77%
M7 1103 5 1 Distance 69.45%
M8 637 1 1 Uniform 71.27%
M9 628 1 2 Uniform 71.18%

Note: Overall accuracy: 74.99%.

Table 6 kNN regressor tuning results for ζ=0.95

Best model

Training instances k p Weights Accuracy

M1 1119 5 2 Distance 66.93%
M2 1357 5 1 Distance 78.78%
M3 1411 9 2 Distance 79.73%
M4 1358 9 2 Distance 80.48%
M5 1413 9 1 Uniform 81.31%
M6 1148 5 2 Distance 67.77%
M7 1103 5 1 Distance 69.45%
M8 637 1 1 Uniform 71.27%
M9 628 1 2 Uniform 71.18%

Note: Overall accuracy: 80.01%.

Fig. 3 Complex system throughput comparison for static sche-
duling rules

Fig. 4 Complex system throughput comparison for CBR
scheduling

Table 7 Maintainer throughput comparison results

Throughput
(parts/hour)

Maintainer ζ Mean SE (%) Retrieval rate

Random — 0.9455 1.6611 —
FIFO — 0.9667 1.9717 —
BI — 1.0225 1.7977 —
EH — 0.8977 1.9370 —
MCTS — 1.1266 1.1145 0.0000
kNN 0.50 1.1031 1.0497 0.1942
kNN100 0.50 1.1584 1.1568 0.2017
kNN 0.90 1.1132 1.3950 0.1063
kNN100 0.90 1.1334 1.3738 0.0587
kNN 0.95 1.1192 1.1574 0.0614
kNN100 0.95 1.1323 1.4562 0.0442

Fig. 5 CBR retrieval rate results

041005-8 / Vol. 22, AUGUST 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

occurrence of a maintenance conflict. For each CBR maintainer, the
rate at which we are able to retrieve actions increases as we gather
more experience. When the threshold for retrieval ζ is lower, we
retrieve actions more often. Each CBR maintainer provides a rela-
tively constant throughput improvement over the baseline static
heuristic policies, indicating that there is no loss in performance
when reusing solutions from their experience.
The reduction in simulation effort is also demonstrated in Fig. 6,

which shows the average duration of time in seconds needed to
make a decision when a maintenance conflict occurs. Since the
computational effort needed to retrieve an existing action from
the case base is much lower than that needed to conduct MCTS,
the maintainers with a higher proportion of retrieved actions are
able to make decisions more quickly on average. This is particularly
valuable in manufacturing settings where critical maintenance deci-
sions must be made as soon as possible. Reference [39] identifies
this time between machine failure and the start of its repair, or
“time to dispatch”, as a key performance indicator (KPI) in mainte-
nance. Reducing this time by making maintenance decisions more
quickly can reduce the overall downtime of a machine and increase
the productivity of the system.

6 Conclusions
In this work, we have demonstrated a method of online mainte-

nance prioritization in a dynamic manufacturing setting by using
strategic sampling of a generative simulation model via MCTS.
Further, we have used CBR to retain and reuse search experience
to infer optimal maintenance actions in cases where the current
state is similar to those previously encountered. The proposed
methods offer improved system-wide performance compared to
static heuristic scheduling rules without the need for expert
judgement.
A natural extension of this work is to apply the proposed method

of maintenance prioritization to more advanced maintenance strate-
gies such as condition-based or predictive maintenance. This would
mainly affect the system state representation since we may no
longer be able to represent the health state of a machine as a
binary variable. Under condition-based maintenance, for example,
a machine can be in several possible states of degradation beyond
“healthy” or “failed” as we assume in this work. Considering
these additional health states will greatly increase the size of the
state space and present additional computational challenges that
will be addressed in future research.
Future work also includes examining alternative state similarity

metrics beyond Minkowski distance. The chosen metric has a

significant impact on nearest-neighbor methods, and a learned dis-
tance metric may result in better performance of the CBR model.
Additionally, an active learning approach to case base management
may further improve CBR performance. Such an approach would
involve identifying prototypical cases whose best action estimates
would provide the most useful information to surrounding states.
A search for the best action in prototype states can also be con-
ducted offline, so that the case-based reasoner does not have to
wait for a maintenance conflict to occur before gathering additional
useful experience.

Acknowledgment
Michael Hoffman would like to acknowledge the National Insti-

tute of Standards and Technology (NIST) for their support of this
work through the Graduate Measurement Science and Engineering
Fellowship. Any opinions, findings, and conclusions or recommen-
dations expressed in this dissertation are my own and do not neces-
sarily reflect the views of NIST. Soundar Kumara would like to
acknowledge the Clean Energy Smart Manufacturing Innovation
Institute (CESMII) for their support of this work. Any opinions,
findings, and conclusions or recommendations expressed in this dis-
sertation are the authors’ own and do not necessarily reflect the
views of CESMII.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request. The data and information that support the findings of this
article are freely available.

References
[1] Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I., 2005, “An Adaptive Sampling

Algorithm for Solving Markov Decision Processes,” Oper. Res., 53(1), pp. 126–
139.

[2] Albers, S., 2009, “Online Scheduling.” Introduction to Scheduling, Y. Robert and
F. Vivien, eds. CRC Press, ch. 3.

[3] Keizer, M. C. O., Flapper, S. D. P., and Teunter, R. H., 2017, “Condition-Based
Maintenance Policies for Systems With Multiple Dependent Components: A
Review,” Eur. J. Oper. Res., 261(2), pp. 405–420.

[4] Alrabghi, A., and Tiwari, A., 2015, “State of the Art in Simulation-Based
Optimisation for Maintenance Systems,” Comput. Ind. Eng., 82, pp. 167–182.

[5] Chong, A. K. W., Mohammed, A. H., Abdullah, M. N., and Rahman, M. S. A.,
2019, “Maintenance Prioritization–a Review on Factors and Methods,” J. Facil.
Manage., 17(1), pp. 18–39.

[6] Saaty, T. L., 2008, “Decision Making with the Analytic Hierarchy Process,”
Int. J. Serv. Sci., 1(1), pp. 83–98.

[7] Sharma, S., and Sisodia, A., 2016, “Prioritization of Tools in Joint
Production-Maintenance Environment of Auto Component Manufacturer Using
AHP–Fuzzy–TOPSIS,” Intell. Ind. Syst., 2(1), pp. 73–84.

[8] Khanlari, A., Mohammadi, K., and Sohrabi, B., 2008, “Prioritizing Equipments
for Preventive Maintenance (PM) Activities Using Fuzzy Rules,” Comput. Ind.
Eng., 54(2), pp. 169–184.

[9] Chang, Q., Xiao, G., Biller, S., and Li, L., 2013, “Energy Saving Opportunity
Analysis of Automotive Serial Production Systems,” IEEE Trans. Autom. Sci.
Eng., 10(2), pp. 334–342.

[10] Gu, X., Jin, X., and Ni, J., 2015, “Prediction of Passive Maintenance Opportunity
Windows on Bottleneck Machines in Complex Manufacturing Systems,” ASME
J. Manuf. Sci. Eng., 137(3), p. 031017.

[11] Dekker, R., 1995, “Integrating Optimisation, Priority Setting, Planning and
Combining of Maintenance Activities,” Eur. J. Oper. Res., 82(2), pp. 225–240.

[12] Dekker, R., and Scarf, P. A., 1998, “On the Impact of Optimisation Models in
Maintenance Decision Making: the State of the Art,” Reliab. Eng. Syst. Saf.,
60(2), pp. 111–119.

[13] Teng, S.-H. G., and Ho, S.-Y. M., 1996, “Failure Mode and Effects Analysis,”
Int. J. Qual. Reliab. Manage., 13(5), pp. 8–26.

[14] Ding, S.-H., Kamaruddin, S., and Azid, I. A., 2014, “Maintenance Policy
Selection Model–a Case Study in the Palm Oil Industry,” J. Manuf. Technol.
Manage., 25(3), pp. 415–435.

Fig. 6 CBR decision time results

Journal of Computing and Information Science in Engineering AUGUST 2022, Vol. 22 / 041005-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

http://dx.doi.org/10.1287/opre.1040.0145
http://dx.doi.org/10.1016/j.ejor.2017.02.044
http://dx.doi.org/10.1016/j.cie.2014.12.022
http://dx.doi.org/10.1007/s40903-016-0040-2
http://dx.doi.org/10.1016/j.cie.2007.07.002
http://dx.doi.org/10.1016/j.cie.2007.07.002
http://dx.doi.org/10.1109/TASE.2012.2210874
http://dx.doi.org/10.1109/TASE.2012.2210874
http://dx.doi.org/10.1115/1.4029906
http://dx.doi.org/10.1115/1.4029906
http://dx.doi.org/10.1016/0377-2217(94)00260-J
https://doi.org/10.1016/s0951-8320(98)83004-4
http://dx.doi.org/10.1108/02656719610118151
http://dx.doi.org/10.1108/JMTM-03-2012-0032
http://dx.doi.org/10.1108/JMTM-03-2012-0032

[15] Yang, Z., Chang, Q., Djurdjanovic, D., Ni, J., and Lee, J., 2007, “Maintenance
Priority Assignment Utilizing on-line Production Information,” ASME
J. Manuf. Sci. Eng., 129(2), pp. 435–446.

[16] Birnbaum, Z. W., 1968, On The Importance of Different Components in A
Multicomponent System. Technical Report, Washington University Seattle Lab
of Statistical Research.

[17] Nguyen, K.-A., Do, P., and Grall, A., 2014, “Condition-Based Maintenance for
Multi-Component Systems Using Importance Measure and Predictive
Information,” Int. J. Syst. Sci.: Oper. Logist., 1(4), pp. 228–245.

[18] Si, S., Liu, M., Jiang, Z., Jin, T., and Cai, Z., 2019, “System Reliability Allocation
and Optimization Based on Generalized Birnbaum Importance Measure,” IEEE
Trans. Reliab., 68(3), pp. 831–843.

[19] Hoffman, M., Song, E., Brundage, M., and Kumara, S., 2018, “Condition-Based
Maintenance Policy Optimization Using Genetic Algorithms and Gaussian
Markov Improvement Algorithm,” Annual Conference of the PHM Society,
Vol. 10, Philadelphia, PA, Prognostics and Health Management Society.

[20] Sutton, R. S., and Barto, A. G., 2018, Reinforcement Learning: An Introduction,
MIT Press, Cambridge, MA.

[21] Kearns, M., Mansour, Y., and Ng, A. Y., 2002, “A Sparse Sampling Algorithm
for Near-Optimal Planning in Large Markov Decision Processes,” Mach.
Learn., 49(2), pp. 193–208.

[22] Kocsis, L., and Szepesvári, C., 2006, “Bandit Based Monte-Carlo Planning,”
European Conference on Machine Learning, Berlin, Germany, Springer,
pp. 282–293.

[23] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I.,
Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S., 2012,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comput. Intell.
AI in Games, 4(1), pp. 1–43.

[24] Hoffman, M., Song, E., Brundage, M., and Kumara, S., 2021, “Online
Improvement of Condition-Based Maintenance Policy Via Monte Carlo Tree
Search,” IEEE Trans. Autom. Sci. Eng., pp. 1–12.

[25] Kolodner, J. L., 1992, “An Introduction to Case-Based Reasoning,” Artif. Intell.
Rev., 6(1), pp. 3–34.

[26] Aamodt, A., and Plaza, E., 1994, “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” AI Commun., 7(1),
pp. 39–59.

[27] Bergmann, R., and Wilke, W., 1996, “On the Role of Abstraction in Case-Based
Reasoning,” European Workshop on Advances in Case-Based Reasoning,
Lausanne, Switzerland, Springer, pp. 28–43.

[28] Bengtsson, M., Olsson, E., Funk, P., and Jackson, M., 2004, “Technical Design of
Condition Based Maintenance System-A Case Study Using Sound Analysis and
Case-Based Reasoning,” 8th International Conference of Maintenance and
Reliability, Knoxville, TN.

[29] Tsai, Y., 2009, “Applying a Case-Based Reasoning Method for Fault Diagnosis
During Maintenance,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.,
223(10), pp. 2431–2441.

[30] Wan, S., Li, D., Gao, J., and Li, J., 2019, “A Knowledge Based Machine Tool
Maintenance Planning System Using Case-Based Reasoning Techniques,” Rob.
Comput.-Integr. Manuf., 58, pp. 80–96.

[31] Yu, R., Iung, B., and Panetto, H., 2003, “A Multi-Agents Based E-Maintenance
System with Case-Based Reasoning Decision Support,” Eng. Appl. Artif. Intell.,
16(4), pp. 321–333.

[32] Gabel, T., and Riedmiller, M., 2005, “CBR For State Value Function
Approximation in Reinforcement Learning,” International Conference on
Case-Based Reasoning, Chicago, IL, Springer, pp. 206–221.

[33] Varshavskii, P., and Eremeev, A., 2010, “Modeling of Case-Based Reasoning in
Intelligent Decision Support Systems,” Sci. Techn. Inf. Process., 37(5), pp. 336–345.

[34] Li, J., and Meerkov, S. M., 2008, Production Systems Engineering, Springer
Science & Business Media, New York.

[35] Nguyen, Q., Valizadegan, H., and Hauskrecht, M., 2011, “Learning Classification
With Auxiliary Probabilistic Information,” 2011 IEEE 11th International
Conference on Data Mining, Vancouver, Canada, IEEE, pp. 477–486.

[36] Aha, D. W., 2013, Lazy Learning, Springer Science & Business Media, New
York.

[37] Kim, K.-K., Taeho, K., and Song, E., 2021, “Selection of The Most Probable Best
Under Input Uncertainty,” 2021 Winter Simulation Conference, Phoenix, AZ,
IEEE.

[38] Hoffman, M., 2021, Simantha, https://github.com/m-hoff/simantha
[39] Brundage, M. P., Morris, K., Sexton, T., Moccozet, S., and Hoffman, M., 2018,

“Developing Maintenance Key Performance Indicators From Maintenance Work
Order Data,” International Manufacturing Science and Engineering Conference,
College Station, TX, Vol. 51371, American Society of Mechanical Engineers,
p. V003T02A027.

041005-10 / Vol. 22, AUGUST 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/22/4/041005/6836985/jcise_22_4_041005.pdf by N
IST user on 31 August 2022

http://dx.doi.org/10.1115/1.2336257
http://dx.doi.org/10.1115/1.2336257
https://doi.org/10.1080/23302674.2014.983582
http://dx.doi.org/10.1109/TR.2019.2897026
http://dx.doi.org/10.1109/TR.2019.2897026
http://dx.doi.org/10.1023/A:1017932429737
http://dx.doi.org/10.1023/A:1017932429737
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1109/TASE.2021.3088603
http://dx.doi.org/10.1007/BF00155578
http://dx.doi.org/10.1007/BF00155578
http://dx.doi.org/10.3233/AIC-1994-7104
http://dx.doi.org/10.1243/09544062JMES1588
http://dx.doi.org/10.1016/j.rcim.2019.01.012
http://dx.doi.org/10.1016/j.rcim.2019.01.012
http://dx.doi.org/10.1016/j.rcim.2019.01.012
http://dx.doi.org/10.1016/S0952-1976(03)00079-4
http://dx.doi.org/10.3103/S0147688210050096
https://github.com/m-hoff/simantha
https://github.com/m-hoff/simantha
https://github.com/m-hoff/simantha

	1 Introduction
	2 Background
	3 Problem Description
	3.1 System Description
	3.2 Markov Decision Processes

	4 Methodology
	4.1 Monte Carlo Tree Search
	4.2 Case-Based Reasoning
	4.2.1 Action Label Prediction Task
	4.2.2 Measuring Action Label Confidence
	4.2.3 CBR Procedure

	5 Results
	5.1 Case-Based Reasoning Maintainer Tuning
	5.2 Maintainer Comparison Results

	6 Conclusions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

