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Abstract: Deciding whether the mass spectra of seized drug evidence and a reference standard are 
measurements of two different compounds is a central challenge in forensic chemistry. Normally, 
an analyst will collect mass spectra from the sample and a reference standard under identical 
conditions, compute a mass spectral similarity score, and make a judgment about the sample using 
both the similarity score and their visual interpretation of the spectra. This approach is inherently 
subjective and not ideal when rapid assessment of several samples is necessary. Making decisions 
using only the score and a threshold value greatly improves analysis throughput and removes 
analyst-to-analyst subjectivity, but selecting an appropriate threshold is itself a non-trivial task. In 
this manuscript, we describe and evaluate the min-max test – a simple and objective method for 
classifying mass spectra that leverages replicate measurements from each sample to remove 
analyst subjectivity. We demonstrate that the min-max test has an intuitive interpretation for 
decision-making, and its performance exceeds thresholding with similarity scores even when the 
best performing threshold for a fixed dataset is prescribed. Determining whether the underlying 
framework of the min-max test can incorporate retention indices for objectively deciding whether 
spectra are measurements of the same compound is on-going work. 
 
Keywords: binary classification; electron ionization mass spectrometry; forensics; mass spectral 
interpretation; mass spectral libraries; min-max test; seized drug analysis. 
 
1. Introduction 

 
“Is it a fentanyl?” Drug analysts are routinely tasked with answering questions of this nature when 
presented with seized drug evidence. The most commonly employed analytical technique towards 
confirmatory tasks in seized drug analysis is gas chromatography mass spectrometry1; gas 
chromatography is used to physically and temporally separate the case sample into constituent 
components, and electron ionization (EI) mass spectrometry is used to help elucidate the molecular 
structure (identity) of each component. The mass spectra of suspected illicit compounds are 
compared to mass spectra of reference standards collected under identical conditions. 
 
A mass spectrum can be thought of as a roughly reproducible representation of a compound’s 
structural information; we expect replicate measurements to be self-similar, but we never expect 
replicate measurements to be identical. In some cases, a mass spectrum includes near complete 
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structural information, allowing it to be directly interpreted and the compound to be uniquely 
identified (see introductory examples in references2–4 among other textbooks). In most cases, 
however, mass spectra contain incomplete and non-unique structural information that render 
interpretation impractical without comparison to reference spectra. And while many mass spectral 
libraries5,6 and interactive software tools7,8 are available to assist in the interpretation process, the 
burden of decision-making still lies with the analyst.9 In an application area like seized drug 
analysis, where decisions must be made rapidly and analyst subjectivity can be of significant 
consequence, having an explainable numerical approach for deciding whether mass spectra are 
measurements of different compounds is an obvious need. 
 
We use the term similarity score to represent any numerical index that estimates the similarity 
between a pair of mass spectra. Although inconsistent in terminology and notation, several 
similarity scores have been explored in the literature.10–17 The most well-known in mass 
spectrometry is the dot product,11 or more commonly known as the cosine similarity in other 
pattern recognition applications.  The cosine similarity between mass spectra will evaluate to a 
real number between 0 and 1 arbitrary units (au), inclusive, with 0 au indicating that the spectra 
share no common peaks, and the value 1 au indicating that the spectra are identical. A refinement 
of cosine similarity is the identity match factor,17 based on the composite score described in the 
seminal paper by Stein and Scott.11 The identity match factor considers the ratio of relative 
intensities of adjacent peaks when estimating similarity, thus capturing subtle information about 
isotopic patterns that is not necessarily reflected in cosine similarity. In most software 
implementations, identity match factors have been scaled to 100 (e.g., AMDIS18) or 999 (e.g., 
NIST MS Search19) and are reported as integers; all similarity scores discussed in this manuscript 
remain unscaled values between 0 and 1 au.  
 
In general, mass spectra should be visually compared to confirm high (or low) similarity scores 
are not due to measurement inconsistencies (e.g., mass range) or numerical artifacts (e.g., many 
matching noise peaks contributing to high similarity scores. However, we can use a threshold 
similarity score for deciding whether two mass spectra are measurements of different compounds 
— a task we refer to as negative confirmation in this manuscript. For example, if the identity match 
factor between the mass spectrum of a case sample and the spectrum of a reference standard is 0.3 
au, the case sample is unlikely to be the same compound as the reference. Formally, we can think 
of this process in terms of binary classification and define the similarity score test as  
 
 similarity	score	test	(𝑀, 𝜏!) = 	 3

0, 𝑀 < 𝜏! ,
1, 𝑀 ≥ 𝜏! ,

   

 
where 𝑀 is a similarity score between two spectra, 𝜏! is a threshold similarity score, and class 
prediction 0 implies that the spectra are measurements of different compounds. Class prediction 1 
implies that the spectra are measurements of the same compound, but we know that confirming 
whether two samples are the same compound (positive confirmation) with mass spectral 
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comparisons alone is problematic as discussed later in the manuscript. The challenge with 
implementing the similarity score test for negative confirmation is that there is no obvious choice 
for a threshold value, especially not one that is universal across all classes of drugs and all varieties 
of similarity scores; equivalent similarity scores could be computed in very different situations 
(Figure 1). Algorithms and numerical approaches that produce counter-intuitive results and require 
analysts to make critical decisions are unappealing in forensics applications.20 
 

 
Figure 1: Example of two mass spectral comparisons demonstrating the difficulty interpreting similarity scores without visual 
inspection. The top example is a head-to-tail plot of two replicate electron ionization mass spectra of the same compound. The 
bottom example is a head-to-tail plot of two spectra of different compounds. Both pairs of mass spectra had equivalent identity 
match factors to the third decimal place. 

 
The min-max test was initially formulated during our recent work developing targeted gas 
chromatography-mass spectrometry methods for identifying synthetic cannabinoids21 and 
cathinones.22 We needed to determine if we could discriminate several pairs of closely eluting 
compounds based on their mass spectra. We wanted to avoid the ambiguity of threshold setting 
with a similarity score test and the subjectivity of visual comparison with manual interpretation. 
The min-max test was able to meet these requirements by leveraging replicate mass spectra to 
characterize spectral self-similarity within a sample and effectively remove subjectivity from the 
analysis. In this manuscript, we present the method more completely, with updated notation and 
refinements to reflect what we learned from our initial experimentation. We discuss how the min-
max test, by construction, has an intuitive interpretation for deciding whether spectra are measures 
of different compounds (negative confirmation), and demonstrate how it out-performs the 
similarity score test for general classification using EI mass spectra of assorted drugs.  
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2. Methods 
 

2.1 The min-max test 
 
At the core of the min-max test are replicate measurements. By computing similarity scores 
between replicate mass spectra of individual compounds, we have context for decisions about pairs 
of compounds. Assume we have two samples to compare: the first is an unidentified compound 
isolated from seized evidence, and the second is a standard reference compound. Let 𝑺𝟏𝟏 and 𝑺𝟐𝟐 
be sets of intra-sample similarity scores computed between two or more replicate mass spectra of 
samples 1 and 2, respectively. Let 𝑺𝟏𝟐 be the set of inter-sample similarity scores computed 
between the spectra of the two samples. Using these sets of values, we can formulate a spectral 
comparison index (𝛿$) that follows the general form 
 
 𝛿$ = 𝑓;𝑔(𝑺𝟏𝟏), 𝑔(𝑺𝟐𝟐)= − ℎ(𝑺𝟏𝟐), (1) 

 
where 𝑓(⋅), 𝑔(⋅), and ℎ(⋅) are functions chosen to reduce the input sets of data into single 
representative values. In the min-max test, we decide whether two samples are different 
compounds by comparing the most conservative estimate of intra-sample spectral similarity to the 
most generous estimate of inter-sample similarity. Formally, we compute the min-max index 
(𝛿!!) as 
   
 𝛿!! = min(min(𝑺𝟏𝟏) ,min(𝑺𝟐𝟐))	 − max(𝑺𝟏𝟐), (2) 

 
where the functions min(⋅) and max	(⋅) denote the minimum and maximum values contained in 
the specified sets, respectively. For ease of reading, we will drop the subscript from 𝛿!! and refer 
to the min-max index with the symbol 𝛿 as no other spectral comparison indices are computed in 
this manuscript. 
 
As presented in Eq. (2) and with score sets 𝑺𝟏𝟏, 𝑺𝟐𝟐, and 𝑺𝟏𝟐 constructed using similarity scores 
that evaluate between 0 and 1 au, the evaluated 𝛿 will be a real number between -1 and 1 au with 
practical values ranging between -0.1 and 0.9 au. The most intuitive employment of the min-max 
index is to assess whether 𝛿 > 0 au and infer that the compared sets of spectra are measures of 
different compounds; the larger the value of 𝛿, the more certain we are of the claim. If 𝛿 ≤ 0 au, 
there is at least some overlap in the observed intra and inter-sample spectral similarity and so we 
cannot confidently claim the samples are different compounds. 
 
A transformation such as 𝛿% = 1 −max(0, 𝛿) allows us to compare min-max indices more readily 
to similarity scores. The transformed min-max index evaluates between 0 and 1 au with uncertainty 
of a negative confirmation increasing with index values due to increased spectral similarity, as is 
the case with similarity scores. We can define the min-max test as 
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 min-max	test	(𝛿′, 𝜏&%) = 	 3
0, 𝛿% < 𝜏&! ,
1, 𝛿% ≥ 𝜏&! ,

   

 
where 𝜏&% is a min-max index threshold value, and prediction classes 0 and 1 implying that the 
spectra are measures of different compounds and the same compound, respectively. An intuitive 
employment of the min-max test in this formulation is to set 𝜏&! = 1 au. For the remainder of this 
manuscript, all discussion of min-max indices will reference these transformed values.  
 
2.2 Evaluation methodology 
 
To demonstrate and evaluate the min-max test, we collated previously published and newly 
measured mass spectra into a single collection. The collection contained 10 replicate 
measurements of 144 illicit drug standards (comprised of synthetic cannabinoids, cathinones and 
opioids), totaling 1440 mass spectra labeled with names and molecular formulae. With these mass 
spectra, we computed two min-max datasets, the first with min-max indices computed using cosine 
similarity as the representative similarity score, and the second using identity match factors. These 
datasets were constructed by computing the min-max indices between all possible pairs of 
compounds (144 x 144) using 3 spectra selected randomly from the 10 replicates, repeating the 
experiment 100 times. In cases where the same compounds were being compared, we ensured that 
unique replicates were selected (i.e., the exact same spectrum was never compared against itself). 
The resulting datasets contained 2073600 min-max indices each, approximately 0.7 % of which 
were computed between the same compound and the rest computed between different compounds. 
We also generated two similarity score datasets to evaluate the similarity score test for 
comparison. Each of these datasets were constructed by computing all possible non-trivial cosine 
similarity scores and identity match factors between the 1440 spectra, thus each dataset contained 
2072160 total scores. Approximately 0.6 % of the similarity scores in the datasets were computed 
between spectra of the same compound and the rest between different compounds. The raw mass 
spectra, computed datasets, and source code and scripts used to analyze results are available for 
review.23 
 
Performance measures: For convenience, we use 𝑝 to denote an index and 𝜏' to denote a threshold 
value associated with 𝑝. A positive prediction is when 𝑝 ≥ 𝜏', and a negative prediction is when 
𝑝 < 𝜏'. For a set of indices that can be mapped to binary classifications, the number of True 
Positives (TP) is the count of positive predictions associated with positive classification (i.e., the 
compared spectra were replicates of the same compound). True Negatives (TN) are the negative 
predictions associated with negative classification (i.e., the compared spectra were measurements 
of different compound). False Positives (FP) are positive predictions that should have been 
associated with a negative classification, and False Negative (FN) are the negative predictions that 
should have been associated with positive classifications. Several standard performance measures 
can be derived from these quantities. In this manuscript, we considered accuracy, recall or true 
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positive rate (TPR), specificity, precision, and false positive rate (FPR) as described by Fawcett24 
and summarized in Table 1.  
 
Table 1: Summary of performance metrics considered in this evaluation. TP is the number of correct positive predictions, TN is 
the number of correct negative predictions, FP is the number of incorrect positive predictions, and FN is the number of incorrect 
negative predictions.  

Metric Definition 

Accuracy  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Specificity 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁 

Precision  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

False Positive Rate (FPR) 
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 

 
Determining optimal thresholds: There are several options for determining optimal threshold 
values. One approach is to simply select the threshold value that optimizes the objective function 
(e.g., maximizes test accuracy) for the entire available dataset. While this method is likely to 
identify a unique threshold for each objective function, we gain no insights about how the 
identified threshold will perform with new data. A second approach is to use several subsets of the 
data to determine a range of threshold values, removing some data dependency and shedding some 
light on what an ideal threshold might look like for completely new data. In this manuscript, we 
obtained optimal thresholds using complete datasets and an iterative subset selection approach. 
For iteratives subsets, we randomly selected 10000 indices, ensuring that exactly 60 were values 
from replicate mass spectra, and repeated the process 1000 times. We determined threshold indices 
that maximized (1) accuracy, and (2) the difference between recall (TPR) and FPR.  
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3. Numerical Results  
 
To give a general overview of how similarity scores and min-max indices are distributed across 
our datasets, we generated box and whisker plots with indices distinguished as estimates of either 
different compounds or the same compound (Figure 2). Each box and whisker object describes the 
distribution of the specified index. Outlined boxes display the computed Inter Quartile Range 
(IQR), with the 2nd quartile (median) marked as a darkened line within the box, and the bottom 
and top edges of the box indicating the 1st and 3rd quartile indices, respectively. The upper whisker 
attached to each box indicates the maximum index within 1.5 IQR of the third quartile value, and 
the lower whisker is the minimum index within 1.5 IQR of the first quartile value. Indices greater 
than 1.5 IQR of the 1st or 3rd quartile are displayed as outliers (open circles) in the plot. We note 
that these data points are not outliers in the classical sense, as they do represent acceptable indices 
computed between pairs and sets of spectra. 

 
The boxplots clearly illustrate the impact of similarity score selection, cosine similarity (Fig 2a) 
or identity match factor (Fig 2b), on the constructed similarity score datasets, even though both 
use the exact same underlying mass spectra. For example, with a threshold of 0.9 au, the accuracy 
of the similarity score test using the cosine similarities dataset (Fig 2a) is over 98 %, with 99 % 
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Figure 2: Box and whisker plots summarizing the distribution of (a) cosine similarity scores, (b) identity match factors, (c) 
min-max indices computed using cosine similarities, and (d) min-max indices computed using identity match factors. Dashed 
horizontal lines indicate the range of overlapping indices computed between spectra of different and same compounds.  
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recall. The observed accuracy of the similarity score test using the identity match factors dataset 
(Fig 2b) and a threshold of 0.9 au is approaching 100 %, but with a recall of only 50 %. With the 
two min-max datasets (Figs 2c and d), the effect of similarity score selection is more subtle, and 
the indices computed between replicate measurents of the same compound hover close to the 1 au 
decision-making threshold we intuitively expected. The accuracy of the min-max test with a 
threshold of 1 au is approaching 100 %, with recall values also just under 100 %, using either 
dataset (Figs 2c and d). A comprehensive performance assessment of both tests using both 
similarity scoring selections and several fixed threshold values is provided in the Supplementary 
Information.  
 
Figures 2a and b also confirm that confident negative confirmations can be made using just the 
similarity score test. For example, there was not a single false negative (incorrect negative 
confirmation) using a threshold of 0.7 au with either of the similarity score datasets in this 
manuscript. However, using such a low threshold is a very inefficient filter. We define the gray 
area as the range of similarity scores that will falsely characterize negatives as positives using the 
similarity score test. The lowest observed cosine similarity score for all the positives in the cosine 
similarity dataset is 0.88 au. We refer to this value as the lower gray area threshold. There were 
370 pairs of different compounds where at least one of the computed cosine similarity scores was 
greater that then the lower gray zone threshold, and so would be falsely classified as the same 
compound if the lower gray zone threshold was used as the threshold in a similarity score test. Of 
these pairs, 100 % would be correctly classified as negatives using the min-max test with a 
threshold of 1 au. Similar results were observed with the gray area false positives from the 
similarity score test being correctly classified as true negatives using the min-max test when 
identity match factors were used to estimate spectral similarity (see Table S5 in Supplemental 
Information).  
 
The optimal decision-making thresholds for both maximizing the accuracy and maximizing the 
difference between recall and false positive rates using all combinations of tests and similarity 
scores are summarized in Table 2. The optimal threshold value for using the min-max test is always 
around 1 au, regardless of similarity estimate and objective function. There is at least one instance 
where the threshold that maximized the difference between recall and false positive rate was 0.975 
au. Because we used randomly selected subsets of data, we cannot easily disaggregate the exact 
conditions that led to that threshold value. The optimal threshold values for the similarity score 
tests varied more substantially with choice of similarity estimate and objective, but the tests 
performed well. That said, the objective values at the optimal threshold with the similarity score 
test were always less than the objective values using the min-max test with intuitive threshold 1 
au.  
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Table 2: Summary of optimal threshold values identified for maximizing test accuracy and difference between true positive rate 
(TPR) and false positive rate (FPR) using all available data and randomly selected subsets of data. The first value in each cell 
lists the optimal threshold for all available data followed by the objective value in parenthesis. The second line in each cell lists 
the range of values obtained from the randomized subsets (n = 1,000). 

Goal: Maximizing Accuracy Maximizing TPR-FPR 

 
Similarity Score 

Test 
Min-Max Test 

Similarity Score 
Test 

Min-Max Test 

Cosine 
Similarity 

0.984 (0.998) 
0.971 to 0.994 

1 (0.999) 
0.996 to 1 

0.902 (0.987) 
0.880 to 0.982 

0.995 (0.998) 
0.993 to 1 

Identity Match 
Factor 

0.881 (0.997) 
0.847 to 0.926 

1 (0.999) 
1   

0.742 (0.984) 
0.710 to 0.851 

0.999 (0.998) 
0.975 to 1 

 
4. Discussion 
 
To begin, we must acknowledge that our seemingly large datasets, with over 2 million data points 
each, represent a small fraction of the potential chemical space one might explore using EI mass 
spectrometry – we only considered mass spectra of 144 synthetic cannabinoids, cathinones and 
opioids. Additionally, our manuscript only evaluated the effect of two different similarity score 
choices.  That said, the numerical results presented in the previous section and as supplemental 
information support our notion that the min-max test can be an excellent method for objective 
negative confirmation. 
 
The original motivation for developing the min-max test was to overcome the known limitation of 
the similarity score test – a good decision-making threshold is difficult to select. While using 
cosine similarities and identity match factors to estimate spectral similarity is mature in its 
application, the rough reproducibility of mass spectra and non-linearity of the computations 
underlying these similarity estimates make them difficult to interpret without visual appraisal, 
hence limiting their objectivity. In our study, we were able to identify a range of optimal thresholds 
to maximize similarity score test accuracy and the difference between recall and false positive rate 
using both cosine similarities and identity match factors. These performance results give us a new 
data-driven basis from which to select decision-making thresholds for similarity score tests going-
forward, yet these values lack the type of intuitive grounding necessary to be completely satisfying. 
And as with any quantity derived from data, there is concern that the dataset used to determine 
optimal thresholds was inadequate or inappropriate for future applications of the similarity score 
test.  
 
Selecting a threshold value for the min-max test is intuitive. A min-max index of 1 au means that 
the minimum self-similarity observed within the sets of replicate spectra is equal to the maximum 
similarity observed between the spectra from either set, implying that the sets of spectra are not 
discernible. The performance results for the min-max test using the full dataset and the threshold 
of 1 au were excellent, with accuracy, recall and specificity all at least 99.8 %, regardless of 
similarity score imposed on the method. Using a slightly more conservative threshold value of 
0.977 au, we have slightly worse accuracy and specificity, but observe 100 % recall.  
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The obvious limitation of the min-max test is that it requires replicate mass spectra of each of the 
compared samples. In an application like seized drug analysis, this requirement is likely not an 
issue as there is often enough seized evidence and reference standard to take several replicate 
measurements. However, it is not impossible that a lack of material or analysis time make taking 
replicate measurements impractical. One useful strategy in these scenarios is to run the similarity 
score test first, followed by the min-max test if the result falls within the gray area as demonstrated 
in the numerical results. The other more subtle limitation of the min-max test is that poor quality 
spectra (e.g., spectra containing contaminants, or measured to inconsistent mass limits) will 
produce unreliable results. The effectiveness of the min-max test stems from our ability to quantify 
the conceptual notion of self-similarity. If a poor replicate is included in the test, our understanding 
of self-similarity is misrepresented in the min-max index, and the utility of the min-max test is 
essentially void. Alternative spectral comparison indices can be formulated using the general 
framework in Eq. (1) that are less susceptible to failing when provided a single incorrect 
measurement (e.g., choosing function 𝑔(⋅) to select the median value contained in the set). 
However, these alternate function choices may lack the simple and intuitive justifications that 
make the min-max test so satisfying. The similarity score test is also susceptible to failure if 
provided with poor quality mass spectra; this limitation is far more self-evident and is presently 
defenseless. 
 
Our manuscript focused on the utility of the min-max test for exclusionary evidence (negative 
confirmation tasks). Identifying compounds (positive confirmation) with mass spectrometry is 
appreciably more difficult. The performance metric of interest for positive confirmation tasks 
would be precision; the fraction of positive predictions that are true positives. With our datasets 
and a threshold of 1 au, the precision of the min-max test precision was greater than 85 % (using 
either cosine similarity or identity match factors) with nearly 100 % recall.  This means that up to 
15 % of positive predictions were false positives. Given that our dataset consists of several pairs 
of isomeric drugs, with near identical mass spectra, this high false positive rate is not surprising. 
A well-known strategy for enhancing the value of similarity scores is to combine them with 
measures from orthogonal technologies such as retention indices obtained from gas 
chromatography.25–27 Exploring how we can effectively combine retention indices within on our 
framework of spectral comparison indices using replicate measurements for the purposes of 
objective positive confirmation is on-going work in our lab.   
 
5. Conclusions 
 
Forensic chemists are routinely required to make consequential decisions as quickly as possible. 
One example of a major decision is confirming that seized evidence does not contain an illegal 
drug (negative confirmation). The traditional method employed for this task is gas chromatography 
mass spectrometry followed by mass spectral interpretation. While effective, this approach is 
inherently subjective. An alternative is to compute numerical estimates of mass spectral similarity 
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and use these values to make decisions. Unfortunately, setting decision making thresholds is a non-
trivial challenge, especially across various classes of drugs. In this manuscript, we introduced the 
min-max test as an alternative method for negative confirmation using mass spectra. We discussed 
how selecting a threshold for the min-max test is intuitive and demonstrated that the method out-
performs automated decision-making using spectral similarity estimates and threshold values, 
even when the threshold has been optimally chosen for a fixed dataset.  
 
In addition to being effective, algorithms and software tools must be objective and explainable to 
be of any practical use in a forensic science setting. We constructed the min-max test with these 
two considerations in mind. We believe the min-max test will be an indispensable tool for forensic 
chemists performing negative confirmation tasks using mass spectra, and that this manuscript 
provides a template for further developing objective and explainable methods in the forensic 
sciences. 

 
6. Supporting Information 
 
Comprehensive performance results tables for all similarity score and min-max tests. 
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