
Use of Supervised Machine Learning to Detect Abuse of
COVID-19 Related Domain Names
Zheng Wang*
National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA

ART ICLE INFO
Keywords:
COVID-19
malicious domain name
classification
machine learning
deep learning

ABSTRACT
A comprehensive evaluation of supervised machine learning models for COVID-19 related
domain name detection is presented. One representative conventional machine learning im-
plementation and nineteen state-of-the-art deep learning implementations are evaluated. The
deep learning implementation architectures evaluated include the recurrent, convolutional, and
hybrid models. The detection rate metrics and the computing time metrics are considered in
the evaluation. The result reveals that advanced deep learning models outperform conventional
machine learning models in terms of detection rate. The results also show evidence of a
tradeoff between detection rate and computing speed for the selection of machine learning
models/architectures. High-frequency lexical analysis is provided for a better understanding of
the COVID-19 related domain names. The limitations, implications, and considerations of the
use of supervised machine learning to detect abuse of COVID-19 related domain names are
discussed.

1. Introduction
With the worldwide dissemination of COVID-19, individuals have been trying to acquire vital data and directives

from specific websites. Coronavirus-related domain name registrations have been growing explosively, accompanying
the rise in user interest. A study found a 656 percent rise in the average daily domain name registrations associated
with coronavirus from February to March in 2020 [1]. At the same time, the public demand for coronavirus-related
knowledge, goods, and services has been exploited by some unscrupulous cybercriminals for cyberattacks. Researchers
also found a 569% rise in malicious registrations and a 788% growth in high-risk registrations [1] during the period
from February to March in 2020. The COVID-19 related violations found by malicious or high-risk domain names
include phishing, malware, scams, illegal coin mining, domains with proof of malicious URL (Uniform Resource
Locator) association, etc.

Identifying COVID-19 related domain names is typically challenging because of the limited access to some
resources and the high cost of implementation and deployment. A variety of traits exploited in the existing malicious
domain name detection approaches are based on unique behavior reflected in different phases of the lifecycle of
malicious domain names. Their data sources include DNS (Domain Name System) traffic data passively or actively
collected from DNS clients, resolvers, or servers, geo-location information/database, ASN (Autonomous System
Number), registration records, IP (Internet Protocol)/domain blocklists/allowlists, network data, etc. However, most
of the data sources are not available for typical domain name users, registrants, and common small registrars. Also,
the real-time implementation of many detection algorithms requires a non-trivial cost of IT resources which is not
affordable for most stake-holders. That necessitates developing COVID-19 related domain name detection algorithms
which are purely based on domain name strings and are lightweight and fast enough for real-time usage.

In this work, we consider the task of detecting COVID-19 related domain names as a binary classification task:
given a domain name string as input, classify it as either COVID-19 related or benign. A machine learning approach,
which depends completely on human crafted features, was proposed to address the malicious domain name detection
problem [2]. Recent years also witnessed deep neural networks in the literature on malicious domain name detection
[2, 3, 4, 5, 6, 7, 8, 9]. While deep neural networks were demonstrated to outperform traditional machine learning
methods in terms of accuracy in some domains/tasks, it is not clear whether it is the same case for this specific task of
combating abuse of COVID-19 related domain names. Also, there is not a systematic study providing a comparative

*This work was completed while a Research Associate at the National Institute of Standards and Technology.
zhengwang98@gmail.com (Z. Wang)

ORCID(s):

Z. Wang: Preprint submitted to Elsevier Page 1 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

evaluation of a variety of deep learning architectures, leaving one to wonder which one has the best detection accuracy
for COVID-19 related domain names. Last but not least, we consider the training speed and the prediction speed among
the key metrics of our evaluation because they are critical to real-time applications. One may wonder what tradeoff
between accuracy and speed may be considered if they run counter to each other.

To answer these open questions, we evaluate the performance of one representative machine learning algorithm
and nineteen different deep learning architectures for the classification problem (see Table 3) of detecting COVID-19
related domain names. Our findings confirm that the deep learning architectures work better than the conventional
machine learning algorithm in terms of detection rate. But the differences among the deep learning architectures are
not as obvious as their advantages over the conventional machine learning algorithms. If taking the speed metrics into
account, the deep learning architecture with the best detection rate is not the best in terms of computing speed. So
some tradeoff between accuracy and speed is indeed necessary for the classifier design.

The rest of the paper is structured as follows. Section 2 presents an overview of supervised machine learning
models for malicious domain name detection. Section 3 details the implementations of one conventional machine
learning model and nineteen deep learning models. Our evaluation is presented in Section 4. Some discussion is given
in Section 5. The paper concludes in Section 6.

2. Supervised machine learning models
In this section, we briefly describe the supervised machine learning models for malicious domain name detection

which underpin the implementations presented in Section 3.
2.1. Conventional machine learning models

A machine learning model maps a collection of input features to the target. The purpose of the model is to capture
a pattern between the input features and the target so that the model can accurately predict the target given new input
features, where the target is unknown.

For any given data set, the goal is generally to develop a model capable of predicting with the highest degree of
accuracy possible. There are several levers in machine learning that may greatly impact the model’s performance,
including the choice of algorithm, the hyperparameters configuration, the amount and quality of the data set, and the
input features used to train the model.

In many situations, finding the optimal features that best fit into the mapping between the input and the target
is important and challenging for the success of machine learning. For example, some given set of features in the
collection of raw features for a dataset, more often than not, cannot provide enough, or the most relevant, information
to train a performant model. So feature selection techniques are often developed to choose a set of the most informative
features to gain some improvement in the prediction accuracy, the computing cost, or themodel interpretability. In other
instances, the performance of the model can be enhanced by feature engineering that translates one or more features
into a different representation to provide the model with better information.
2.2. Deep learning models

Conventional machine learning models were largely dominated by the feature engineering approach until deep
learning techniques started demonstrating better performance in various domains. Unlike conventional machine
learning models, deep learning models incorporate the burden of feature design to the underlying learning system.
From this perspective, a deep learning model is more of a fully trainable model beginning from raw input, e.g., domain
name strings in our task, to the final output, e.g., the recognized classification in our task. Deep learning techniques
can be classified into recurrent models and convolutional models as follows.
2.2.1. Recurrent models

Recurrent neural networks (RNNs) [10] are basically designed to encode information about the sequence directly
within the architecture of the neural networks. Besides the vanilla architecture, there are also a number of RNN variants,
such as long short-term memory (LSTM) [11] and gated recurrent unit (GRU) [12], proposed to address the challenges
of training RNNs, e.g., the vanishing and the exploding gradient problems. Attention mechanisms further enhance
recurrent models by capturing long-term dependencies to arbitrary lengths.
RNN. RNNs have a fixed number of parameters while they can process inputs with a variable length. In a RNN, the
specific positions in the input sequence are mapped to their corresponding neural units which process the sequence
Z. Wang: Preprint submitted to Elsevier Page 2 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

serially. The positions in the input sequence are ofen known as its time-stamps. In general, each time-stamp has an
input vector at time t (e.g., the embedding encoded vector of the t th character) x̄t, a hidden state at time t ℎ̄t, and an
output vector at time t ȳt. Then, the hidden state at time t is given by a function of the input vector at time t and the
hidden vector at time (t − 1)1:

ℎ̄t = tanh
(

Wxℎx̄t +Wℎℎℎ̄t−1
)

ȳt = Wℎyℎ̄t
(1)

whereWxℎ is the input-hidden matrix,Wℎℎ is the hidden-hidden matrix, andWℎy is the hidden-output matrix.
LSTM. LSTM is an enhancement of the vanilla RNN architecture in which fine-grained control over the data written
into this long-termmemory is designed. The recurrence conditions of how the hidden states are propagated are changed
by introducing an additional hidden vector namely the cell state. The recurrent equations are as follows:

⎡

⎢

⎢

⎢

⎣

ī
f̄
ō
c̄

⎤

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎝

sigm
sigm
sigm
tanh

⎞

⎟

⎟

⎟

⎠

W
[

x̄t
ℎ̄t−1

]

(2)

c̄t = f̄ ⊙ c̄t−1 + ī ⊙ c̄ (3)

ℎ̄t = ō ⊙ tanh
(

c̄t
) (4)

where the update matrix is denoted byW which is used to multiply the column vector [x̄t, ℎ̄t−1
]T before the update.

The four intermediate vector variables ī, f̄ , ō, and c̄, which are known as input, forget, and output variables respectively,
are used to update the states. The calculation of the hidden state vector ℎ̄t and the cell state vector c̄t follows a multi-
step process: first the four intermediate variables are computed and then the hidden variables are computed using the
intermediate variables.
GRU. GRU can be viewed as a simplification of the LSTM, which does not use explicit cell states. Another difference
is that the LSTM directly controls the amount of information changed in the hidden state using separate forget and
output gates. On the other hand, a GRU uses a single reset gate to achieve the same goal. Thus GRU is simpler and
enjoys the advantage of greater ease of implementation and efficiency.

In GRU, a vectorW is multiplied to get a new vector that is transferred through the sigmoid activation to create two
intermediate variables, z̄t and r̄t respectively. These two intermediate variables z̄t and r̄t are called upgrade and reset
gates respectively. The hidden state vector ℎ̄t is caculated using the two gates and the weight matrix V : first compute
the two gates, then update the gated hidden vector with the weight matrix V :

[

z̄
r̄

]

=
(

sigm
sigm

)

W
[

x̄t
ℎ̄t−1

]

(5)

ℎ̄t = z̄ ⊙ ℎ̄t−1 + (1 − z̄)⊙ tanhV
[

ℎ̄t
r̄ ⊙ ℎ̄t−1

]

(6)

Bidirectional recurrent networks. One disadvantage of recurrent networks is that the state at a particular time unit
only has knowledge about the past inputs up to a certain point in a sequence, but it has no knowledge about future
states. In certain applications like language modeling, the results are vastly improved with knowledge about both past
and future states.

1Biases will not be specifically used in this paper (for simplicity) because they can be integrated with bias neurons.

Z. Wang: Preprint submitted to Elsevier Page 3 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

In the bidirectional recurrent networks, we have separate hidden states ℎ̄(f )t and ℎ̄(b)t for the forward and backward
directions. The recurrence output can be written as follows:

ȳt = Wℎy

[

ℎ̄(f )t , ℎ̄(b)t
]

(7)

Attention mechanism. The principle of attention mechanism is primarily inspired by visual attention: many animals
compute suitable responses by focusing on some parts of a whole visual object. Following the same principle, neural
networks with the attention mechanism work by paying more attention to the most pertinent piece of information and
less attention to the irrelevant piece of information. That selective neural network processing has found success in
speech recognition, text translation, visual object detection [13], etc.

In a general setting, an attention mechanism is a method that takes n arguments y1, ..., yn, and a context c. It return avector zwhich is supposed to be the summary of the yi, focusing on information linked to the context c. More formally,
it returns weighted arithmetic mean of the yi, and the weights are chosen according to the relevance of each yi giventhe context c. Namely, the ouptput can be written as:

z =
n
∑

j=1
�jyj (8)

where �j is a weight computed for each yj . The weightings �j are computed by:

ej = score
(

c, yj
)

, �j =
exp

(

ej
)

∑n
k=1 exp

(

ek
) (9)

where score (⋅) is a relevance scoring function.
2.2.2. Convolutional models

Convolutional models have shown excellent performance on image classification, object detection, speech recogni-
tion, natural language processing, etc. The main concept of convolutional models is to obtain local features from input
(usually an image) at higher layers and combine them into more complex features at the lower layers [14].
CNN. In convolutional neural networks (CNNs), the states in each layer are organized in a spatial fashion. For
traditional image processing tasks, each layer in the convolutional network is a 3-dimensional grid structure with
height, width, and depth. The parameters are grouped into 3-dimensional structural units, known as filters or kernels.
The convolution operation positions the filter at any possible location in the image. The function is extracted by applying
filters with strides and padding if necessary. Pooling is typically used to minimize dimensionality.

CNNs work especially well on computer vision problems due to their ability to work convolutionally, i.e. by
extracting features from local input patches. The same properties that make CNNs the best option for computer vision
tasks also make them very relevant for some structured sequence data processing. In this work, we apply 1D CNNs to
processing a specific sequence of characters, namely the domain name.
Capsule networks. Despite all their benefits, CNNs have some drawbacks one of which is the focus on object existence,
not localization. While CNNs learn higher-level concepts in deeper layers and reduce computational complexity by
pooling, they lose the pose and location information of the object. Especially, the relative spatial relationships between
features are lost. Capsule networks [15] were proposed as a solution to the weakness.

Capsule networks let each capsule represent some extraction of the object by configuring a small neural network
and encode the extracted information as a vector. The vector represents the probability of identifying some feature
as its length and the state of the identified feature as its direction. The vector design allows invariant probability and
variant direction when an object changes its position. A capsule selectively forwards its output vector to the capsules
in the next layer based on relevancy following the so-called “dynamic routing”.

Specifically, each capsule’s state sj is calculated as the weighted sum of the matrix multiplication of out-
put/prediction vectors of the capsules from the lower layer with the coupling coefficient cij between sj and the respectivelower-level capsule si.

sj =
∑

i
cij ûj∣i, ûj∣i = Wijui (10)

Z. Wang: Preprint submitted to Elsevier Page 4 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

In particular, capsules in the first capsule layer of a capsule network calculate their activation based on the input from
the previous convolution layer. In this case, no coupling coefficient cij exists. As the capsule’s output vector indicatesthe probability of having detected a certain feature, capsule sj’s output vector vj is squashed, so that long vectors sumup to 1 max and short vectors are close to zero.

vj =
‖

‖

‖

sj
‖

‖

‖

2

1 + ‖

‖

‖

sj
‖

‖

‖

2

sj
‖

‖

‖

sj
‖

‖

‖

(11)

The coupling coefficients cij defines the activation routing between a capsule and all potential parent capsules in the
next layer and sum to 1. The softmax-like calculation ensure that the most likely parent capsule gets the most of capsule
sj’s output.

cij =
exp

(

bij
)

∑

k exp
(

bik
) (12)

By following the presented calculations, the routing preferences between capsules and the prediction of next layer
activations, capsule networks claim to address the CNNs’ limitations stated above, especially modeling stronger feature
relationships.

3. Model implementation
We implemented the following models proposed in the literature using the architectures and hyperparameters

specified in their respective papers: LSTM [9], Bi-LSTM [16], Par-CNN [17], CoreDNS-CNN [18], CapsNet [19],
and CNN-LSTM [20]. For any hyperparameters unspecified in the literature for the models above, we chose the
hyperparameters that produced the best accuracy. Besides the models above, we also implemented other models
following the concepts stated in Section 2. Their hyperparameters were also tuned to obtain the ones with the best
accuracies.
3.1. Conventional machine learning models

FANCI. FANCI [2] was developed to detect a specific type of malicious domain names using a conventional machine
learning approach. Like other conventional machine learning workflows, feature engineering and feature extraction are
key to the success of FANCI. FANCI uses 21 features to distinguish malicious domain names from benign ones. The
21 features include three categories: structural features, linguistic features, and statistical features. FANCI is purely
based on the textual features of domain name strings. That is, all of the features are engineered on the raw domain
name strings, without the help of any contextual information such as domain name registration and resolution data.
Classifiers such as random forest (RF) classifiers and support vector machine (SVM) classifiers can be operated on the
21 features to obtain the predicted class. The implementation of workflow is as follows:
1. Feature construction: Extract the 21 features for the dataset.
2. Hyperparameter optimization: Do the grid search over the hyperparameter spaces for the RF and SVM algorithms

and find out the hyperparameter set with the best detection accuracy.
3. Performance evaluation: Use the best algorithm with the optimal hyperparameter set to evaluate.
3.2. Deep learning models

The following deep learning models are described following the forward direction from the input to the output.
3.2.1. Recurrent models

RNN. The simple RNN implementation uses the embedding layer that encodes each character as a real-valued vector
in a high dimensional space, where the similarity between characters in terms of meaning translates to closeness
in the vector space. The embedding layer is also used as the first layer in all of the following deep learning model
Z. Wang: Preprint submitted to Elsevier Page 5 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

implementations except for CoreDNS-CNN. The next layer is the vanilla RNN layer with 128 memory units. Then a
dropout layer follows which probabilistically sets the inputs to zero (here the chance is 0.5) as the means of reducing
overfitting. Finally, because this is a classification problem we use a dense output layer with a single neuron and a
sigmoid activation function to make 0 or 1 predictions for the two classes (benign and malicious) in the problem. The
architecture of RNN is:
• Embedding Layer (embeddings dim=128).
• RNN Layer (unit=128, activation=tanh).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).

Bi-RNN. The core difference between Bi-RNN and RNN is the bidirectional processing of RNN. In the bidirectional
RNN layer, Bi-RNN sets the fraction of the units to drop for the linear transformation of the inputs and the fraction of
the units to drop for the linear transformation of the recurrent state both to 0.2. Like the dropout layer, the two dropouts
inside the bidirectional RNN layer help to reduce overfitting. The architecture of Bi-RNN is:
• Embedding Layer (embeddings dim=50).
• Bidirectional RNN Layer (unit=128, activation=tanh, dropout=0.2, recurrent dropout=0.2).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).

LSTM. The simple LSTM is implemented by replacing the vanilla RNN layer in RNN with the LSTM layer. The
architecture of LSTM is:
• Embedding Layer (embeddings dim=128).
• LSTM Layer (unit=128, activation=tanh).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).

Bi-LSTM. The bidirectional LSTM is constructed by replacing the bidirectional RNN layer in Bi-RNN with the
bidirectional LSTM layer. The architecture of Bi-LSTM is:
• Embedding Layer (embeddings dim=50).
• Bidirectional LSTM Layer (unit=128, activation=tanh, dropout=0.2, recurrent dropout=0.2).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).

GRU. The simple GRU is implemented by replacing the vanilla RNN layer in RNN with the GRU layer. The
architecture of GRU is:
• Embedding Layer (embeddings dim=128).
• GRU Layer (unit=128, activation=tanh).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).
Z. Wang: Preprint submitted to Elsevier Page 6 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Bi-GRU. The bidirectional GRU is constructed by replacing the bidirectional RNN layer in Bi-RNN with the
bidirectional GRU layer. The architecture of Bi-GRU is:
• Embedding Layer (embeddings dim=50).
• Bidirectional GRU Layer (unit=128, activation=tanh, dropout=0.2, recurrent dropout=0.2).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).
Stack-LSTM. In the stacked LSTM, we implement an LSTM model comprised of two LSTM layers. The upstream
LSTM layer provides a sequence output rather than a single value output to the downstream LSTM layer. Specifically,
one output per input time step, rather than one output time step for all input time steps. The intuition is that stacked
LSTM layers allow for greater model complexity and therefore can capture abstract concepts in the sequences, which
might be helpful for some tasks. The architecture of Stack-LSTM is:
• Embedding Layer (embeddings dim=128).
• LSTM Layer (unit=128, activation=tanh).
• LSTM Layer (unit=128, activation=tanh).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).
Stack-Bi-LSTM. We can obtain the stacked bidirectional LSTM by replacing the stacked LSTM layers in Stack-LSTM
with the stacked bidirectional LSTM layers. The architecture of Stack-Bi-LSTM is:
• Embedding Layer (embeddings dim=50).
• Bidirectional LSTM Layer (unit=128, activation=tanh, dropout=0.2, recurrent dropout=0.2).
• Bidirectional LSTM Layer (unit=128, activation=tanh, dropout=0.2, recurrent dropout=0.2).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).
Bi-LSTM-Att. In our implementation of the bidirectional LSTM with the attention mechanism, a context vector c̄t iscreated as the weighted average of the bidirectional hidden vectors: where the attention variable �(t, j) is computed as:

e(t, j) = vTa tanh
([

ℎ̄(f )j , ℎ̄(b)j
])

, �(t, j) =
exp

(

ej
)

∑n
k=1 exp

(

ek
) (13)

Therefore, we create a new target hidden state H̄t that combines the information in the context and the original
bidirectional hidden state as follows:

H̄t = tanh
⎛

⎜

⎜

⎝

Wc

⎡

⎢

⎢

⎣

c̄t
ℎ̄(f )t
ℎ̄(b)t

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

(14)

The architecture of Bi-LSTM-Att is:
• Embedding Layer (embeddings dim=50).
• Bidirectional LSTM Layer (unit=128, activation=tanh).
• Attention Layer

• Dropout Layer (dropout=0.2).
• Dense Layer (unit=1, activation=sigmoid).
Z. Wang: Preprint submitted to Elsevier Page 7 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

3.2.2. Convolutional models

CNN. The shallow CNN has only one CNN layer. The architecture of CNN is:
• Embedding Layer (embeddings dim=128).
• Dropout Layer (dropout=0.2).
• 1D CNN Layer (filters=250, kernel size=3, strides=1, padding=no, activation=relu).
• Flatten Layer

• Dense Layer (units=250).
• Dropout Layer (dropout=0.2).
• ReLU Layer.
• Dense Layer (unit=1, activation=sigmoid).

CNN-Maxpool. The CNN with max pooling is implemented with two CNN layers. The upstream CNN layer is
followed by a max pooling layer. We also add batch normalization layers to accelerate training and provide some
regularization. The architecture of CNN-Maxpool is:
• Embedding Layer (embeddings dim=50).
• Dropout Layer (dropout=0.25).
• 1D CNN Layer (filters=250, kernel size=4, strides=1, padding=same2, activation=relu).
• 1D Max Pooling Layer (pool size=3, padding=no).
• 1D CNN Layer (filters=250, kernel size=3, strides=1, padding=same, activation=relu).
• Flatten Layer

• Batch Normalization Layer

• Dense Layer (units=250).
• Dropout Layer (dropout=0.2).
• Batch Normalization Layer

• Dense Layer (unit=1, activation=sigmoid).

CNN-Avepool. The CNN with average pooling is obtained by switching the max pooling layer in CNN-Maxpool to
the average pooling layer. The architecture of CNN-Avepool is:
• Embedding Layer (embeddings dim=50).
• Dropout Layer (dropout=0.25).
• 1D CNN Layer (filters=250, kernel size=4, strides=1, padding=same, activation=relu).
• 1D Average Pooling Layer (pool size=3, padding=no).
• 1D CNN Layer (filters=250, kernel size=3, strides=1, padding=same, activation=relu).
• Flatten Layer

2Padding evenly to the left/right of the input such that output has the same dimension as the input.

Z. Wang: Preprint submitted to Elsevier Page 8 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

• Batch Normalization Layer

• Dense Layer (units=250).
• Dropout Layer (dropout=0.2).
• Batch Normalization Layer

• Dense Layer (unit=1, activation=sigmoid).

Stack-CNN-Maxpool. In the stacked CNNs with max pooling, we add one more CNN layer to CNN-Maxpool to
obtain deeper CNNs. The architecture of Stack-CNN-Maxpool is:
• Embedding Layer (embeddings dim=50).
• Dropout Layer (dropout=0.25).
• 1D CNN Layer (filters=250, kernel size=4, strides=1, padding=same, activation=relu).
• 1D Max Pooling Layer (pool size=3, padding=no).
• 1D CNN Layer (filters=300, kernel size=3, strides=1, padding=same, activation=relu).
• 1D Max Pooling Layer (pool size=3, padding=no).
• 1D CNN Layer (filters=350, kernel size=2, strides=1, padding=same, activation=relu).
• Flatten Layer

• Batch Normalization Layer

• Dense Layer (units=250).
• Dropout Layer (dropout=0.2).
• Batch Normalization Layer

• Dense Layer (unit=1, activation=sigmoid).

CoreDNS-CNN. CoreDNS implements a module of malicious domain name detection [18]. It borrows the idea of
convolutional models for 2D image processing. To map the 1D input to the 2D space, it transforms a 256-character
input to a 16 × 16 array. Thus a 2D input is processed like an image and the task is considered as a classic image
classification problem. The architecture of CoreDNS-CNN is:
• 2D CNN Layer (filters=16, kernel size=(2,2), strides=(1,1), padding=no, activation=relu).
• 2D Max Pooling Layer (pool size=(2, 2), padding=no).
• 2D CNN Layer (filters=16, kernel size=(2,2), strides=(1,1), padding=no, activation=relu).
• 2D Max Pooling Layer (pool size=(2, 2), padding=no).
• 2D CNN Layer (filters=8, kernel size=(2,2), strides=(1,1), padding=no, activation=relu).
• Flatten Layer

• Dense Layer (units=8, activation=relu).
• Dense Layer (unit=1, activation=sigmoid).

Z. Wang: Preprint submitted to Elsevier Page 9 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Par-CNN. The parallel CNNs are implemented by building multiple kernels, e.g., with different kernel sizes here, in
one CNN layer resulting in multiple channel outputs per layer. Instead of deeper networks gained by stacking layers,
this would result in wider networks based on the hope that the network learns a varied set of intermediate features. The
architecture of Par-CNN is:
• Embedding Layer (embeddings dim=128).
• Concatenate[1D CNN Layer (filters=256, kernel size=2, strides=1, padding=same, activation=relu), 1D CNN

Layer (filters=256, kernel size=3, strides=1, padding=same, activation=relu), 1D CNN Layer (filters=256, ker-
nel size=4, strides=1, padding=same, activation=relu), 1D CNN Layer (filters=256, kernel size=5, strides=1,
padding=same, activation=relu)].

• Dense Layer (units=1024, activation=relu).
• Dropout Layer (dropout=0.5).
• Dense Layer (units=1024, activation=relu).
• Dropout Layer (dropout=0.5)..
• Dense Layer (unit=1, activation=sigmoid).

CapsNet. Following the concept of capsule networks introduced in Section 2.2.2, the architecture of CapsNet is:
• Embedding Layer (embeddings dim=128).
• 1D CNN Layer (filters=256, kernel size=8, strides=1, padding=no, activation=relu).
• Dropout Layer (dropout=0.5).
• 1D CNN Layer (filters=512, kernel size=4, strides=1, padding=no, activation=relu).
• Dropout Layer (dropout=0.5).
• 1D CNN Layer (filters=256, kernel size=4, strides=1, padding=no, activation=relu).
• Primary Capsule Layer (capsule dim=8, channels=32, kernel size=4, strides=2, padding=no).
• Capsule Layer (capsules=1, capsule dim=16, routing=7).
• Length Layer.
3.2.3. Hybrid models

CNN-LSTM. The CNN and LSTM hybrid model first uses a CNN layer where the convolution operations extract the
feature sequence from the input (the embedded vector) and then passes the feature sequence to an LSTM layer. The
architecture of CNN-LSTM is:
• Embedding Layer (embeddings dim=50).
• 1D CNN Layer (filters=256, kernel size=4, strides=1, padding=same, activation=relu).
• LSTM Layer (unit=128, activation=relu).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).

CNN-Bi-LSTM. The CNN and Bi-LSTM hybrid model replaces the LSTM layer in CNN-LSTMwith the bidirectional
LSTM layer. The architecture of CNN-Bi-LSTM is:
Z. Wang: Preprint submitted to Elsevier Page 10 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Table 1
Time complexity*.

FANCI RNN Bi-RNN LSTM

O (N log (N) ID) O
(

N
(

IH +H2 +HK
))

O
(

N
(

IH +H2 +HK
))

O
(

N
(

4IH + 4H2 + 3H +HK
))

Bi-LSTM GRU Bi-GRU Stack-LSTM

O
(

N
(

4IH + 4H2 + 3H +HK
))

O
(

N
(

3IH + 3H2 +HK
))

O
(

N
(

3IH + 3H2 +HK
))

O
(

N
(

4IH + 8H2 + 6H +HK
))

Stack-Bi-LSTM Bi-LSTM-Att CNN CNN-Maxpool

O
(

N
(

4IH + 4H2 + 3H +HK
))

O
(

N
(

4IH + 4H2 + 4H +HK
))

O
(

N ⋅ n0 ⋅ s21 ⋅ n1 ⋅ m
2
1
)

O
(

N ⋅ n0 ⋅ s21 ⋅ n1 ⋅ m
2
1
)

CNN-Avepool Stack-CNN-Maxpool CoreDNS-CNN Par-CNN

O
(

N ⋅ n0 ⋅ s21 ⋅ n1 ⋅ m
2
1
)

O
(

N ⋅
∑d
l=1 nl−1 ⋅ s

2
l ⋅ nl ⋅ m

2
l

)

O
(

N ⋅ n0 ⋅ s21 ⋅ n1 ⋅ m
2
1
)

O
(

N ⋅maxdl=1 nl−1 ⋅ s
2
l ⋅ nl ⋅ m

2
l
)

CapsNet CNN-LSTM CNN-Bi-LSTM CNN-Bi-LSTM-Att

O
(

N ⋅
∑d
l=1 nl−1 ⋅ s

2
l ⋅ nl ⋅ m

2
l

) O(N(n0 ⋅ s21 ⋅ n1 ⋅ m
2
1+

4m1H + 4H2 + 3H +HK))
O(N(n0 ⋅ s21 ⋅ n1 ⋅ m

2
1+

8m1H + 8H2 + 6H + 2HK))
O(N(n0 ⋅ s21 ⋅ n1 ⋅ m

2
1+

8m1H + 8H2 + 8H + 2HK))

* N: number of training samples; I: dimension of input data; D: number of decision trees; H: number of hidden units: K: dimension of
output data; l of nl, sl, and ml: index of a convolutional layer; d: number of convolutional layers; nl : number of filters in the l-th
convolutional layer; n0 = I : number of input channels of the 1-th layer; sl: size of the filter in the l-th convolutional layer; ml: size of
the output feature map in the l-th convolutional layer.

• Embedding Layer (embeddings dim=50).
• 1D CNN Layer (filters=256, kernel size=4, strides=1, padding=same, activation=relu).
• Bidirectional LSTM Layer (unit=128, activation=relu).
• Dropout Layer (dropout=0.5).
• Dense Layer (unit=1, activation=sigmoid).

CNN-Bi-LSTM-Att. We enhance CNN-Bi-LSTM by adding the attention mechanism to its bidirectional LSTM layer
and thereby obtain the CNN and bidirectional LSTM hybrid model with the attention mechanism. The architecture of
CNN-Bi-LSTM-Att is:
• Embedding Layer (embeddings dim=50).
• 1D CNN Layer (filters=256, kernel size=4, strides=1, padding=same, activation=relu).
• Bidirectional LSTM Layer (unit=128, activation=tanh).
• Attention Layer

• Dropout Layer (dropout=0.2).
• Dense Layer (unit=1, activation=sigmoid).

4. Evaluation
4.1. Time complexity

The time complexity of all models are presented in Table 1.

Z. Wang: Preprint submitted to Elsevier Page 11 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Table 2
Confusion matrix of classification.

Actual Class
Predicted Class Malicious Benign

Malicious True Positive (TP) False Negative (FN)

Benign False Positive (FP) True Negative (TN)

4.2. Datasets
We use the datasets in our evaluation from two sources:

• The domain names from DomCop [21] are used as the dataset of benign domain names. The dataset contains the
top 10 million domains taken from the Open PageRank Initiative. The PageRanks are calculated based on the Open
data provided by Common Crawl and Common Search.

• The COVID-19 Cyber Threat Coalition Blocklist for malicious domain names [22] is used as the dataset of COVID-
19 related domain names. The data set was published with indicators to be used by criminals trying to prey on
individuals, organizations, businesses, and governments using the COVID-19 pandemic. It contains 93,140 domain
names. One may think of identifying the malicious domain names using the COVID-19 themed keywords like
"COVID", "pandemic", "coronavirus", etc. However, that tactic is unlikely to work because an overwhelming
majority of the dataset does not contain such keywords.

4.3. Experiment setting
We created 100 benign sets and 100 abusing sets by randomly sampling with replacement 100 times from the

DomCop set and the COVID-19 Cyber Threat Coalition Blocklist set stated above respectively. Each sampled set
contains 10,000 domains for both the benign sets and the abusing sets. For each pair of benign set and malicious set,
stratified 5-fold cross-validation is performed. We perform 500 experiments given the 5-fold computation over the 100
pairs of datasets. For each experiment, we calculate the evaluation metrics specified in Section 4.4 and use the average
over the 500 experiments as the overall measure of detection rate. For each experiment, we also record the computing
time for both training and inference and use the average over the 500 experiments as the overall measure of computing
time.

We preprocess the original domain names by truncating a long domain name or padding a short domain name to
a fixed length of characters. In our pre-processing, we truncate or pad each domain name to a fixed length. We set the
fixed length to 256 for CoreDNS-CNN (then reshaped to a 2Dmatrix) and 50 for the other models. The valid characters
for a domain name include letters (i.e., a-z, A-Z), numbers (i.e. 0-9), dot(.), and hyphen (-). A padding character should
also be included for our machine learning task. Thus overall, the number of valid characters is 39. We use the Adam
algorithm [23] whose learning rate is set to 0.001 for our deep learning models. And we configure a batch size of 256
in our mini-batch training. The detection accuracy is monitored during training and the training is terminated when
the detection accuracy is not improved over 10 consecutive epochs. The model with the best detection accuracy in the
training history is selected as the best model.

All models were implemented in Python 3.7. And all deep learning models were implemented using Tensorflow-
GPU version 2.0. We evaluate the models on the NVIDIA DGX Station only using one GPU of the four.
4.4. Evaluation metrics
4.4.1. Detection rate metrics

To evaluate how good a binary classifier is in predicting a class of a sample, we use the following four detection
rate metrics: accuracy, precision, recall, and F1, whose definitions are based on the confusion matrix of classification
in Table 2.

Accuracy (ACC) is the proportion of the correct predictions among the total predictions:

ACC = TP + TN
FP + FN + TP + TN

(15)

Z. Wang: Preprint submitted to Elsevier Page 12 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Precision (PRE) is the proportion of the true positives among the predicted positives:

PRE = TP
TP + FP

(16)

Recall (REC) is the proportion of the predicted positives among the actual positives:

REC = TP
FN + TP

(17)

F1 is calculated as the harmonic mean of precision and recall:

F1 = 2 × PRE × REC
PRE + REC

(18)

4.4.2. Computing time metrics
As we apply mini-batch gradient descent to the training of the deep learning models, one experiment may cost

more than one epochs before the stopping criterion is met. Specifically, no experiment should take less than 11 epochs
as the stopping criterion of successive non-improvement is set to 10 epochs. So we use the overall training time divided
by the size of the training set as one training time metric which is averaged over all training samples and all training
epochs.

The overall training time is correlated to both the number of epochs and the training time per epoch. So we use the
training time per epoch divided by the size of the training set as the other training time metric which is averaged over
all training samples, all training batches, and all training epochs. Note that the overall training time may be heavily
impacted by the learning rate of the optimization algorithm while the training time per epoch is not. As a conventional
machine learning model does not take multiple epochs, the training time per epoch metric does not apply to it.

To measure the prediction time, we use the prediction time divided by the size of the validation set and thus the
metric is averaged over all validation samples.
4.5. Results and analysis

Table 3 shows the results under the evaluation metrics for all model implementations.

Table 3: Results.

Model Accuracy Precision Recall F1 Training
Timea,b

Prediction
Timeb

FANCI 0.9215 0.9219 0.9215 0.9215 1.4645 0.0284

RNN 0.9785 0.9787 0.9785 0.9785 6.7335
0.1415 0.5151

Bi-RNN 0.9800 0.9802 0.9800 0.9800 15.3784
0.2207 1.0811

LSTM 0.9860 0.9862 0.9860 0.9860 12.2777
0.3196 0.7919

Bi-LSTM 0.9865 0.9869 0.9865 0.9865 35.0317
0.5518 1.2960

GRU 0.9855 0.9858 0.9855 0.9855 8.2590
0.2902 0.7206

Bi-GRU 0.9865 0.9868 0.9865 0.9865 11.9962
0.4717 1.1434

Stack-LSTM 0.9865 0.9868 0.9865 0.9865 25.8137
0.6089 1.4990

Stack-Bi-
LSTM 0.9865 0.9867 0.9865 0.9865 43.4169

1.1010 2.5168

Bi-LSTM-Att 0.9855 0.9858 0.9855 0.9855 4.1881
0.1350 1.6950

Z. Wang: Preprint submitted to Elsevier Page 13 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Table 2: Results (continued).
Model Accuracy Precision Recall F1 Training

Timea,b
Prediction

Timeb

CNN 0.9810 0.9811 0.9810 0.9810 1.5480
0.0776 0.0992

CNN-Maxpool 0.9850 0.9852 0.9850 0.9850 2.5896
0.0902 0.1356

CNN-Avepool 0.9850 0.9851 0.9850 0.9850 2.5905
0.0909 0.1362

Stack-CNN-
Maxpool 0.9860 0.9861 0.9860 0.9860 3.0361

0.1213 0.1835

CoreDNS-CNN 0.7991 0.8129 0.7992 0.7969 0.9755
0.0363 0.0878

Par-CNN 0.9855 0.9858 0.9855 0.9855 3.7357
0.1256 0.2354

CapsNet 0.9850 0.9852 0.9850 0.9850 31.0569
1.0544 0.7887

CNN-LSTM 0.9870 0.9873 0.9870 0.9870 54.6994
1.7051 3.9395

CNN-Bi-LSTM 0.9870 0.9873 0.9870 0.9870 71.8739
2.8665 6.2094

CNN-Bi-
LSTM-Att 0.9850 0.9852 0.9850 0.9850 3.9693

0.1451 2.1574

a The upper value is the overall training time and the lower value is the training time per epoch for the deep learning models.
b in ms.

4.5.1. Detection rate
In general, the deep learning models demonstrate better detection rates than the conventional machine learning

model, namely FANCI. By examining the feature set, we can find that FANCI processes some ordering-related
information in its feature design. For example, the ratios of repeated characters, consecutive consonants, and
consecutive digits are used to capture deviations from common linguistic patterns of domain names. However, lots
of sequence information cannot be fully represented by the FANCI features. And deep learning models gain better
semantic insights by constructing models that directly embed the sequencing information into themselves.

We also identify that the only exception of deep learning models over FANCI is CoreDNS-CNN which has a lower
accuracy of 0.7991. CoreDNS-CNN differs from the other deep learning models in two ways: it does not use the 1D
convolution but instead uses the 2D convolution over the reshaped domain name string; it does not use embeddings.
Unfortunately, the 2D reshaping does not conform to the nature of the domain name string. For instance, we don’t expect
the 257th character should be better related to the 1st character than the 256th character while they are closer in the
2D matrix after the reshaping. On the other hand, embeddings should be essential for modeling quasi-natural language
sequences like domain names. Neural network embeddings are useful because they can reduce the dimensionality of
categorical variables and meaningfully represent categories in the transformed space.

RNN, Bi-RNN, andCNN (without pooling) are less effective than the other deep learningmodels, except CoreDNS-
CNN, which have relatively similar performances with an accuracy between 0.9850 and 0.9870.

By comparing the RNN class, namely RNN, LSTM, and GRU as well as their bidirectional versions, we can find
that LSTM > GRU > RNN and bidirectional version > unidirectional version in terms of detection rate.
Recalling the architectures introduced in Section 2.2.1, LSTM and GRU both add gates to RNN and therefore can pass
more relevant information down the long chain of sequences to make predictions, and the key difference between GRU
and LSTM is that a GRU unit has two gates (reset and update gates) whereas an LSTM unit has three gates (namely
input, output and forget gates). So moving from RNN to GRU, and then LSTM gives us the most control over the flow
of information and thus, better detection rate, but also comes with more complexity and operating cost. Generally, a
bidirectional model shows better detection rate than its unidirectional counterpart despite that the margin may vary
across different RNNs. That is because a bidirectional model uses two hidden states combined at any time step to
Z. Wang: Preprint submitted to Elsevier Page 14 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

preserve information from both past and future and thereby can understand the context better than its unidirectional
counterpart which only relies on information from the past.

The simple CNN has only one shallow convolutional layer while the other CNN models have either pooling or
stacked convolutional layers. The convolution, pooling, and ReLU layers are typically interleaved in a CNN model in
order to increase the expressive power of the neural network, and more complex sequences generally call for deeper
networks that enable the hierarchical features. Not having enough layers effectively prevents the network from learning
the hierarchical regularities in the sequence that are combined to create its semantically relevant components. Therefore
the result may indicate that the complexity of the simple CNN may underfit the learning task.

We can see that stacking LSTM or Bi-LSTM does not improve the detection rate of a single-layer LSTM or Bi-
LSTM. Moreover, if the model gets more complex by adding the attention mechanism to Bi-LSTM, the detection rate
is reduced due to overfitting. That suggests that Bi-LSTM is a relatively good match with the learning problem with
less underfitting and overfitting issues among the RNN class.

For CNN with pooling, max pooling and average pooling demonstrate almost the same detection rate. It seems that
the choice of pooling type has little impact on the detection rate.

CNN-LSTM and CNN-Bi-LSTM achieve the best detection rate among all models. Given the extra overhead
introduced bymoving CNN-LSTM to CNN-Bi-LSTM, CNN-LSTM is shown to be the best model in terms of detection
rate. Adding convolutional layers to capture local and temporal patterns on top of LSTM layers is helpful in this
scenario.

It looks like the attention mechanism does not help in the learning task. That is because the length of the sequence
is not long enough to let the attention mechanism capture the long-term dependency. As a result cross to our purpose,
the adverse effect of introducing the attention mechanism is overfitting.
4.5.2. Computing time

FANCI is the fastest model in prediction and CoreDNS-CNN is the fastest model in training. As an RF-based
classifier is chosen as optimal, FANCI’s prediction speed is largely dependent on the depth of the decision tree and the
number of features, both of which determine the lighter weight of computation compared with the neural networks.
CoreDNS-CNN differs from other deep learning models in that it does not use an embedding layer as a front end.
The results show that omitting an embedding layer can save significant training time at the non-trivial cost of a lower
detection rate.

The CNN class models generally show better training speed and prediction speed than the RNN class models. That
is because CNNs are faster by design since the computations in CNNs can run in parallel (the same filter applied to
multiple locations of the sequence at the same time), while RNNs need to be processed sequentially since the subsequent
steps depend on previous ones.

CNN-LSTMandCNN-Bi-LSTM are the least competitive in terms of both training time and prediction time despite
their advantages in the detection rate. There is a non-trivial increase in both training time and prediction time bymoving
a unidirectional RNN to its bidirectional counterpart.
4.5.3. Overall remarks

There should be some tradeoff between the detection rate metrics and the computing time metrics because no
models excel simultaneously in both metrics: CNN-LSTM has the best detection rate but a less competitive computing
time; FANCI has the best prediction time and a good training time but a less competitive detection rate; CoreDNS-CNN
has the best training time and a good prediction time but the worst detection rate.

If the detection rate is the overwhelming top priority, CNN-LSTM may be a good choice. If a balance between
the detection rate and the computing time is desired, CNN with pooling and stacked CNN with pooling may be good
candidates that have some detection rates comparable to CNN-LSTM and save over 93% computing time of CNN-
LSTM.

4.6. High-Frequency Lexical Analysis
We conduct high-frequency lexical analysis on the COVID-19 related domain name list as well as the benign

domain name list. First, the substrings of each domain name string, with 3 or more characters, are extracted. Second,
the domain names containing at least one of each substring S are counted for S. Third, all substrings are ordered
by their counts. Consider that a high-frequency substring S may be a substring of another high-frequency substring
S+. For example, if “example.com” is a high-frequency substring, its substrings like “example”, “exam”, “com”, etc.
Z. Wang: Preprint submitted to Elsevier Page 15 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Table 4
High-frequency substrings.

Substring Count Information

dot-millinium.ey.r.appspot 5784
Some domain names containing this substring were labeled
as maliciousaor specifically risk phishingb.

uc.r.appspot 1713

Some domain names containing this substring were labeled
as maliciousc. In particular, the domain name
“covid-19-safedating.uc.r.appspot.com”dindicates the close
relation to COVID-19.

gleowayel400503.uc.r.appspot 1591 Some domain names containing this substring were labeled
as risk phishinge.

heartchakracheckup 583

The heart chakra is the fourth primary chakra, according to
Hindu Yogic, Shakta and Buddhist Tantric traditions. The
heart chakra governs one’s senses of trust, fearlessness, peace,
generosity, gratitude, and connectedness, as well as change
and transformation, healthy boundaries, depth in relationships
with others, emotional control, and love for oneselff. So it is
related to health and thereby COVID-19.

a https://www.hybrid-analysis.com/sample/c3724edf742232117e142f0665a336f33cb2c8f93657766a693e5e470cdee2e5/
6104b600d390aa665c6855d9

b https://www.riskiq.com/lookup/dkvcfmbcumexncut-dot-millinium.ey.r.appspot.com
c https://www.joesandbox.com/analysis/230388/0/html
d https://www.riskiq.com/lookup/covid-19-safedating.uc.r.appspot.com
e https://www.riskiq.com/lookup/qsynsrkdhsfyaolgkcrlwgsyjh-dot-gleowayel400503.uc.r.appspot.com
f https://en.wikipedia.org/wiki/Anahata

should have no less frequency than “example.com”. So a long substring with a maximum length is used to replace all
its substrings in the sorted high-frequency substring list. Using this merging approach, we can obtain the maximum
length substring list for the high-frequency substring list. By comparing the maximum length substring lists for the
COVID-19 related and benign domain name lists, we find some substrings whose occurrences are highly frequent for
the COVID-19 related domain names but not for the benign domain names. These substrings can be considered closely
related to COVID-19 and highly suspicious. A few examples of these substrings are listed in Table 4 where we also
provide their counts and some additional information regarding security risks and relevance to COVID-19. They are
related to security risks or COVID-19 or both.

5. Discussion
5.1. Limitations

One major limitation of our proposed supervised machine learning approaches is a reliance on labeled data. When
training a supervised machine learning model, e.g., a classifier in this work, we need ground-truth labels given to
sufficient samples of each class. However, providing labels for datasets is either very expensive or not possible at all in
many cases. Even if labeled data are given, incomplete, inaccurate, or inexact labels can also greatly impact supervised
machine learning performance. The other limitation is the non-trivial computation time of supervisedmachine learning.
To speed up training and prediction, high computation power is often needed especially for real-time applications.
5.2. Implications

While this work focuses on detecting COVID-19 related domain names, the proposed detection models are also
applicable to general abnormal/malicious domain name detection tasks. DNS, which translates IP addresses into
hostnames and visa versa, is a critical component of the Internet. First, DNS is relied on by almost every online
application, with malware andmalicious actors included.Malware commonly needs to use DNS to receive instructions,
exfiltrate data, or otherwise communicate with attackers. Second, DNS becomes a highly attractive target for threat
actors because of its ubiquity. For example, disrupting some vital DNS services may result in a devastating collapse on
the large-scale Internet, and hacking some DNS data may compromise the entire business of the relevant enterprises.
As the recent Facebook outage in October 2021 showed, failing DNS was the first symptom found in diagnosing the
Z. Wang: Preprint submitted to Elsevier Page 16 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

cause. Given the considerations above, DNS is a good source of information for security analysis and threat prediction
problems like monitoring cybercrimes at the state level, in situations of hostilities, during riots, or even when tracking
the planning of terrorist attacks. As a basic DNS feature, the domain name can be considered as a threat/abnormality
indicator. The supervised learning models used in this work can automatically distinguish malicious/abnormal domain
names from benign/normal ones as long as they should demonstrate different characteristics.

Our proposed machine learning models, especially the deep neural network architectures, can be used to address
general abnormal/malicious domain name detection tasks. Thinking about the training of a machine learning model,
there is no fundamental difference between the COVID-19 related domain name detection and other malicious domain
name detection problems because they both use a domain name string itself as input and a prediction label as output.
In addressing a binary classification task, the deep neural network models can automatically capture the characteristics
of the two-class labeled training set and use the characteristics to predict the label of a domain name. That is, the
models can easily adapt to different training data for different specific abnormal/malicious domain name detection
tasks. In a broader sense, if we think of a domain name as a short text, our proposals can be considered as general
solutions to a short text detection problem and potentially have applications in other similar contexts. Thus even if the
COVID-19 pandemic should end or transition to normalcy sometime in the future, the work is still relevant to other
applications. Nevertheless, this work aims at providing a direct timely solution to the COVID-19 related domain name
detection problem. To this end, the machine learning models were fully optimized and evaluated for the specific task for
COVID-19 domain name detection in order to offer guidance in determining the optimal domain name detection model
to use in real-world deployments. When adapting to a different specific task, the models may need some fine-tuning
of hyperparameters and/or the neural network architecture as part of optimization efforts. Additionally, an extensive
evaluation similar to what was done for the task in this work is recommended as models may perform differently across
different specific tasks. As for hyperparameter tuning which searches for the best configuration of hyperparameters to
enable optimal performance, we can adopt grid search, random search, evolutionary algorithms, Bayesian optimization,
etc. When applied to other specific tasks, the hyperparameter tuning can rely on the hyperparameter set specified in
this work as the starting point of search. Grid search performs an exhaustive search in the hyperparameter search
space. Random search performs a randomized search over hyperparameters from certain distributions. Evolutionary
algorithms work by modifying a set of candidate solutions according to certain rules. Bayesian optimization builds
a surrogate probabilistic model to map hyperparameters to the objective function, finds the hyperparameters that
perform best over the surrogate model, evaluates the best hyperparameter configuration, and updates the surrogate
model based on the new evaluation, and moves towards the optimum by iterating the process above. Neural network
architecture tuning, as a subset of hyperparameter tuning, is specialized for optimizing neural network architectures.
Neural network architecture tuning introduces significant algorithmic and computational complexities in comparison
with hyperparameter optimization. While neural network architecture tuning is still significantly challenging, some
remarkable advances [24, 25] have been achieved in recent years which can apply to the neural network architecture
adaptation to a new specific task.
5.3. Considerations

Using more extensive data than domain name data is generally more likely to boost detection performance. For
example, some previous approaches rely on network traffic data which are considered more informative than pure
domain names. However, a lack of sufficient data resources has become a bottleneck to cyber security practitioners
these days. Extensive data like network traffic data are either very costly to obtain or inaccessible at all. So we consider
domain name strings themselves as the minimum information we can have when determining malicious domain names.
The detection techniques using pure domain names can greatly ease their adoption in the real world, especially for those
who do not have extensive data. In case that extensive data are available, the detection techniques using pure domain
names can also be applied as part of a larger and more complex detection system. For example, a detection model using
pure domain names and a detection model using other network traffic features can be combined using some “stacking”
approaches for better detection performance. One most common “stacking” approach is voting, where the prediction
probabilities given by each model for each class are summed and the label with the largest summed probabilities is
selected. Even if used as a component in a larger detection system, our efforts in this work still count because improving
one model among the “stacked” models will generally contribute to the overall prediction performance.

Z. Wang: Preprint submitted to Elsevier Page 17 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

6. Conclusions
In this paper, we empirically evaluated supervised machine learning models for the COVID-19 related domain

name detection problem. Our evaluation included both conventional machine learning models and deep learning
models with three architectures: recurrent, convolutional, and hybrid models. Detection rate metrics and computing
time metrics were both evaluated. The evaluation clearly demonstrated the superiority of the deep learning models
over the conventional machine learning models, especially in terms of detection rate. There was evidence that some
tradeoff between detection rate and computing speed is needed for the choice of deep learning models. Considering the
tradeoff, CNN with pooling and stacked CNN with pooling tended to strike a better balance despite that CNN-LSTM
showed the best detection rate.

References
[1] Palo Alto Networks, “Studying How Cybercriminals Prey on the COVID-19 Pandemic,” unit42.paloaltonetworks.com/how-cybercriminals-

prey-on-the-covid-19-pandemic/. Accessd Nov 15, 2020.
[2] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, “FANCI: Feature-based automated NXDomain classification and intelligence,” in

Proceedings of the 27th USENIX Security Symposium, 2018, pp. 1165–1181.
[3] Y. Qiao, B. Zhang, W. Zhang, A. K. Sangaiah, and H. Wu, “DGA domain name classification method based on Long Short-Term Memory

with attention mechanism,” Applied Sciences (Switzerland), vol. 9, no. 20, 2019.
[4] A. D. Kumar, H. Thodupunoori, R. Vinayakumar, K. P. Soman, P. Poornachandran, M. Alazab, and S. Venkatraman, “Enhanced domain

generating algorithm detection based on deep neural networks,” in Advanced Sciences and Technologies for Security Applications, 2019, pp.
151–173.

[5] S. Zhou, L. Lin, J. Yuan, F.Wang, Z. Ling, and J. Cui, “CNN-basedDGAdetectionwith high coverage,” in 2019 IEEE International Conference
on Intelligence and Security Informatics, ISI 2019, 2019, pp. 62–67.

[6] F. Ren, Z. Jiang, X. Wang, and J. Liu, “A DGA domain names detection modeling method based on integrating an attention mechanism and
deep neural network,” Cybersecurity, vol. 3, no. 1, 2020.

[7] P. Vij, S. Nikam, and A. Bhatia, “Detection of Algorithmically Generated Domain Names using LSTM,” in 2020 International Conference on
COMmunication Systems and NETworkS, COMSNETS 2020, 2020, pp. 1–6.

[8] B. Liu and H. Wang, “Real-time monitoring system for dga domain based on long short-term memory,” in Advances in Intelligent Systems and
Computing, vol. 1244 AISC, 2021, pp. 159–165.

[9] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting Domain Generation Algorithms with Long Short-Term Memory
Networks,” arXiv preprint arXiv:1611.00791, 2016.

[10] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 1990.
[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[12] K. Cho, B. vanMerrienboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural Machine Translation: Encoder–Decoder Approaches,”

2015, pp. 103–111.
[13] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” in 3rd International Conference

on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86,

no. 11, pp. 2278–2323, 1998.
[15] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,” in Advances in Neural Information Processing Systems, vol.

2017-December, 2017, pp. 3857–3867.
[16] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen, “Tweet2Vec: Character-based distributed representations for social media,”

54th Annual Meeting of the Association for Computational Linguistics, ACL 2016 - Short Papers, pp. 269–274, 2016.
[17] X. Zhang, J. Zhao, andY. Lecun, “Character-level convolutional networks for text classification,” inAdvances in Neural Information Processing

Systems, vol. 2015-January, 2015, pp. 649–657.
[18] C. Ekbote, “CoreDNS-CNN,” github.com/cekbote/coredns_ml_plugin. Accessed Nov 15, 2020.
[19] D. S. Berman, “DGA CapsNet: 1D application of capsule networks to DGA detection,” Information (Switzerland), vol. 10, no. 5, 2019.
[20] S. Vosoughi, P. Vijayaraghavan, and D. Roy, “Tweet2Vec: Learning tweet embeddings using character-level CNN-LSTM encoder-decoder,”

in SIGIR 2016 - Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2016,
pp. 1041–1044.

[21] DomCop, “Benign domain name list,” www.domcop.com/top-10-million-domains. Accessd Nov 15, 2020.
[22] COVID-19 Cyber Threat Coalition, “COVID-19 related domain name List,” blacklist.cyberthreatcoalition.org/vetted/domain.txt. Accessd Nov

15, 2020.
[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[24] C. Termritthikun, Y. Jamtsho, J. Ieamsaard, P.Muneesawang, and I. Lee, “EEEA-Net: An Early Exit Evolutionary Neural Architecture Search,”

Engineering Applications of Artificial Intelligence, vol. 104, p. 104397, 2021.
[25] Y. Li, C. Hao, P. Li, J. Xiong, and D. Chen, “Generic Neural Architecture Search via Regression,” in Thirty-Fifth Conference on Neural

Information Processing Systems, 2021.

Z. Wang: Preprint submitted to Elsevier Page 18 of 18



Use of Supervised Machine Learning to Detect Abuse of COVID-19 Related Domain Names

Authors’ Biographies

Zheng Wang is with the Internet Technologies Research group at the National Institute of Standards and Technology
(NIST). His research interests include machine learning and its applications to networking and communication
problems, network measurement, and distributed systems.

Z. Wang: Preprint submitted to Elsevier Page 19 of 18


