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Due to weak light-matter interaction, standard chemical vapor deposition (CVD)/exfoliated single-layer
graphene-based photodetectors show low photoresponsivity (on the order of mA/W). However, epitaxial
graphene (EG) offers a more viable approach for obtaining devices with good photoresponsivity. EG on 4H-SiC
also hosts an interfacial buffer layer (IBL), which is the source of electron carriers applicable to quantum opto-
electronic devices. We utilize these properties to demonstrate a gate-free, planar EG/4H-SiC-based device that
enables us to observe the positive photoresponse for (405-532) nm and negative photoresponse for (632-980)
nm laser excitation. The broadband binary photoresponse mainly originates from the energy band alignment of
the IBL/EG interface and the highly sensitive work function of the EG. We find that the photoresponsivity of the
device is > 10 A/W under 405 nm of power density 7.96 mW/cm? at 1 V applied bias, which is three orders of
magnitude greater than the obtained values of CVD/exfoliated graphene and higher than the required value for
practical applications. These results path the way for selective light-triggered logic devices based on EG and can
open a new window for broadband photodetection.

© 2021

1. Introduction

tion (CVD) monolayer graphene yield photodetector devices that suffer
from low-photoresponsivity [19-22] due to weak optical absorption

Recently, graphene has attracted much attention in the area of opto-
electronic devices due to its high carrier mobility, optical transparency,
mechanical flexibility, strength, and thermal stability [1-8]. Ultrafast
and broadband absorption make graphene an ideal candidate for broad-
band photodetectors [9,10], which are crucial for next-generation opto-
electronic applications in national defence, biological imaging, chemi-
cal sensors, displays, and spectroscopy [2,3,11-17]. In particular, de-
signing a binary photoresponse device based on graphene alone would
be highly beneficial for optical signal processing and logic device appli-
cations [18]. However, exfoliated pristine and chemical vapor deposi-

* Corresponding author.
** Corresponding author.
*+ Corresponding author.
E-mail addresses: haider.golam@jh-inst.cas.cz (G. Haider),
ctliang@phys.ntu.edu.tw (C.-T. Liang), poda@mail.ntust.edu.tw (P.-D. Hong).

https://doi.org/10.1016/j.carbon.2021.07.098
0008-6223/© 2021

[9] and ultrafast recombination photogenerated carriers in the
graphene layer before getting separated by the electric field [23,24].
Therefore, developing a better-performing graphene-based binary pho-
todetector is highly desired. Wide-bandgap silicon carbide (SiC)- and
GaN-based solid-state photodetectors are popular due to their reliabil-
ity and lightweight. Specifically, epitaxial graphene (EG) on SiC could
be an alternative choice for these practical optoelectronic applications
due to its high breakdown fields, inherent bandgap induced by the un-
derpinning interfacial buffer layer (IBL), and its metrology-grade qual-
ity [25-32].

Previous reports on SiC-based photodetectors include single pho-
toresponses either in the ultraviolet (UV) or visible region [33-37]. Re-
cently, non-local photodetection in graphene [38] and substrate-
induced photofield effects in EG Refs. [39,40] have been reported. CVD
graphene on SiC has been shown to possess a hysteretic response to
photoexcitation [41], and asymmetric metal-EG interfaces are reported
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to have a tunable response to the excitation across the junction [42,43].
Li et al. reported the binary photoresponse at the planner n-n-n junction
in an EG film [44]. These photodetector devices require high electrosta-
tic potentials and light exposure simultaneously. The photoresponsivity
quickly falls off to zero when the electrostatic potential approaches
zero. In many sensing applications, top or back gating is not always fea-
sible due to complicated structures. To overcome this problem, it is im-
portant to develop a gate-free, EG/4H-SiC-based photodetector that
can operate even in the broadband region. However, the role of IBL
layer for photodetection is not clearly understood. Thus, fabrication
and characterization of EG/4H-SiC-based devices will be beneficial for
understanding charge transfer through different constituent layers
[45-47] and magneto-transport experiments [45,46].

In this work, we demonstrate electrostatic gate-free, broadband, and
binary photoresponses in EG/4H-SiC-based devices having the simplest
device design. We use as-grown bare monolayer EG on a 4H-SiC sub-
strate to fabricate our devices. We report both positive and negative
photoresponse observations without the assistance of electrostatic gat-
ing under the illumination of the different wavelengths of laser light.
Additionally, our devices responded strongly to excitation wavelengths
ranging from 405 nm to 980 nm, yielding responsivities higher than 10
A/W under 405 nm of power 7.96 mW/cm?, which is three orders of
magnitude higher than those based on CVD and exfoliated graphene.
This unusual phenomenon motivates us to study the photodetection in
EG/4H-SiC-based devices as well as to test the role of IBL in the pho-
todetection process. Further confirmation of the photodetection mecha-
nism is provided by carefully studying two different control devices
without the IBL on the similar SiC substrate: (1) a thin layer of exfoli-
ated graphene with pre-fabricated electrodes on only bare SiC to see the
effects of the IBL and metal contacts, (2) a dummy device with two elec-
trodes on only SiC to understand the role of the substrate.

2. Experimental details

The detailed growth process of high-quality epitaxial graphene can
be found in Refs. [47,48]. EG is formed when Si atoms sublimate from
the silicon face of SiC. Samples were grown on square SiC chips 7 x 7
mm? to 21 X 21 mm? diced from on-axis 4H-SiC (0001) semi-
insulating wafers (CREE). Chips were first cleaned by ultrasonication in
acetone and isopropanol (IPA) followed by hydrofluoric (HF) acid and
processed with AZ5214E for polymer-assisted sublimation growth
(PASG) [49]. The face-down configuration [50] in combination with
PASG promotes homogeneous growth [47]. The high-temperature an-
nealing process was performed in an ambient argon environment at
1850 °C for 240 s-300 s with a graphite-lined resistive-element furnace
(Materials Research Furnaces Inc). The heating and cooling rates were
about 1.5 °C/s. Note that in the thermal decomposition of SiC at high
temperatures in an argon atmosphere, Si atoms sublimate and carbon
atoms nucleate and reconstruct into amorphous interlayer
(64/3 x 64/3)R30 structure, with the decomposition process allowing
IBL to change into graphene while forming a new IBL between the EG
film and SiC substrate. About one-third of the carbon atoms in the IBL
are covalently bound to the (0001) face of the SiC substrate. The inter-
action of remaining silicon bonds from the SiC surface, with the
graphene layer influences the electronic transport properties. This, to-
gether with the orbitals of graphene and SiC overlapping, produces the
intrinsic n-type doping in EG [51,52].

After evaluation and characterization of successfully grown EG with
Raman spectroscopy and atomic force microscopy (AFM), we deposited
a thin protective layer of Pd and Au (10 nm/15 nm respectively), using
a Denton Vacuum Infinity 22 e-beam evaporator on the EG to prevent
organic contamination. Then we spin coat lift-off resist (LOR) 3A for the
undercut and then S1813 photoresist at 6000 rpm each, followed by
standard baking procedures of each photoresist. Next, we wrote the
graphene structure using a Heidelberg maskless aligner (MLA150) and

developed samples in MF26A for 1 min, followed by a wash with deion-
ized (DI) water. Once the pattern developed nicely, again we deposited
a gold layer (80 nm) as a metal mask followed by lift-off in PG remover
at 80 °C for 30 min and washed it with DI water and IPA. After that, EG
is etched at room temperature into the desired device shape with 40
sccm Ar/O, plasma using the Unaxis 790 Reactive Ion Etcher (RIE) tool
for 7 min using a pressure of 4 Pa, 100 W power, and 300 V DC voltage.
Once the graphene pattern is in the desired shape, we follow the same
recipe to spin coat LOR 3A, Shipley S1813, and develop after UV expo-
sure for the Au base contact electrodes. Next, we deposited niobium ti-
tanium nitrate (NbTiN) for electrodes using a Denton Vacuum Discov-
ery 550 sputtering tool followed by lift-off in PG remover. Finally, we
remove the protective layers from the EG region using a solution of 1:1
aqua regia to deionized water [53,54].

For the thin layer of exfoliated graphene device and transfer tech-
nique, please see our previous work [55]. In short, we used natural kish
graphite from Graphene Supermarket to fabricate the exfoliated
graphene device on a similar SiC substrate. In order to maintain the ex-
foliated graphene film quality, we mechanically exfoliate the thin layer
of graphene onto a polydimethylsiloxane stamp. Then we dry-transfer
graphene onto pre-patterned electrodes on the SiC substrate by the vis-
coelastic method without any polymer films attached to our flakes.

The Raman spectra were measured with a WITec alpha300 R spec-
trometer equipped with a piezo stage. The excitation laser wavelength
532 nm and the laser power 1 mW were used. The laser was focused on
the sample with a 100 X objective to a spot with a diameter of around
500 nm. Asylum Cypher high-resolution AFM was used to image the
SiC terraces and EG growth quality at the atomic level. UV-visible spec-
tra were measured with a UV/Vis/NIR spectrometer (PerkinElmer
Lambda 1050). The current-voltage measurements were done using a
Keithley 2400 source meter.

3. Results and discussion

Raman spectroscopy is one of the most efficient techniques to study
the doping, strain, quality with respect to defects, and layer number of
graphene, in general. The Raman spectra of EG/4H-SiC are shown in
Fig. 1(a) without background subtraction, where all the important
peaks can be observed and are marked. Here, we observe a symmetric
2D peak at about (2716.6 = 0.8) cm~! and a graphene G peak at
around (1604.5 + 0.6) cm~, including SiC peaks around at 1524 and
1718 ecm~! which are consistent with previous reports [56,57]. The in-
significant magnitude of the defect-associated D peak at around
(1384.5 = 8.9) cm™! suggests that EG is nearly defect-free. Addition-
ally, the Raman spectra show characteristics of monolayer EG on
4H-SiC (0001) with an FWHM of (41.5 = 1.8) cm~! and a peak posi-
tion of (2716.6 + 0.8) cm™!, produced using the combined methods of
face-to-graphite and PASG as inhibitors of growth [49]. We used an
Asylum Cypher high-resolution AFM to image the terraces in the SiC
substrate at the nanoscale level. Fig. 1(b) shows an AFM image of a typ-
ical uniform terrace structure of monolayer EG over the substrate. The
Si face to graphite technique and PASG allow exceptionally low steps
<1 nm over a large scale (see inset of Fig. 1(b)). The uniformity in trace
and nm scale step height indicate that graphene is uniform and of high
quality for optoelectronic applications with minimum resistance
anisotropy.

After evaluating and characterizing grown EG with Raman and
AFM, a photolithography process (see Fig. 1 (c)) was implemented to
fabricate all devices, including steps for NbTiN contacts [53,54]. The
devices are imaged by a confocal microscope [58]. Fig. 1 (d) is a magni-
fied image of our Hall bar device. Small bilayer EG regions (as indicated
by an arrow) form along with the step-edge facets because the edges of
many SiC (0001) atomic layers are exposed through step bunching. No
extended regions of the bilayer are observed. The potential reasons for
the negative impact of step edges are variations of the doping level,
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Fig. 1. Fabrication and optical characterization of the device. (a) Raman spectrum of the EG/4H-SiC showing 2D, G and D peak around (2716.6 + 0.8) cm™,
(1604.5 + 0.6) cm~! and (1384.5 + 8.9) cm™!, respectively including SiC peaks around 1524 cm~! and 1718 cm™!. (b) The AFM image shows the uniform surface
morphology of the EG on the SiC substrate. The inset shows the height profile with typical terrace step heights of about 1 nm. (c) Schematic of the residue-free device
fabrication process. After the EG growth on SiC, a thin layer of palladium and gold is deposited to protect the film. Photolithography and sputtering were then used to
complete the device. Finally, the protective metals are etched from EG with diluted aqua regia. (d) The confocal microscopy image of the EG/4H-SiC-based device is
shown. The image highlights the homogeneity of the EG film, showing a few small patches containing bilayers, as indicated by arrows. Inset is the confocal image of a
complete device in which fourteen NbTiN electrodes are connected to the EG. (A colour version of this figure can be viewed online.)

scattering centers, and strain due to a local detachment of the EG layer
at the edges of the terrace of the substrate. Fabricating Hall bar enables
us to host an array of photodetectors, allows simultaneously determin-
ing the carrier density and mobility via different modes of transport
measurement with and without magnetic field B.

We used an Oxford Triton 200 dilution refrigerator system in our
previous low-temperature magneto-transport measurements on the de-
vices [55] to determine the carrier density (#) and mobility (x). The for-

1
enpxx

_ 1
mulas " = e(@) and u = were used to determine the carrier den-
dB

sity and mobility of EG/4H-SiC-based device at 100 mK. Here e is the
elementary charge, B is the applied magnetic field perpendicular to the
graphene plane, and R,, is the Hall resistance. The carrier density and
mobility of EG/4H-SiC-based device are found to be about
1.58 x 10!2 cm~2 and 2350 cm? V-1 s1, respectively [55], and which
provide a signature of high-quality n-type doped graphene.

The optoelectronic characterizations of the device were performed
using a Keithley 2400 source meter and under the excitation of laser
photons of different flux densities and energies at ambient conditions
without any focusing lenses. The current-voltage (I-V) characteristics of
the heterojunction device were studied under the different illumination
and power density of (405, 532, 640, 808, and 980) nm laser excitation,
as shown in Electronic Supporting Information (ESI) (Fig. S1). The cor-
responding photocurrent-voltage plots are shown in Fig. 2, where pho-
tocurrent, viz. photo-source-drain-current, is defined as, Alg, = |(Iligm-
Lig)|-

The -V characteristics of the device shown in Fig. 2 and Fig. S1 are
linear, consistent with the previous reports of graphene-based field-
effect transistors on arbitrary substrates [37,42]. Interestingly, we
found that the obtained device current possesses different polarities un-

der the illumination of different excitations, shown by the arrows in ESI
Fig. S1. For the higher energy excitations 405, and 532 nm, as shown in
Fig. 2 (a) and (b), positive photoresponses and, for the lower energy ex-
citations 633-980 nm, Fig. 2 (c - f), shows negative photoresponses
were observed. Additionally, it is found that the photocurrent for the
405 nm excitation is much higher and gradually decreases with inci-
dent photon energy.

To demonstrate photodetection, we studied photo-switching of the
device current under periodic illumination of different light sources.
The dynamic photo-source-drain current studied under the illumination
of the same photon flux of ~79.6 mW/cm? for different lasers of wave-
length from 405 nm to 980 nm at a bias voltage of Vps = 1 V is shown
in Fig. 3(b).

As observed in the -V characteristics, the dynamic photocurrent
also possesses the following two properties: (i) under the higher energy
excitation (405 and 532 nm), the photoresponse is positive (see Fig. 3
(b)). (ii) For 632-980 nm, negative photoresponses were observed, and
the photocurrent gradually decreased with excitation energy, as shown
in Fig. 3 (b). We repeatedly measured the device over an extended pe-
riod under different powers to demonstrate the stability and repro-
ducibility of the observation, as shown in the ESI (Fig. S2). The pho-
tocurrent at low energy excitation shows saturation behaviour, while
the photocurrent at higher energy excitation with a similar light on/off
frequency remains unsaturated. To obtain a saturated photocurrent un-
der the higher energy excitation, we illuminated the devices with an ex-
tended period, as shown in ESI (Fig. S3).

The broadband binary photoresponse of the EG/4H-SiC-based de-
vice can be explained in terms of absorption in both the IBL and EG as
well as the photogenerated charge transfer between them. To further
understand the role of the IBL, we have also studied devices with just
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Fig. 2. Absolute photocurrent vs. voltage characteristics of the EG/4H-SiC based device under different power densities of (a) 405, (b) 532, (c) 633, (d) 808, and (e)
980 nm laser excitations, obtained from I-V characteristics shown in Fig. S1. The values of the power densities are mentioned in each panel. (A colour version of this

figure can be viewed online.)
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Fig. 3. (a) Schematic illustration of the EG/4H-SiC-based device and two-probe photodetector measurement setup with IBL under EG. (b) The dynamic photore-
sponse of the EG/4H-SiC-based device under 405, 532, 632, 808, and 980 nm excitation of intensity 79.6 mW/cm? at Vps = 1 V. The switching behaviour of the
device is marked as ON (light yellow) and OFF (light blue). (A colour version of this figure can be viewed online.)

SiC (substrate) and a thin layer of exfoliated graphene on SiC (without
IBL), both of which show a negligible photoresponse compared to the
EG/4H-SiC-based device (see ESI Figs. S4 and S5). According to these
observations, it is clear that the IBL plays a significant role in photode-
tection in EG/4H-SiC-based devices. Recent investigations of the opto-
electronic properties of IBL reveal that it exhibits a bandgap due to
structural imperfections (thickness nonuniformity, ripples, domains
with different doping levels, etc.) that appear during EG formation
[25-31]. Therefore, it could be expected that the IBL plays a critical
role in the broadband absorption spectra due to the absorption at differ-
ent electronic levels. Combined with the EG layer contribution to the
broadband absorption, the reported observations of the excitation en-
ergy-dependent IBL binary photoresponse behaviours appear reason-
able but still require clarification.

To understand the observed broadband binary photoresponse more
clearly, the energy band diagram of the device is drawn in Fig. 4 under
different laser illumination [59-62]. It is reported that the IBL in the
EG/4H-SiC-based system possesses a variable bandgap between the
wide-bandgap 4H-SiC of 3.2 eV due to the graphene-substrate interac-
tion induced bandgap and sublattice symmetry breaking (about 0.2 eV)
[25-31]. Additionally, such layer accommodates massive deep-level
trap centers, which efficiently n-dope the EG layer [31]. As a result, a
built-in electric field (E,) is generated in thermal equilibrium at the
IBL/EG interface. This causes an upward band bending at the interface
that assists the migration of photogenerated charges at the interface
(Fig. 4 (a)). For laser excitation from 632 to 980 nm, the photocurrent
is dominated by the absorption in the graphene layer. This is due to the
fact that such low-energy excitations are incapable of efficient genera-
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Fig. 4. The schematic illustration of the energy band diagram of the EG/4H-SiC-based system showing the photocurrent generation process for the excitation of
632 nm and larger (a), as well as 532 nm and lower wavelengths (b). VB and CB represent the valence and conduction band of SiC, the dotted lines between VB and
CB resemble the deep defect levels of IBL, Er is the Fermi energy of the system. (A colour version of this figure can be viewed online.)

tion of photocarriers both from the valence band (VB) of SiC and the
deep defect levels of the IBL. Owing to the presence of Ey, the photogen-
erated electrons from the EG transfer to the SiC layer on a time scale of
0.3 fs, leaving photogenerated holes in the graphene layer [63]. As a re-
sult, the Fermi energy of the graphene layer reduces, which causes the
lowering of the device current, as shown in Fig. 3 (b). The stark contrast
between the photoresponses for 532 nm and that for 405 nm can be un-
derstood when considering the wide bandgap, wherein an excitation for
SiC is not possible. The defects in the IBL can enhance the intrinsic ab-
sorption in monolayer EG, which results in reduction of negative
charges in the EG layer. However, it is known that in ambient condi-
tions, physisorbed gas molecules [64] in single layer graphene effi-
ciently release from the layer under those high energy excitations,
which as a result increases the n doping in the EG layer, see Fig. 4(b)
[59,65-67] and a positive photocurrent. Note that releasing such ad-
sorbed gases is much slower than the interlayer charge transfer time
scale [59,67]. Thus, the transient photocurrent response is found to be
slower. More explicitly, as shown in Fig. 4(b), the photoabsorption at
the layers cause electron deficiency due to the electron transfer from
graphene to IBL. However, the release of ambient gas molecules causes
n doping to the graphene layer, which surplus the electron deficiency
due to photon absorption. This competition and slow release of adsor-
bates cause a slower change of the device current [68]. On the other
hand, the release of ambient gas molecules in lower-energy excitation is
not significant [69-71]. Additionally, the photoinduced interfacial
charge transfer process in the EG-IBL interface due to the lower energy
excitations is an ultrafast phenomenon [63], which results in a faster re-
sponse. In our recent study on ZnO-graphene-based phototransistors,
we demonstrated that application of gate voltage significantly influ-
ences the photoinduced adsorption/release processes; and a rapid satu-
ration is achieved by applying a negative gate voltage [67]. No such ex-
ternal electric field is applied here; thus, the process remained slow.
The dynamic photocurrent for higher energy excitations (405-532 nm)

can be expressed as, Alg, = AIP,,{I —exp (—f)}, where, Alp,is the

saturated photocurrent of the device, 7, is the response time. Similarly,
for low energy excitations (633-980 nm), the dynamic photocurrent

can be expressed as, Algy = Alp, {exp (—Ti) - 1} [59,67]. Thus, the

magnitude of the obtained photocurrent, Algpis dependent on the repe-
tition rate of the incident laser pulses. When the frequency is higher
than the characteristic frequency of the device (1/7,), an unsaturated
photocurrent is obtained, which results in an underestimated device
performance [72]. We expect that, for measurements under vacuum, af-
ter the arrival of first few higher energy pulses, the photocurrent will
switch its polarity, and it is expected to show a negative photoresponse
for all of the excitation energies. The scenario will be different under
the controlled environment of different gases [71].

The responsivity R is an important parameter to assess the photode-
tection ability of the device, and it is defined as the photocurrent gener-
ated per unit power of the incident light [73] and can be written as

_ AT @)
TP’

€9)

where |All is the absolute photocurrent measured in amperes (A), and P
is the incident light power on the active device area measured in watts
(W). The wavelength-dependent photoresponsivity of the device is
shown in Fig. 5 (a), where the maximum responsivity was observed for
405 nm excitation, which agrees well with previous work [36]. The
EG/4H-SiC-based device has higher absorption in the high energy re-
gion; thus, the obtained behaviour of photoresponsivity is consistent
with the absorption profile of the composite, as shown in Fig. 5 (a). The
highest value of the photoresponsivity is found to be 10 A/W for the
405 nm excitation and 1.7 A/W for the 532 nm excitation at a power
density of 7.96 mW/cm? and applied bias of 1 V. Responsivity as a
function of incident power density is shown in Fig. 5 (b) for 405 nm ex-
citation. With the gradual enhancement of power, the photoresponsiv-
ity is found to decrease exponentially. The decrease results from the
photocurrent not scaling with the incident power due to saturable ab-
sorption of graphene, filling of trap states, etc., consistent with previous
reports [59,67]. The responsivity of the devices under different laser ex-
citations at a constant power density of about 79.6 mW/cm? has been
tabulated in Table 1.
The photocurrent gain (I') of the device can be defined as,

hv |A
PP e @
where hy is the photon energy (1240.59/A (nm)), |AI| is the absolute
photocurrent, e is the elementary charge, P is the incident power, and 5
is the quantum efficiency for carrier generation per absorbed photon.
For simplicity, we assumed n = 1 to underestimate the I, value. Fig. 5
(c) shows the spectral variation of gain (I"), which has a similar varia-
tion with R and is nearly identical to the absorption profile of the sys-
tem for lower energy excitations. The strong deviation of the R and '
profile from the absorption spectrum at higher energy is due to the in-
volvement of the physisorbed molecule in the graphene layer, which
makes the photocurrent higher.
The specific detectivity D* is another key parameter to characterize
the sensitivity of the photodetector. The Jones unit is defined to be
10-2 m Hz/2 W-L. D* is expressed by the following equation:

D¥ = R\/(_l
N \/2e1d,

3
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4H-SiC-based devices, respectively. The lines joining the data points are a guide to the eye only. The Jones unit is defined to be 10~2 m Hz!/2 W-1. (A colour version

of this figure can be viewed online.)

Table 1

Photoresponse characteristic parameters of our EG/4H-SiC-based device under different illumination wavelengths at fixed applied voltage and power density.

Wavelength (nm) Responsivity (A/W)

(@Vps = 1V, 79.61 mW/cm?)

Gain (@Vps = 1V, 79.61 mW/cm?2)

Detectivity (x107 Jones)
(@Vps = 1V, 79.61 mW/cm?)

Response time (T45) () Recovery time (i) (5)

405 2.457 7.57 1.72 17.37 15.61
532 0.437 1.01 0.261 15.25 13.68
632 0.209 0.409 0.01 6.60 2.30
808 0.123 0.188 0.073 7.69 5.64
980 0.078 0.098 0.0044 5.40 4.50

where R is the responsivity, ‘a’ is the active area of the device, e is the
elementary charge and /; is the dark current. The highest p* for the de-
vice was found at 1.7 X 107 Jones for the 405 nm excitation at
79.6 mW/cm? and Vps = 1 V (see Fig. 5 (d)).

The response time is another key parameter of a photodetector de-
vice. The response (t,is) and recovery (te,y) time of the devices are de-
fined as the time difference between 10% and 90% of the peak value of

&
S

the photocurrent during the photoexcitation and dark (off) side, respec-
tively [74]. Fig. 6 (a) shows the response time for the 405 nm laser exci-
tation (positive photoresponse) with T, and t¢, nearly 17 s and 16 s
respectively, whereas, in the case of 980 nm (negative photoresponse),
the T, and 7y are around 5 s (see Fig. 6 (b)). Fig. 6 (c) shows the
wavelength-dependent response and recovery time under the exposure
of photons of constant power density, which is consistent with the pro-
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Fig. 6. Response time for (a) 405 nm, and (b) 980 nm excitation. (¢) Wavelength-dependent response time (left axis) and recovery time (left axis) are shown at
Vps = 1 V and at 79.6 mW/cm? power density. (A colour version of this figure can be viewed online.)
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posed underlying mechanism. Table 1 compiles the calculated parame-
ters of photodetector at fixed biased voltage 1 V, at 79.6 mW/cm?
power density with different wavelengths of the laser source. Note that
these response times are higher than those of the other EG/4H-SiC-
based devices [35,38,44] because our device lacks an electrostatic gate.
We propose that the high photoresponsivity at a lower bias voltage is a
result that requires further investigation.

To further support the observed broadband binary photoresponse
behaviour in our devices, we additionally investigated multiple devices
with different geometry and graphene growth run. Three data sets (de-
vices 23, 27, and 32 correspond to those produce at R 311 run) are
shown in Fig. S6. All EG/4H-SiC-based devices show the same behav-
iour. The observation remains unchanged with the devices that contain
different layer numbers, as shown in Fig. S6. We summarized all the de-
vices’ photoresponse behaviour in Table S1. All devices exhibit broad-
band binary photoresponses without electrostatic gating, demonstrat-
ing the robustness of this phenomenon in our EG/4H-SiC-based de-
vices.

Furthermore, we compared the photodetector parameters to those
of other EG on SiC-based devices, including hydrogen intercalated,
CVD, and  exfoliated  graphene/SiC-based  photodetectors
[36-38,41,44,75,76] as shown in Table 2. Our EG/4H-SiC-based de-
vices showed a broadband binary response with high responsivity with-
out an applied gate voltage, dramatically simplifying the device fabri-
cation processes and suitable for metrology applications [79]. This is
ascribed to the higher photoconductive gain and detectivity in our de-
vices. Therefore, it would be interesting to see the effect of electrostatic
gating in the charge transfer process. Further studies on the photore-
sponses of gate-free devices are called for in p-n junctions devices
[77,78] on the millimeter scale.

4. Conclusions

In summary, we have fabricated binary photodetector devices using
epitaxial graphene on SiC substrates. The binary photoresponse mainly
originates from the energy band alignment of the IBL/EG interface and
the highly sensitive work function of the graphene layer. In the case of
405-532 nm laser illumination, the photocurrent is dominated by re-
sultant n doping in the graphene layer due to the combined effect of
photo-absorption both in IBL and EG, as well as the release of ph-
ysisorbed molecule from the EG layer. On the other hand, in the case of
632-980 nm, the absorption in the EG produce photo-excited electrons,
which relax to the IBL layer in the ultrafast time domain, resulting in a
negative photocurrent. The highest photoresponsivity of the device
is > 10 A/W, which is higher than the required photoresponsivity of 1
A/W for practical applications [12]. The obtained detectivity is as high
as 107 Jones.

Table 2
A comparison of the photodetector performances of our device with earlier
reported graphene on SiC-based photodetectors.

Materials Wavelength Vps Max. R Gate Photoresponse  Ref.
(nm) V) (A/W)  Voltage (Nature)
W)
EG/4H-SiC 405-980 1 >10 0 Binary This
Work
Graphene/4H- 325 -3 2541 *3 Binary [44]
Sic
Graphene/SiC 400 -05 7.4 *20 Binary [75]
Graphene/SiC <413 - - +20 Binary [41]
Graphene/SiC 532 0.75 18 -30 Single [38]
Graphene/4H- 254-365 5 0.009 0 Single [36]
Sic
Graphene/4H- 650 10 511 0 Single [37]
SiC
EG/SiC SEPT 365 30 1.2 0 Single [76]

We believe that our results call for further theoretical investigations
to provide in depth insight into the system. It would be fascinating to
explore the effect of electrostatic gating to the interlayer transport of
the photocarriers. Additionally, metals intercalation between EG and
SiC systems may dramatically influence the optoelectronic and mag-
neto-optical properties of the system, which worth investigating. The
unique photoinduced dual charge transfer phenomenon in EG on
4H-SiC implies that the electron density of EG can be adjusted by pho-
ton energy, which is promising in metrology applications, such as UV
photometry.
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