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Abstract— We propose a new distributed optimization algorithm
for solving a class of constrained optimization problems in which
(a) the objective function is separable (i.e., the sum of local ob-
jective functions of agents), (b) the optimization variables of dis-
tributed agents, which are subject to nontrivial local constraints,
are coupled by global constraints, and (c) only noisy observations
are available to estimate (the gradients of) local objective func-
tions. In many practical scenarios, agents may not be willing to
share their optimization variables with others. For this reason, we
propose a distributed algorithm that does not require the agents
to share their optimization variables with each other; instead, each
agent maintains a local estimate of the global constraint functions
and shares the estimate only with its neighbors. These local es-
timates of constraint functions are updated using a consensus-
type algorithm, while the local optimization variables of each agent
are updated using a first-order method based on noisy estimates
of gradient. We prove that, when the agents adopt the proposed
algorithm, their optimization variables converge with probability 1
to an optimal point of an approximated problem based on the
penalty method.

Index Terms— Distributed optimization, penalty method,
stochastic optimization.

I. INTRODUCTION

Large engineered systems, such as telecommunication networks
and electric power grids, are becoming more complex and often
comprise subsystems that use different technologies or are controlled
autonomously or by different entities. Consequently, centralized
resource management or system optimization becomes increasingly
impractical or impossible. This naturally calls for a distributed opti-
mization framework that will enable distributed subsystems or agents
to optimize both their local performance and, in the process, the
overall system performance. What complicates the problem further is
that many practical systems have global constraints (e.g., end-to-end
delay requirements in telecommunication systems) that couple the
decisions of more than one agent; hence satisfying these constraints
requires coordination among the agents.

We study the problem of designing a distributed algorithm for
a set of agents to solve a constrained optimization problem. The
problem has both (a) separate local constraints for each agent and
(b) global constraints that agents must satisfy together and, hence,
couple the optimization variables of the agents. Moreover, the analytic
expression for the global objective function or its gradient is not
assumed known to every agent. For example, in many practical
cases, the objective functions or constraint functions are summable
(e.g., the aggregate cost of all agents). In such cases, the local
objective function of an agent may be unknown to other agents.
Also, in many engineered systems, the actual costs for optimizing
resource utilization need to be estimated based on measurements,
which contain observation noise. Consequently, the agents must rely
on noisy observations to update their optimization variables.

This setting applies to a wide range of real-world applications, in-
cluding communication networks. For example, in the fifth-generation
(5G) and future 6G systems, many heterogeneous subsystems (e.g.,
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radio access networks vs. wired core networks) wish to minimize
their own costs of delivering services and, at the same time, need
to collectively assure end-to-end quality-of-service (QoS), e.g., end-
to-end delays or packet loss rates, for different applications such as
automated manufacturing, telesurgery, and remote controlled aerial
and ground vehicles. We refer a reader to [12] for a more detailed
example of such settings (and an application of the proposed algo-
rithm presented in Section II-A).

Since the global constraint functions depend on the optimization
variables of more than one agent, their values are not always known
to all agents. Thus, handling such global constraints will require
the agents to exchange information. In many cases, computing and
disseminating the exact values of global constraint functions to all
agents will incur excessive computing and communication overheads,
or cause prohibitive delays. To cope with the challenge, we adopt the
penalty method and propose a new consensus-based algorithm for
agents to estimate the global constraint function values in a distributed
manner. We prove that, under some technical conditions, the proposed
algorithm ensures almost sure convergence to an optimal point when
the problem with a suitable penalty function is convex.

A. Related Literature
Distributed optimization has attracted extensive attention and ac-

cumulated a large body of literature (e.g., [3], [7], [14], [16], [20],
[21] and references therein), because it has broad applications and
also serves as a foundation for distributed machine learning. Here, we
summarize only most closely related studies that considered stochas-
tic constrained optimization problems with a summable objective
function, and point out the key differences between them and our
study. We emphasize that this is not meant to be an exhaustive list.

Recently, distributed stochastic optimization has been an active
research area. Srivastava and Nedić [19] proposed a distributed
stochastic optimization algorithm for solving constrained optimiza-
tion problems, in which the feasible set is the intersection of the
feasible sets of individual agents. Each agent maintains a local copy
of the global optimization variables, which are updated using a
consensus-type algorithm. They showed that these local copies con-
verge asymptotically to a common optimal point with probability 1
(w.p.1). Bianchi and Jakubowicz [2] proposed a stochastic gradient
algorithm for solving a non-convex optimization problem. Every
agent maintains a local copy of global optimization variables and
updates its local copy using a projected stochastic gradient algorithm
that requires the knowledge of the global feasible set. The agents then
exchange their local copies with neighbors and update them using
a consensus-type algorithm. They proved that, under the proposed
algorithm, agents’ local copies of optimization variables converge
w.p.1 to the set of stationary or Karush-Kuhn-Tucker (KKT) points
of the global objective function. In another study, Chatzipanagiotis
and Zavlanos [5] proposed a distributed algorithm for solving a
convex optimization problem with affine equality constraints in the
presence of noise. This algorithm is based on their earlier work called
accelerated distributed augmented Lagrangians [4], [6], and requires
exchanges of global optimization variables among all agents.

We consider different settings in which the objective function is
separable and local optimization variables are coupled via global



constraints. In order to cope with the coupling introduced by global
constraints, each agent maintains local estimates of global constraint
functions along with local optimization variables, and only the esti-
mates of global constraint functions are exchanged with neighbors.
Our algorithm is better suited for scenarios in which agents do not
want to share their local optimization variables with others. For
instance, autonomous systems or domains with their own private
networks do not wish to reveal how they manage their networks.
Furthermore, a large system likely contains subsystems that utilize
different networking technologies (e.g., WiFi networks, cellular radio
access networks, and wired core networks), which are managed
differently. We also note that, as explained in [3], the dual problem
of the constrained optimization problem we consider in this paper
can be formulated as a consensus optimization problem. However,
existing algorithms and results in the literature are not applicable to
our settings, especially with noisy observations.

A more closely related line of research is distributed resource allo-
cation. Many prior studies in this area focused on deterministic cases
with linear resource constraints, where local objective functions are
differentiable and strictly convex with Lipschitz continuous gradients
(e.g., [3], [7], [15]). More recently, Yi et al. [22] considered stochastic
resource allocation problems with local constraints and global affine
equality constraints in the presence of both observation and communi-
cation noise, where local constraints are determined by continuously
differentiable convex functions. They proposed a new algorithm based
on a primal-dual approach: each agent maintains local multipliers and
auxiliary variables shared with other agents. These multipliers and
auxiliary variables along with (primal) variables are updated using a
combination of stochastic approximation (with decreasing step sizes)
and consensus-type algorithms.

The distributed optimization problems we study can also be viewed
as state-based games: Li and Marden [10] formulated the problem of
designing a distributed algorithm for solving an optimization problem
with affine inequality constraints as one of designing decoupled
utility functions for distributed agents, using a penalty or barrier
method. This approach leads to a state-based potential game, whose
potential function is the objective function of an approximated
problem, and the Nash equilibrium solves the approximated problem.
Consequently, under the assumption that the analytic expressions for
the objective functions are known and the exact gradients can be
computed with no noise, they proved that when each agent tries
to maximize its own local utility independently, their local decision
variables converge to an optimal point of the approximated problem.

Our contributions: All the above studies require exact local
projections by assuming simple local constraint sets. In this paper, we
relax this assumption and consider a distributed optimization problem
where local objective functions are convex (possibly nonsmooth) and
local constraints are not assumed to be projection-friendly (see [9] for
examples of such constraint functions). In order to handle nonlinear
global constraints without requiring exchange of local optimization
variables among agents, our approach combines a stochastic subgra-
dient method with a dynamic consensus tracking approach. Also, to
deal with general local functional constraints, we adopt the idea of
approximate projections from [18]; a similar approach is also used
in [9] for distributed consensus optimization.

In addition, our work extends the study by Li and Marden [10]
to the case where (a) the analytic expressions for the local objective
functions of agents or their gradients are unavailable and instead need
to be estimated using noisy observations and (b) global constraint
functions are convex. We demonstrate that the agents can track
the global constraint functions using a simpler dynamic consensus
tracking algorithm, even for nonlinear global constraint functions.
We show that our algorithm converges almost surely to an optimal

point of an approximated problem, which also corresponds to a Nash
equilibrium of the aforementioned state-based potential game in [10]
(see Remark 2 in Section III).

Preliminary results of this paper were reported in [12], where
the focus was on (i) the application of the proposed approach to
distributed resource allocation in 5G/6G telecommunication systems
comprising multiple autonomous networks that must satisfy end-to-
end delay constraints, and (ii) the relation between the proposed
approach and the state-based potential games approach [10]. In
addition, [12] only considers a simple setting in which the network
graph is fixed and the local constraint sets are projection-friendly,
and states a convergence result without any proof. In this paper, we
extend the approach to time-varying graphs and local constraint sets
that are not necessarily projection-friendly, and provide a detailed
convergence analysis, including the convergence rate of the algorithm.

Notation: Define IN := {0, 1, 2 . . .} to be set of nonnegative
integers. We use x+ to denote max(0, x). Unless stated otherwise,
all vectors are column vectors and ‖·‖ denotes the `2 norm, i.e.,
‖·‖ = ‖·‖2. Given a vector x or a vector function f , we denote
the kth element by xk and fk, respectively. The vector of zeros
(resp. ones) of appropriate dimension is denoted by 0 (resp. 1). For
a convex function f : D ⊆ Rn → R, we use ∂f(x) to denote a
subgradient of f at x ∈ D. When it is clear from the context, we
also use ∂f(x) to denote the subdifferential at x. Given a closed
convex set S and a vector x, PS(x) denotes the projection of x onto
S and dS(x) := ‖x− PS(x)‖ is the distance from x to S. If S is
a finite set, |S| denotes its cardinality. Given a sequence of random
variables (RVs) or vectors R(t), t ∈ IN, we use Rt to denote the
collection {R(τ) : τ ∈ {0, . . . , t}}.

The rest of the paper is organized as follows. Section II presents
the problem formulation and our proposed algorithm. Section III
details the convergence analysis of our algorithm. Finally, Section IV
concludes the paper.

II. SETUP AND PROPOSED ALGORITHM

We are interested in solving a constrained optimization problem
of the form given below using a distributed algorithm, where (a)
the objective function is separable, and (b) the global (inequality)
constraints couple the optimization variables of the agents:

miny∈G
∑
i∈A

φi(yi) (1a)

subject to g(y) :=
∑
i∈A

gi(yi) ≤ 0 (1b)

where A is the set of N agents, φi and yi are the local objective
function and the local optimization variables, respectively, of agent i,
y = (yi : i ∈ A) is the vector of variables, and g = (g1, . . . , gK)
is the vector consisting of K global constraint functions. Here,

G =
∏
i∈A Gi

is the global feasible set, where Gi is the local constraint set
of agent i. Note that this formulation includes various resource
allocation problems studied in the literature, see, e.g., [3], [7], [10],
[12], [15], [22]. We assume

Gi = Gi0
⋂
G̃i,

where Gi0 is a nonempty convex set assumed to be projection friendly
(e.g., box, simplex, ball constraints), and the set G̃i is given by

G̃i = {yi | cik(yi) ≤ 0, k ∈ K̃i},

where cik’s are local constraint functions, and K̃i is the set of
agent i’s local (inequality) constraints. We are interested in scenarios
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in which the constraint set K̃i is large or G̃i is not projection friendly.
Here, Gi0 can be regarded as a hard constraint while G̃i represents
soft constraints. Unlike in [5] and [10], we do not assume that the
constraint functions are affine. Instead, we assume that each agent i
knows its contributions to global constraint function given by gi, but
not gj , j ∈ A\{i}. This assumption is reasonable in many practical
problems with distributed decision makers.

A popular approach to constrained optimization is the penalty
method, which adds a penalty to the objective function when one
or more constraints are violated [11]. Although a general penalty
function can be used in our problem, we assume a specific penalty
function to facilitate our exposition. Consider the following approx-
imated problem with a penalty function:

miny∈G
∑
i∈A

φi(yi) +
µ

2N

∑
k∈KG

g+
k (y)2 =: Φ(y), (2)

where µ > 0 is a penalty parameter, KG is the set of K global
constraints, and the second term in Φ is the penalty function. Clearly,
Φ is convex on G provided that φi and gi, i ∈ A, are convex.

In general, the original optimization problem in (1) is recovered
only as µ→∞. Hence, for sufficiently large µ, an optimal solution
to (2) is reasoned to be a good approximated solution to (1) in
practice. However, quantifying this suboptimality of the penalty
method analytically for general problems is difficult and is out of
the scope of this paper. Moreover, a practical choice of µ is often
problem-dependent and may require domain knowledge. When such
domain knowledge is unavailable, one can solve (2) for an increasing
sequence of µ [11]. With this in mind, in this paper, we consider fixed
µ which is assumed known to all agents. We refer interested readers
to, e.g., [10], [12] for applications of penalty methods.

Note that the usual gradient projection method does not lead to
a distributed algorithm because the penalty function and its gradient
are coupled. Furthermore, we are interested in scenarios in which
(a) the analytic expression of local objective function φi and its
gradient are unknown to agent i and (b) only noisy measurements
are available to estimate them. To address these issues, we propose
a new algorithm that requires each agent i to keep an estimate ei(t)
of the constraint functions g(y(t)). These estimates are used to
approximate the gradient of the penalty function and are updated
using a consensus-type algorithm.

A. Proposed Algorithm

Every agent i ∈ A will first randomly choose its initial local
optimization variables yi(0) in Gi0 and its estimate of (average)
global constraint functions ei(0) = gi(yi(0)) based on its own con-
tributions. Subsequently, at each iteration, it updates them according
to the following algorithm:

zi(t)= PGi0

(
yi(t)− γt

(
qi(t) + Vi(t)

))
(3a)

yi(t+1)= PGi0

(
zi(t)− βit

∑
k∈Kit

c+ik(zi(t))

‖dik‖2
dik

)
(3b)

ei(t+1)=
∑
j∈A

wij(t)ej(t)+gi(yi(t+1))−gi(yi(t)) (3c)

where γt is a step size at iteration t,1 Vi(t) are random vectors,
ei(t) = (eik(t) : k ∈ KG), gi(yi) = (gik(yi) : k ∈ KG), and

qi(t)= ∂φi(yi(t)) + µ
∑
k∈KG

∂gik(yi(t))e
+
ik(t). (4)

1We assume that the agents adopt a common step size sequence, for
example, based on a global clock.

Here, Kit ⊂ K̃i in (3b) is a random set of indices selected by agent i
independently at each iteration t,2 and dik is a subgradient of cik at
zi(t) when cik(zi(t)) > 0 and dik = d 6= 0 otherwise. The value
of d is unimportant since the summand is equal to zero in this case.

Let us discuss the above algorithm in detail. First, (3a) resembles
a projected stochastic gradient step, where qi(t) + Vi(t) is used as
an approximated subgradient for

∂yiΦ(y) = ∂φi(yi(t)) +
µ

N

∑
k∈KG

∂gik(yi(t))g
+
k (y(t)).

Since the agents do not have access to the global constraint violation
g+
k (y(t)) =

(∑
j∈A gjk(yj(t))

)+ for all k ∈ KG, each agent i
substitutes its local estimate e+ik(t) for g+

k (y(t))/N instead, leading
to (4). In addition, for the update in (3a), agent i only has access to
a noisy estimate of the subgradient given by the sum ∂φi(yi(t)) +
Vi(t), while it can compute the second term in (4). In other words,
the subgradients ∂φi(yi(t)) are unavailable to the agents.

Second, the random projection step in (3b) is borrowed from [18]
(see also [13]), but we do not restrict to selecting only a single con-
straint at each iteration. The idea is that if the constraint cik is violated
at zi(t) for some randomly selected k, i.e., cik(zi(t)) > 0, in order to
reduce this violation, the algorithm updates the optimization variables
in the direction of −dik with a step size βit

cik(zi(t))

‖dik‖2
according to

(3b). This projection step, though simple, is beneficial in dealing
with nontrivial and computationally intractable constraints, including
linear matrix inequalities and robust linear inequalities (e.g., [18]).

In addition, in (3b) we assume, for simplicity, that Kit is chosen
according to a uniform distribution Ui over the set Si := {S ⊂
K̃i | |S| = si} for some si ≥ 1, and take any βit in some [β

i
, β̄i] ⊂

(0, 2/si) for all iterations t. In practice, we may choose si � |K̃i|
to limit the number of constraints considered in (3b) (even si = 1).
We assume that agent i uses the same weight βit for all chosen local
constraints in (3b). But, it can employ different weights for different
constraints which, for example, depend on the value of constraint
functions. We assume that Gi0 is simple enough so that PGi0(·) can
be evaluated efficiently.

Finally, the update rule for ei(t+1) in (3c) is designed based on a
dynamic consensus algorithm (e.g., [8]) in order to track the average
of the global constraint functions. As a result, we can view ei(t) as a
local estimate of the average global constraint functions; this allows
us to approximate g+

k (y(t))/N using e+ik(t) in (4) to carry out an
approximated stochastic gradient step in (3a) as explained above. We
emphasize that, to carry out the update of ei(t + 1) in (3c), agent
i ∈ A only needs the estimates ej(t) from its direct neighbors for
which wij(t) > 0 in the weight matrix W (t) = [wij(t) : i, j ∈ A],
which is allowed to be time-varying.

To analyze the convergence of our algorithm, let us define Ft for
each t ∈ IN to be the σ-field generated by {y(0),Vt−1, (Kt−1

i :

i ∈ A)}, where Kt−1
i = {Kis : 0 ≤ s < t} and Kis, s ∈ IN, is

the random index set of the constraints chosen by agent i in (3b)
at iteration s. Throughout the paper, we use Et [·] to denote the
conditional expectation E [· | Ft].

B. Assumptions

We impose the following on the optimization problem in (2).

Assumption 1. Problem (2) satisfies the following:

2Note that one could replace the set of constraints cik(yi) ≤ 0, k ∈
K̃i with one constraint c̄i(yi) ≤ 0 where c̄i(y) = maxk∈K̃i

cik(yi).
Computationally, this requires evaluations of all the constraint functions,
which may be impractical when |K̃i| is large.

3



a. The local constraint sets Gi, i ∈ A, are nonempty and convex,
and Gi0 are closed and convex.

b. The functions φi and gik, i ∈ A and k ∈ KG, are convex and
L-Lipschitz continuous on Gi0 for some L > 0. Moreover, Φ
is L-Lipschitz continuous on

∏
i∈A Gi0.3

c. The local constraint functions cik, i ∈ A and k ∈ K̃i, are
convex and also L-Lipschitz continuous on Gi0. Moreover, there
exists C > 0 such that, for all i ∈ A,

d2
Gi(z) ≤ C EK∼Ui

∑
k∈K

c+ik(z)2

 , z ∈ Gi0, (5)

where EK∼Ui [·] denotes the expectation when the random set
K is chosen according to Ui over the set Si.

d. The optimal set of (2), denoted by Y∗, is nonempty.

Here, without loss of generality we assume the same Lipschitz
constant L. Note that we do not assume differentiability of any
involved functions or compactness of constraint sets. Assumption 1-
c, in particular condition (5), is known to be quite general and plays
an important role in the convergence analysis of algorithms involving
random projection in (3b); see [13] for a further discussion on this
assumption as well as sufficient conditions for (5) to hold.

We allow the distribution of the perturbation V(t) := (Vi(t) : i ∈
A) to depend on the optimization variables y(t). The distribution of
V(t) when y(t) = y is denoted by µy.

Assumption 2. The perturbation satisfies (i)
∫
v µy(dv) = 0 for

all y ∈ G and (ii) supy∈G
∫
‖v‖2 µy(dv) =: ν <∞.

For each t ∈ IN, define Et = {(i, j) ∈ A×A : wij(t) > 0}.

Assumption 3. There exists Q ∈ IN such that, for all k ≥ 0,
the graph (A,

⋃Q
l=1 Ek+l) is strongly connected (i.e., Q-strongly

connected). In addition, W (t) is doubly stochastic for all t ∈ IN,
and there exists wmin > 0 such that, for all t ∈ IN, all nonzero
weights wij(t) lie in [wmin, 1].

We will use the following standard assumptions on the step sizes.

Assumption 4. Steps sizes γt, t ∈ IN, are positive and satisfy (i)∑
t∈IN γt =∞ and (ii)

∑
t∈IN γ

2
t <∞.

C. Preliminaries

Let us first introduce some notation. For every t ∈ IN, define
e(t) := (ei(t) : i ∈ A), g(t) := (gi(yi(t)) : i ∈ A), and

ē(t) :=
1

N

∑
i∈A

ei(t), ḡ(t) :=
1

N
g(y(t)). (6)

The following result is a direct consequence of the assumption that
weight matrices W (t), t ∈ IN, are doubly stochastic.

Lemma 1. Under Assumption 3, the following holds:

ē(t) = ḡ(t), t ∈ IN. (7)

We will also use the following result on the mixing property
of a sequence of doubly stochastic weight matrices [21, proof of
Theorem 4.2].

Lemma 2. Consider the following iterates for all i ∈ A.

θi(t+ 1) =
∑
j∈A

wij(t)θj(t) + εi(t+ 1), t ∈ IN,

3This assumption holds, for example, when Gi0, i ∈ A, are compact.

where εi(t) ∈ IRK is arbitrary, and W (t) satisfies Assumption 3.
Then, there exist C1 > 0 and C2 > 0 such that

N‖θi(t)−θ̄(t)‖ ≤ C1σ
t +

∑
j∈A
‖εj(t)‖+N‖εi(t)‖

+ C2

t−1∑
s=1

σt−s
∑
j∈A
‖εj(s)‖,

where θ̄(t) =
∑
j∈A θj(t)/N , and σ =

(
1− wmin

4N2

)1/Q.

The lemma states that, over a larger timescale, the Q-strong
connectivity has a similar mixing effect as a fixed strongly connected
graph.

The following results will be used frequently in our proofs.

Lemma 3. For any a, b ∈ R and any η > 0,

2ab ≤ ηa2 + η−1b2. (8)

Lemma 4. Under Assumptions 1 and 3, for any i ∈ A,

‖qi(t)‖2 ≤ 2L2(1 + µ2K‖ei(t)− ē(t)‖2
)
, t ∈ IN. (9)

Proof. We drop the dependence on t for notational simplicity. It
follows from (2), (4) and (7) that

‖qi‖ = ‖∂yiΦ(y) + µ
∑
k∈KG

∂gik(yi)(e
+
ik − ē

+
k )‖

≤ ‖∂yiΦ(y)‖+ µ
∑
k∈KG

‖∂gik(yi)‖ · |e+ik − ē
+
k |

≤ L(1 + µ‖ei(t)− ē(t)‖1),

where we used the Lipschitz continuity of Φ, gik and the function
max(·, 0). Thus, by Lemma 3

‖qi(t)‖2 ≤ 2L2(1 + µ2‖ei(t)− ē(t)‖21
)

≤ 2L2(1 + µ2K‖ei(t)− ē(t)‖2
)

(10)

which follows from the relationship between 1- and 2-norms.

We also make use of the following classical results on the conver-
gence of a sequence of nonnegative RVs.

Lemma 5. [17, Lemma 10, p. 49] Let {vt : t ∈ IN} be a sequence of
nonnegative RVs with E [v0] <∞. Suppose {αt : t ∈ IN} and {βt :
t ∈ IN} are deterministic scalar sequences satisfying αt ∈ [0, 1],
βt > 0,

∑
t∈IN αt =∞,

∑
t∈IN βt <∞, limt→∞ βt/αt = 0, and

E
[
vt+1|vt

]
≤ (1− αt)vt + βt w.p.1 for all t ∈ IN,

where vt = {vs : 0 ≤ s ≤ t}. Then, vt converges to 0 w.p.1, and
limt→∞E [vt] = 0.

Lemma 6. [17, Lemma 11, p. 50] Let {vt : t ∈ IN}, {ut : t ∈ IN},
{αt : t ∈ IN} and {βt : t ∈ IN} be sequences of nonnegative
RVs satisfying the following conditions w.p.1:

∑
t∈IN αt < ∞,∑

t∈IN βt <∞, and

E

[
vt+1|vt, αt, βt, ut

]
≤ (1+αt)vt−ut+βt for all t ∈ IN.

Then,
∑
t∈IN ut <∞ w.p.1 and vt converges to a nonnegative RV.

III. CONVERGENCE ANALYSIS

In this section, we demonstrate that when all agents update their
local optimization variables yi(t) and local estimates of global
constraint functions ei(t) using the proposed algorithm in (3), y(t)
converges to the optimal set Y∗ w.p.1. (Theorem 1). We prove this
result with the help of a series of auxiliary results.
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First, the projection in (3b) satisfies the following inequality, the
proof of which is inspired by [9], [13], [18].

Lemma 7. Under Assumption 1, for any yi ∈ Gi, we have

‖yi(t+1)− yi‖2 ≤ ‖zi(t)−yi‖2 − β̃it
∑
k∈Kit

c+ik(zi(t))
2 (11a)

c+ik(zi(t))
2 ≥ 3

4
c+ik(yi(t))

2 − 8γ2
t L

2(2L2 + ‖Vi(t)‖2
)

−16γ2
t L

4µ2K‖ei(t)− ē(t)‖2, (11b)

where β̃it = (2−siβit)βitL−2 and si = |Kit| for all i ∈ A, k ∈ K.

Proof. The proof of (11a) is similar to those given in [13], [18], but
we provide it here for completeness. For any yi ∈ Gi,

‖yi(t+1)− yi‖2 ≤
∥∥zi(t)−yi − βit ∑

k∈Kit

c+ik(zi(t))

‖dik‖2
dik
∥∥2

= ‖zi(t)−yi‖2 + β2
it

∥∥∥ ∑
k∈Kit

c+ik(zi(t))

‖dik‖2
dik

∥∥∥2

+ 2βit
∑
k∈Kit

(yi − zi(t))
Tdik

c+ik(zi(t))

‖dik‖2
, (12)

where the first inequality follows from (3b) and the nonexpansiveness
property of projection. Since c+ik is a convex function and dik ∈
∂c+ik(zi(t)), it follows that

(yi−zi(t))Tdik ≤ c+ik(yi)−c+ik(zi(t)) = −c+ik(zi(t)),

where we used c+ik(yi) = 0 for all yi ∈ Gi. Moreover, by Cauchy-
Schwarz inequality∥∥∥ ∑

k∈Kit

c+ik(zi(t))

‖dik‖2
dik

∥∥∥2
≤ si

∑
k∈Kit

c+ik(zi(t))
2

‖dik‖2
.

As a result, using the above bounds in (12),

‖yi(t+1)− yi‖2

≤ ‖zi(t)−yi‖2 + (siβ
2
it − 2βit)

∑
k∈Kit

c+ik(zi(t))
2

‖dik‖2
,

and (11a) now follows from Assumption 1-c.
For the second inequality in (11b), note that

c+ik(zi(t))
2

≥ c+ik(yi(t))
2+2(c+ik(zi(t))−c+ik(yi(t)))c

+
ik(yi(t))

≥ c+ik(yi(t))
2 − 2|c+ik(zi(t))− c+ik(yi(t))|c+ik(yi(t))

≥ 3
4c

+
ik(yi(t))

2 − 4|c+ik(zi(t))− c+ik(yi(t))|2, (13)

where the last inequality follows from (8) (with a = |c+ik(zi(t)) −
c+ik(yi(t))|, b = c+ik(yi(t)), and η = 4). In addition,

|c+ik(zi(t))− c+ik(yi(t))|2

≤ L2‖zi(t)− yi(t)‖2 (Lipschitz continuity)

≤ L2γ2
t ‖qi(t) + Vi(t)‖2 (projection property)

≤ 2L2γ2
t (‖qi(t)‖2 + ‖Vi(t)‖2)

≤ 4L2γ2
t

(
L2(1+µ2K‖ei(t)−ē(t)‖2)+ 1

2‖Vi(t)‖2
)
. (by (9))

Substituting this bound in (13) gives us (11b).

Although inequalities in the lemma are similar to those in [9] and
[13], it contains an extra term ‖ei(t) − ē(t)‖2 in (11b), which is
critical in the analysis of our algorithm. This term measures the

disagreements in the agent’s local estimate of the global constraint
functions. Let us define

at :=
∑
i∈A ‖ei(t)− ē(t)‖2, t ∈ IN. (14)

In order to prove the convergence of the algorithm, we need to show
at decays to 0 with increasing t. As will be clear, much of the
challenge in establishing convergence lies in properly bounding this
term, which is not bounded a priori.

The following intermediate result relates at to ‖y(t)−w‖2 and
Φ(w)−Φ

(
PG(y(t))

)
for arbitrary w ∈ G and any choice of step size

γt to provide a bound on the progress per iteration of the algorithm.
Define β̃ := infi,t β̃it and ρ := β̃

4C with C in Assumption 1-c.

Lemma 8. Under Assumptions 1 and 2, the following holds for any
t ∈ IN, w ∈ G, and positive sequence {κt : t ∈ IN}:

Et

[
‖y(t+ 1)−w‖2

]
≤(1+κtK)‖y(t)−w‖2+γ2

tD1+γ2
t

(
µ2L2κ−1

t +D2
)
at

+ 2γt
[
Φ(w)−Φ

(
PG(y(t))

)]
−2ρd2

G(y(t)), (15)

where D1 = L2ρ−1 + 10(2L2N + ν) and D2 = 20L2Kµ2.

Proof. First, for any wi ∈ Gi, by (11a) in Lemma 7, we have

‖yi(t+1)−wi‖2≤‖zi(t)−wi‖2−β̃it
∑
k∈Kit

c+ik(zi(t))
2.

By the nonexpansive property of projection, the first term on the
right-hand side (RHS) can be expanded further as

‖zi(t)−wi‖2 ≤
∥∥yi(t)− γt(qi(t) + Vi(t)

)
−wi

∥∥2

= ‖yi(t)−wi‖2 + γ2
t ‖qi(t) + Vi(t)‖2

+ 2γt
(
qi(t) + Vi(t)

)T
(wi − yi(t)). (16)

Thus, from (2), (4) and (16), we get

‖yi(t+ 1)−wi‖2

≤ ‖yi(t)−wi‖2 − β̃it
∑
k∈Kit

c+ik(zi(t))
2

+ 2γt
(
∂yiΦ(y(t)) + Vi(t)

)T
(wi − yi(t))

+ 2γtµ
∑
k∈KG

∣∣e+ik(t)− ē+k (t)
∣∣ · ∣∣∂gik(yi(t))

T(wi− yi(t))
∣∣

+ γ2
t ‖qi(t) + Vi(t)‖2. (17)

We bound the last two terms in (17) as follows. First,

γ2
t ‖qi(t) + Vi(t)‖2 ≤ 2γ2

t

(
‖qi(t)‖2 + ‖Vi(t)‖2

)
≤ 2γ2

t

(
2L2µ2K‖ei(t)− ē(t)‖2 + 2L2 + ‖Vi(t)‖2

)
, (18)

where the second inequality follows from Lemma 4. Second, using
the Lipschitz continuity of gik and then the inequality in (8) of
Lemma 3, we have, for any κt > 0,

2γtµ
∑
k∈KG

∣∣e+ik(t)− ē+k (t)
∣∣ · ∣∣∂gik(yi(t))

T(wi− yi(t))
∣∣

≤
∑
k∈KG

2γtµL
∣∣eik(t)− ēk(t)

∣∣ · ‖wi − yi(t)‖

≤
∑
k∈KG

(
γ2
t µ

2L2κ−1
t |eik(t)− ēk(t)|2 + κt‖wi − yi(t)‖2

)
=γ2

t µ
2L2κ−1

t ‖ei(t)− ē(t)‖2 + κtK‖wi − yi(t)‖2. (19)
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Using the bounds of (18) and (19) in (17) and then summing over
i ∈ A gives us the following bound.

‖y(t+ 1)−w‖2

≤ (1 + κtK)‖y(t)−w‖2 −
∑
i∈A

β̃it
∑
k∈Kit

c+ik(zi(t))
2

+ 4NL2γ2
t + 2γ2

t ‖V(t)‖2 + γ2
t µ

2(L2κ−1
t + 4L2K)at

+ 2γt
(
∂Φ(y(t)) + V(t)

)T
(w − y(t)). (20)

Now, using the convexity and Lipschitz continuity of Φ and Lemma 3,
we have, for any ρ > 0,

2γt∂Φ(y(t))T(w − y(t)) ≤ 2γt
(
Φ(w)− Φ(y(t))

)
= 2γt

(
Φ(w)− Φ(u) + Φ(u)− Φ(y(t))

)
, ∀u ∈ G

≤ 2γt
(
Φ(w)− Φ(u)

)
+ 2γtL‖u− y(t)‖

≤ 2γt
(
Φ(w)− Φ(u)

)
+ γ2

t L
2ρ−1 + ρ‖u− y(t)‖2.

Taking u = PG(y(t)) yields

2γt∂Φ(y(t))T(w − y(t))

≤ 2γt
[
Φ(w)− Φ

(
PG(y(t))

)]
+ γ2

t L
2ρ−1 + ρd2

G(y(t)).

Using this bound in (20) and then taking conditional expectation with
Assumption 2 in place, we obtain

Et

[
‖y(t+ 1)−w‖2

]
≤ (1 + κtK)‖y(t)−w‖2

−
∑
i∈A

β̃itEt
[∑

k∈Kit
c+ik(zi(t))

2
]

+ γ2
t (L2ρ−1 + 4NL2 + 2ν) + γ2

t µ
2(L2κ−1

t + 4L2K)at

+ 2γt
[
Φ(w)− Φ

(
PG(y(t))

)]
+ ρd2

G(y(t)). (21)

We proceed to bound the second term on the RHS of (21). Using
(11b) in Lemma 7

∑
i∈A

β̃itEt

 ∑
k∈Kit

c+ik(zi(t))
2


≥
∑
i∈A

β̃itEK∼Ui

∑
k∈K

3

4
c+ik(yi(t))

2


−
∑
i∈A

8β̃itsiγ
2
t L

2(2L2 +Et
[
‖Vi(t)‖2

] )
−
∑
i∈A

16β̃itsiγ
2
t L

4µ2K‖ei(t)− ē(t)‖2.

Using Assumption 1-c and inequality β̃itsi =
(2−βitsi)βitsi

L2 ≤ 1
L2

(see Lemma 7),

∑
i∈A

β̃itEt

 ∑
k∈Kit

c+ik(zi(t))
2


≥
∑
i∈A

3β̃

4C
d2
Gi(yi(t))− 8γ2

t

(
2NL2 + ν

)
− 16γ2

t L
2µ2Kat

≥ 3β̃

4C
d2
G(y(t))− 8γ2

t

(
2NL2 + ν

)
− 16γ2

t L
2µ2Kat.

Using this bound in (21) with ρ = β̃
4C and then rearranging terms

yields (15). This completes the proof.

Recall that βit ∈ [β
i
, β̄i] ⊂ (0, 2s−1

i ). Thus, for all i ∈ A and

t ∈ IN, we have β̃it =
(2−siβit)βit

L2 ≥
(2−siβ̄i)βi

L2 > 0. As a result,
β̃ = infi,t β̃it is strictly positive, and so is ρ.

Note that we introduced a positive sequence {κt : t ∈ IN} in
Lemma 8, which will be chosen appropriately for various interme-
diate results below. The following corollary is obtained by choosing
w = PG(y(t)) and a constant sequence {κt = ρ/K : t ∈ IN} in
Lemma 8.

Corollary 1. For all t ∈ IN, we have

Et

[
‖y(t+1)− PG(y(t))‖2

]
≤ εdd2

G(y(t)) + γ2
tD1 + γ2

tD3at,

where εd = 1− ρ, and D3 = µ2L2Kρ−1+D2.

Because d2
G(y(t+ 1)) ≤ ‖y(t+ 1)− PG(y(t))‖2, an immediate

consequence of Corollary 1 is

Et

[
d2
G(y(t+ 1))

]
≤ εdd2

G(y(t)) + γ2
tD1 + γ2

tD3at. (22)

This result hints at a form of contraction property of the sequence
{d2
G(y(t)) : t ∈ IN}. If the sequence {at : t ∈ IN} were

bounded, together with Assumption 4, (22) would immediately imply
limt→∞ d2

G(y(t)) = 0. However, as at depends on ‖g(y(t +
1))− g(y(t))‖, which in turn depends on ‖y(t+ 1)− y(t)‖, such
convergence does not follow from (22). Below, we shed some light
on this through a customized linear coupling argument.

Lemma 9. Suppose that Assumptions 1–3 hold. There exist
ε, εa, εb ∈ (0, 1) such that the following holds:

Et

[
d2
G(y(t+ 1)) + εbbt+1 + εaat+1

]
≤ ε
(
d2
G(y(t)) + εbbt

)
+ γ2

t at(1 + εb)D3 + D̄pt, (23)

when γ2
t ≤ εa

εbD3
, where D3 is the constant given in Corollary 1,

D̄ = max{2D1, 3εaC
2
1 , 3εaKL

2D1}, and

bt =
∑t
s=0 σ

t−s(d2
G(y(s)) + 1

2γ
2
sasD3

)
, (24)

pt = γ2
t + σ2(t+1) +

∑t
s=0 σ

t−sγ2
s

with σ ∈ (0, 1) given in Lemma 2.

Proof. Let us apply Lemma 2 with θi(t) = ei(t) and εi(t + 1) =
∆gi(t) := gi(yi(t+ 1))− gi(yi(t)) and then sum over i ∈ A:

∑
i∈A
‖ei(t)− ē(t)‖ ≤C1σ

t + C2

t−1∑
s=0

σt−1−s∑
i∈A
‖∆gi(s)‖.

This bound and Cauchy-Schwartz inequality imply

1

2
at+1 ≤

1

2

(∑
i∈A
‖ei(t+ 1)− ē(t+ 1)‖

)2

≤ C2
1σ

2(t+1) + C2
2

( t∑
s=0

σt−s
∑
i∈A
‖∆gi(s)‖

)2

≤ C2
1σ

2(t+1) +
C2

2N

1− σ

t∑
s=0

(
σt−s

∑
i∈A
‖∆gi(s)‖2

)
. (25)

For the last inequality, we make use of the following inequalities: i)
(
∑
k hkmk)2 ≤ (

∑
k h

2
k)(
∑
km

2
k) with hk =

√
σt−k and mk =√

σt−k
∑
i∈A ‖∆gi(k)‖, ii)

∑t
s=0 σ

t−s ≤ 1
1−σ for all t ∈ IN, and

iii)
(∑

i∈A ‖∆gi(s)‖
)2 ≤ N∑i∈A ‖∆gi(s)‖2.

Next, we bound the last term in (25). Note that ‖∆gi(s)‖ ≤√
K‖∆gi(s)‖∞. Together with the assumed L-Lipschitz continuity

of gik in Assumption 1-b,

‖∆gi(s)‖2 ≤ KL2‖yi(s+ 1)− yi(s)‖2

≤ 2KL2(‖yi(s+ 1)− PGi(yi(s))‖
2 + d2

Gi(yi(s))
)
.
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Summing over i ∈ A and taking conditional expectation,

Es

[∑
i∈A ‖∆gi(s)‖2

]
≤ 2KL2(

Es

[
‖y(s+ 1)− PG(y(s))‖2

]
+ d2
G(y(s))

)
≤ 2KL2(2d2

G(y(s)) + γ2
sD1 + γ2

sasD3
)
,

where the last inequality follows from Corollary 1 and εd=1−ρ<1.
Using this bound in (25) after taking the expectation,

Et [at+1]≤2
(
C2

1σ
2t+2+C3bt+KL

2D1
∑t
s=0 σ

t−sγ2
s

)
(26)

with C3 = 4C2
2NKL

2(1− σ)−1 and bt given in (24), Note that

bt+1 = σbt + d2
G(y(t+ 1)) + γ2

t+1at+1
D3
2 . (27)

By taking conditional expectation of both sides and using (26),

Et [bt+1] ≤ (σ+γ2
t+1C3D3)bt +Et

[
d2
G(y(t+ 1))

]
+γ2

t+1D3ωt,

where ωt = C2
1σ

2t+2 +KL2D1
∑t
s=0 σ

t−sγ2
s . Using the bound

in (22) for the second term on the RHS of the above inequality yields

Et [bt+1] ≤ (σ + γ2
t+1C3D3)bt + εdd

2
G(y(t))

+ γ2
t atD3 + p̃t, (28)

where p̃t=γ2
t+1D3ωt+ γ2

tD1.
We now couple (22), (26) and (28) as follows for any εa, εb > 0

Et

[
d2
G(y(t+ 1)) + εbbt+1 + εaat+1

]
≤ εd(εb + 1)d2

G(y(t)) +
(
εbσ + γ2

t+1εbC3D3 + 2εaC3
)
bt

+ γ2
t at(1 + εb)D3 + p̄t, (29)

where

p̄t = 2εaωt + γ2
tD1 + εbp̃t

= 2εaωt + γ2
tD1 + εb(γ

2
t+1D3ωt+ γ2

tD1)

= (2εa + εbγ
2
t+1D3)ωt + (1 + εb)γ

2
tD1.

For any εb ∈ (0, 1) and γ2
t+1 ≤ εa/(εbD3), we have

p̄t ≤ 3εaωt + 2γ2
tD1

= 3εaC
2
1σ

2t+2+3εaKL
2D1

t∑
s=0

σt−sγ2
s + 2γ2

tD1 ≤ D̄pt, (30)

where D̄ and pt are given in the statement of the lemma. If we select
εa and εb sufficiently small, there exists ε<1 satisfying

max{εd(εb + 1), σ + 3εaε
−1
b C3} < ε. (31)

This, together with γ2
t+1 ≤ εa/(εbD3), implies that

εbσ + γ2
t+1εbC3D3 + 2εaC3 ≤ εεb. (32)

It remains to plug this bound and (30) into (29) to obtain (23), thus
proving the lemma.

It is now clear that the sequence {d2
G(y(t))+εbbt+εaat : t ∈ IN}

possesses a contraction property. As a result, we have the following.

Corollary 2. Under Assumptions 1–4, w.p.1.,

lim
t→∞

(
d2
G(y(t)) + εbbt + εaat

)
= 0.

Proof. Note that under Assumption 4 we have γt → 0 as t → ∞.
This and Lemma 9 then imply

Et

[
d2
G(y(t+ 1)) + εbbt+1 + εaat+1

]
≤ ε
(
d2
G(y(t)) + εbbt + εaat

)
+ D̄pt

for all t sufficiently large. Note also that, for any T ∈ IN,∑T
t=0 pt =

∑T
t=0

(
γ2
t + σ2(t+1) +

∑t
s=0 σ

t−sγ2
s

)
≤ σ2

1−σ2 +
∑T
t=0 γ

2
t +

∑T
t=0

∑t
s=0

(
σt−sγ2

s

)
= σ2

1−σ2 +
∑T
t=0 γ

2
t +

∑T
s=0 γ

2
s

(∑T−s
k=0 σ

k)
≤ σ2

1−σ2 + 2−σ
1−σ

∑T
t=0 γ

2
t . (33)

Thus, under Assumption 4,
∑
t∈IN pt < ∞. The convergence of

corollary now follows from Lemma 5 because ε < 1.

We are now ready to present the main convergence result of the
paper, which will be proved using Lemma 6 with

vt = d2
Y∗(y(t)) + d2

G(y(t)) + εbbt + εaat. (34)

Define Φ∗ to be the optimal value of the approximated problem in
(2). We also consider the following running average terms:

ỹ(s, t)=

∑t
k=s γky(k)∑t
k=s γk

, x̃(s, t)=

∑t
k=s γkPG

(
y(k)

)∑t
k=s γk

. (35)

Theorem 1. Suppose that Assumptions 1–3 hold and step sizes satisfy
limt→∞ γt = 0. Also, define γ̄ := supt γt.

(i) If Assumption 4 also holds, then dY∗(y(t))→0 w.p.1.
(ii) If E

[
d2
Y∗(y(t))

]
is bounded for all t ∈ IN, then

E
[
Φ
(
x̃(s, t)

)]
−Φ∗+

ρ

γ̄
E

[
‖ỹ(s, t)− x̃(s, t)‖2

]
≤ Es,t

with Es,t =
E [vs] +O(

∑t
k=s pk)

2
∑t
k=s γk

, 0 ≤ s ≤ t. (36)

Moreover, limt→∞Es,t=0 for all s∈ IN if
∑
t∈IN γt=∞.

Proof. First, we use Lemma 8 with w = PY∗(y(t)) for each t ∈ IN

to bound Et
[
d2
Y∗(y(t+ 1))

]
: under Assumptions 1–3,

Et

[
d2
Y∗(y(t+ 1))

]
≤ Et

[
‖y(t+ 1)− PY∗(y(t))‖2

]
≤(1+κtK)d2

Y∗(y(t))−ut+γ2
t µ

2L2κ−1
t at+γ

2
t (D1+atD2),

where ut := 2γt
[
Φ
(
PG(y(t))

)
− Φ∗

]
+2ρd2

G(y(t)) ≥ 0. Choosing
a positive sequence {κt = γ2

t µ
2L2/(εεa) : t ∈ IN},

Et

[
d2
Y∗(y(t+ 1))

]
(37)

≤
(
1 + κtK

)
d2
Y∗(y(t))− ut + εεaat + γ2

t (D1 + atD2).

By adding (23) and (37), we get the following bound on Et[vt+1]:

Et

[
d2
Y∗(y(t+ 1)) + d2

G(y(t+ 1)) + εbbt+1 + εaat+1

]
≤
(
1 + κtK

)
d2
Y∗(y(t)) + ε

(
d2
G(y(t)) + εbbt + εaat

)
− ut + γ2

t at(D2 + (1 + εb)D3) + D̄pt

=
(
1 + κtK

)
d2
Y∗(y(t)) + ε

(
d2
G(y(t)) + εbbt)

+
(
ε+ γ2

tD4)εaat − ut +O(pt), (38)

where D4 = (D2 + (1 + εb)D3)/εa and O(pt) = D̄pt +D1γ
2
t .

Part (i): From the definition of vt in (34) and (38), we have

Et [vt+1] ≤ (1 + αt)vt − ut +O(pt),

where αt = max{κtK, γ2
tD4} = γ2

t

(
max{µ2L2K/ε, (D2 +

(1 + εb)D3)}/εa
)
. Since

∑
t∈IN pt < ∞ (from (33) in the proof

of Corollary 2) and
∑
t∈IN γ

2
t < ∞ (Assumption 4), Lemma 6

tells us that the following holds w.p.1: (a)
∑
t∈IN ut < ∞, hence∑

t∈IN γt(Φ
(
PG(y(t))

)
− Φ∗) < ∞ and

∑
t∈IN d2

G(y(t)) < ∞,
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and (b) vt → v for some nonnegative RV v. Because
∑
t∈IN γt =∞

(Assumption 4), (a) implies lim inft Φ
(
PG(y(t))

)
= Φ∗. Also,

as d2
G(y(t)) + εbbt + εaat → 0 (Corollary 2), (b) implies

d2
Y∗(y(t))→ v as t→∞. Together with the continuity of Φ, they

imply v = 0 w.p.1.

Part (ii): Suppose that E
[
d2
Y∗(y(t))

]
is bounded for all t ∈ IN, i.e.,

E

[
d2
Y∗(y(t))

]
= O(1). Taking the expectation of (38), we obtain

the following for all sufficiently large t.

E

[
d2
Y∗(y(t+ 1)) + d2

G(y(t+ 1)) + εbbt+1 + εaat+1

]
≤ E

[
d2
Y∗(y(t)) + ε

(
d2
G(y(t)) + εbbt + εaat

)]
−E [ut]

+ γ2
t εaD4E [at] +O(pt)

≤ E
[
d2
Y∗(y(t)) + d2

G(y(t)) + εbbt + εaat
]
−E [ut] +O(pt),

where we used κtKE
[
d2
Y∗(y(t))

]
+ O(pt) = O(pt) in the first

inequality and
(
εεa+ εaD4γ

2
t

)
E [at] ≤ εaE [at] (for all sufficiently

large t) in the second. Using the definition of vt in (34), after
rearranging terms,

E [ut] ≤ E [vt]−E [vt+1] +O(pt)

which, together with the fact that E [vt+1] ≥ 0, implies∑t
k=sE [uk] ≤ E [vs] +O(

∑t
k=s pk). (39)

Next we bound the left-hand side of (39). Note that
t∑

k=s

uk =

t∑
k=s

(
2γk
[
Φ
(
PG(y(k))

)
− Φ∗

]
+ 2ρd2

G(y(k))
)

≥ 2

t∑
k=s

γk
[
Φ
(
PG(y(k))

)
− Φ∗ +

ρ

γ̄
d2
G(y(k))

]
≥ 2
( t∑
k=s

γk
)[

Φ
(
x̃(s, t)

)
− Φ∗ +

ρ

γ̄
‖ỹ(s, t)− x̃(s, t)‖2

]
,

where the last inequality follows from the convexity of Φ(·) and ‖·‖2
and the definitions of ỹ(s, t) and x̃(s, t) in (35). Using this bound
in (39) and dividing both sides by 2

∑t
k=2 γk,

E
[
Φ
(
x̃(s, t)

)]
− Φ∗ +

ρ

γ̄
E

[
‖ỹ(s, t)− x̃(s, t)‖2

]
≤
E [vs] +O(

∑t
k=s pk)

2
∑t
k=s γk

.

This proves statement (ii) of the theorem.

Remark 1. The boundedness condition of E
[
d2
Y∗(y(t))

]
in Theo-

rem 1(ii) is satisfied if Gi0, i ∈ A, are compact, which will likely hold
in many, if not most, cases of practical interest. Also, the convergence
rate of the algorithm obviously depends on the choice of step sizes.
For instance, if γt = O( 1√

t
), then Ebt/2c,t = O( 1√

t
) [1].

Remark 2. One can show that, when the weight matrix W is
fixed, any optimal point in Y∗ gives rise to a Nash equilibrium of
a state-based potential game similar to that of [10], in which the
cost function of an agent accounts for both its own local cost and
penalties based on its own and neighbors’ estimates of constraint
functions (eq. (8) in [10]). Thus, after the algorithm converges to an
optimal point of (2) and the agents have consistent estimates of global
constraint functions, no agent can decrease the aforementioned cost
by unilaterally changing its local optimization variables. We refer
a reader to [12, Section V] for a more detailed discussion on this
connection.

IV. CONCLUSION

We studied solving a constrained optimization problem using noisy
observations, and proposed a new distributed algorithm that does
not require sharing optimization variables among agents. Instead,
the agents update their local estimates of global constraints using a
consensus-type algorithm, while updating their own local optimiza-
tion variable based on noisy estimates of gradients of local objective
functions. We proved that (a) the optimization variables converge to
an optimal point of an approximated problem and (b) the tracking
errors of local estimates of constraint functions vanish asymptotically.
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