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Abstract
Neuromorphic computing is a broad field that uses biological inspiration to address computing
design. It is being pursued in many hardware technologies, both novel and conventional. We
discuss the use of superconductive electronics for neuromorphic computing and why they are a
compelling technology for the design of neuromorphic computing systems. One example is the
natural spiking behavior of Josephson junctions and the ability to transmit short voltage spikes
without the resistive capacitive time constants that typically hinder spike-based computing. We
review the work that has been done on biologically inspired superconductive devices, circuits,
and architectures and discuss the scaling potential of these demonstrations.

Keywords: neuromorphic, Josephson junction, bio-inspired, neural network

(Some figures may appear in colour only in the online journal)

1. Introduction

The human brain offers some insight into a method of com-
putation that differs from typical digital logic. The brain is a
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highly parallel computing platform that exhibits tremendous
adaptability and fault tolerance while simultaneously being
extremely energy efficient. Neuromorphic computing seeks to
take advantage of several of these characteristics by imple-
menting biologically inspired design directly in hardware. The
potential power of biologically inspired computing is evid-
enced in the growing prevalence of artificial intelligence or
machine learning algorithms. Because of the success of these
algorithms, the computational need for training them has been
doubling every four months, nearly five times the exponen-
tial growth rate offered by Moore’s Law operating at its peak.
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However, these algorithms are still predominantly trained and
run on hardware that is optimized for digital logic with its
associated memory bottleneck and high power consumption.
It should be noted that recent work on digital superconducting
architectures has shown that significant improvements can be
made in the design of superconducting systems that can train
and run software based neural networks [1]. These systems
compare favorably in both energy and speed compared with
purpose built CMOS hardware designed for the same task [2].
While such advances in digital superconducting systems are
very important, in this review we survey the analog and mixed
analog–digital use of biologically inspired computing design
from the device up, and its potential to build an efficient neur-
omorphic computational stack.

Josephson junctions (JJs) are naturally neuromorphic hard-
ware devices that can implement several biological primitives
at the device level. Examples of these primitives include the
spiking nature of neurons in the human brain, which can be
mimicked with a single JJ. More biologically realistic spik-
ing behavior including following the basic ion flow dynam-
ics of Na and Ca within a neuron can be implemented with
a two JJ circuit [3]. The near lossless transmission of voltage
spikes that occur in the human brain can be easily implemented
with active or passive superconducting transmission lines [4].
The memory and plasticity mechanisms in the brain, which
are implemented with modulations of the synaptic strength
between neurons, can also be implemented with a simple two-
JJ circuit or a novel magnetic JJ, among other options [5, 6].
We discuss architectures that explicitly set the weights of these
artificial synapses as well as those that make use of hidden-
layer dynamics whose internal weights are less important than
their overall topology.

The number of neurons in the brain is on the order of
1011 and the number of synapses is on the order of 1014 [7].
These numbers exceed the largest JJ circuits, which are on
the order of 106 [8]. However, many potential applications
do not require such a large junction count and therefore seem
tractable with the current state of JJ fabrication technology.
Further, one particularly compelling trait of neuromorphic JJ
circuits is the potential to operate at tens or hundreds of giga-
hertz achieving many orders of magnitude in speed over the
human brain, which typically operates below 1 kHz. In addi-
tion, the energy consumption of spiking JJs can readily be
below 10−18 J, also giving them an advantage compared to the
energy needed to produce a spike in the human brain, which
typically requires on the order of 10−14 J [7]. This energy
advantage holds true even after taking into account the cool-
ing requirements to operate at 4.2 K, which can be less than
1000 W to cool 1 W at 4.2 K [9]. Another critical departure
of the human brain from typical modern computer architec-
tures is its extremely high connectivity. Large-scale fan-out
and fan-in can be achieved in single flux quantum architec-
tures but they require a commensurate number of additional
JJ elements. The way JJs are connected together in an archi-
tecture will most likely vary depending on the target applic-
ation; we discuss some potential choices and their trade-offs
below.

In the review that follows, we cover the current state of
neuromorphic superconducting electronics. We organize the
paper starting with devices and moving our way up the com-
putational stack. Work in this field is at various states across
this range. A brief summary of what has been accomplished
so far is as follows. Experimentally there have been several
exciting demonstrations. These include compact (2 JJ) circuits
that exhibit biologically plausible neuron behavior, synapse
circuits based on SQUIDs and synapse devices based on single
magnetic JJs. There have also been experimental demonstra-
tions of binary JJ synapses. In addition, the size, shape and
probabilistic nature of the action potential was experiment-
ally verified in Nanowire neurons. In addition, two JJ neur-
ons coupled with a SQUID synapse have been experimentally
demonstrated and show several biological behaviors, such as a
phase-flip bifurcation. The field in general leverages the signi-
ficant work in themorewell established fields of JJs, supercon-
ducting nanowires, single photon detectors, and digital logic
based on single flux quantum circuits and adiabatic quantum-
flux-parametron circuits.

Detailed SPICE simulations have beenmade using compact
models that have been well tested within the field of super-
conducting digital logic. These simulations include the fan-in
and fan-out based on SFQ digital logic circuits but applied to
highly connected neuromorphic circuits. Also, detailed SPICE
simulations of the implementation of standard software-based
neural networks directly in superconducting hardware, both JJ
based and nanowire based have been performed. SPICE sim-
ulations have been used to show how JJs can make a dynam-
ical system, or reservoir network, that can be used for signal
recovery in high speed communications. Finally, SPICE simu-
lations of a winner-take-all network based on superconducting
nanowires were demonstrated.

Finally, there has been significant conceptual work and ana-
lysis looking further up the computational stack at how best
to make neuromorphic architectures based on both supercon-
ducting hardware and also looking at the potential benefits
of integrating photonics with superconducting hardware for
large-scale connectivity. The architectures that have been con-
sidered included small blocks of all-to-all connectivity of ana-
log neuromorphic JJ circuits, spiking neural networks, as well
as mixed analog and digital JJ systems. The various trade offs
that can be made in the implementation of each of these archi-
tectures has also been studied. In the case of mixed analog
and digital systems this trade off analysis was based on res-
ults from experiments involving superconducting digital logic.
The integration of optics with superconducting hardware is
also theoretically studied for optoelectronic neurons and syn-
apses, where they have good potential to implement biological
functionality.

2. Building blocks

2.1. Neurons

A simplified model of a biological neuron consists of four
basic components, as illustrated in figure 1. Dendrites receive
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Figure 1. Basic model of a biological neuron, featuring the four
primary building blocks: dendrites, the soma, the axon, and
synapses.

and integrate input signals from the outputs of other connect-
ing neurons and transmit them into the cell body, or soma,
where they are summed. If the sum of the input signals exceeds
a certain threshold, the soma generates an electrical spike
known as an action potential. Action potentials are the key
unit of information in brain communications. Once an action
potential is created, it travels down the long extension of the
cell body called the axon [10]. In addition to serving as a
propagation pathway, axons can act like transmission lines,
delaying action potentials so that their temporal information
can be preserved. Most importantly, axons feed action poten-
tials into synapses, which serve as the critical connection point
between two neurons. In response to an action potential, syn-
apses either suppress or excite the firing of a downstream
neuron, often through the release of chemical neurotransmit-
ters. As discussed in more detail in section 2.2, the strength
of a synaptic connection is variable and becomes stronger the
more often two neurons fire together. This mechanism forms
the basis of learning in both biological and artificial spiking
neural networks.

Neuromorphic computing, simply speaking, involves util-
izing the building blocks of figure 1 to construct an informa-
tion processing unit. Some approaches try to mimic the brain
as closely as possible, utilizing features like the timing inform-
ation of the spikes, the plasticity of the synapses, and the inter-
play of the ion channel dynamics in the soma, among oth-
ers. Other approaches are more minimalist, utilizing only the
stored weights and the nonlinearity of the threshold response.
We discuss this simpler approach first, and then follow with
those that are more biologically realistic.

The term ‘Neural Network’ refers to an interconnected
assembly of simple processing units or nodes, where each
node is a realization of the soma presented in figure 1. In the
simplest case, these nodes are in one of two states, either ‘on’
or ‘off’ and outputting a 1 or 0, respectively. These nodes con-
nect to other nodes through weighted connections. The signal
flowing down each connection is the output of the node times
the weight of the connection. These signals are then summed
together in the downstream node, possibly altering its state. A
simple schematic is shown in figure 2(a), where X1, X2 and
X3 represent three nodes which are connected to fourth node
Y. The state of Y is determined by the sum (W1X1 + W2X2

+ W3X3), where W i represents the weight of connection i.
Roughly speaking, if this sum is greater than the threshold

Figure 2. Neural network overview: (a) schematic of a simple
neural network, with neurons as circles and arrows as weighted
connections. The state of the output neuron Y depends on the
weighted sum of the inputs X. (b) The function f(q) determines the
threshold response of each neuron. (c) A JJ implementation of a
neuron, proposed by Yamanashi et al [11], where the output
probability of an SFQ pulse depends on the input current. (d)
Simulated and measured response of the circuit from part (c).

of Y, then Y is ‘on’ and outputs a 1; if the sum is less than
the threshold of Y then Y is ‘off’ and outputs a 0. The exact
function describing the state of Y is given by a thresholding
function f (q), an example of which is shown in figure 2(b).
Here f (

∑
WiXi) is the output of the node. Sharper threshold-

ing functions can form more powerful networks; however,
more rounded functions like the one shown can ease training
requirements.

Yamanashi et al [11] developed a comparator for the imple-
mentation of a sigmoid thresholding function. A current was
the input, equivalent to q in figure 2(b), and the output state was
indicated by the probability of releasing a single flux quantum
(SFQ) pulse on a given clock cycle, equivalent to the function
f. Figure 3 of their manuscript shows the electrical diagram of
the comparator. If the input current caused the current of the
comparator junction to exceed its critical current, then an SFQ
pulse was released and the output was a 1; if this current failed
to exceed the critical current, then the output was 0. Thermal
activation can round this function, but in general the switching
of a JJ is a discrete event, resulting in a sharp threshold and a
high degree of nonlinearity. The actual experimental graph of
output probability versus input current is shown in figure 4 of
their manuscript, where the similarity to figure 2(b) is evident.

A single layer network like that shown in figure 2(a) is also
called a perceptron, due to its ability to ‘recognize’ a certain
input. For example, if we wanted the output Y to change state
only when input X1 was on, we could make weight W1 large
while keeping W2 and W3 small, such that the sum (W2X2 +
W3X3) was below the threshold of Y whereasW1X1 was above
the threshold of Y. Similarly, if we wanted Y to ‘recognize’
when X1 and X2 were on, we could adjust parameters such
that only (W1X1 +W2X2) was above threshold, while any other
combination was not. If we then drastically increase the num-
ber of nodes and the number of layers, the system can become
capable of recognizing very complex data patterns. This abil-
ity has given neural networks a wide range of applications.

Implicit in this scheme is that the product of any state times
a weight (e.g. WiXi) is represented physically by a current,
since that is the x-axis for the thresholding function. To convert
the outgoing SFQ pulse into a current, Yamanashi et al [11]
use a clever scheme to convert the rate of SFQ pluses leaving
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Figure 3. Nonlinearities used to generate spiking in biological neurons and superconducting neuromorphic circuits. (a) Simplified
schematic of a biological action potential. Insets highlight the role of the sodium and potassium ion channels, which dictate the rise and fall
of the membrane potential, respectively. (b) Schematic of a quantized voltage pulse in a JJ. Insets show how the winding of the phase
difference by 2π produces a discrete pulse according to the Josephson voltage relation. (c) Schematic of a relaxation oscillation in a
superconducting nanowire shunted by a resistor. A spike is produced as the nanowire switches from the superconducting state to the normal
state, diverting the bias current.

a node into a frequency, followed by a set of frequency-to-
current converters to change this into a current.

Other ways of representing the sum in figure 2(a) are pos-
sible in superconducting electronics. Chiarello et al [12] use
fluxes to represent the state, mutual inductance to represent
the weights, and superconducting quantum interference device
(SQUID) loops to represent neurons. The product and sum-
ming functions are then intrinsic to the laws of induction.
Once again, the critical current of a JJ forms a sharp threshold.
Chiarello et al [12] were able to experimentally realize a two-
layer network to perform an exclusive-OR (XOR) function.

While the switching of a junction provides a sharp nonlin-
earity, it does result in a power dissipation of roughlyΦ0Ic/2π
for each SFQ pulse. In a scheme that realizes low power dis-
sipation similar to that in adiabatic quantum-flux-parametron
logic, Schegolev et al [13] create a non-switching processing
node that nonetheless still attains a sigmoid thresholding func-
tion. Weighting occurs with transformers, similar to Chiarello
et al [12] Utilizing the transfer function of the RF-SQUID,
these authors design a flux-to current converter with asymmet-
ric inductance that nicely rounds into a sigmoid function. The
result is that they are able to represent both weights and output
states with current and obtain ultra-low power dissipation.

Other neuromorphic architectures take a more biorealistic
approach by communicating with electrical pulses similar
to action potentials. In hardware, pulses are usually formed
through the intrinsic nonlinearity of a device or simple cir-
cuit, similar to the nonlinearity responsible for creating action
potentials in biological neurons. Figure 3(a) shows a simpli-
fied schematic of a biological action potential, highlighting the
two voltage-gated ion channels that dominate its behavior [3].
The rising edge of the pulse is created by an influx of sodium
ions that raises the membrane potential after the sodium chan-
nel opens in response to a sufficiently large input signal.
The enhanced potential eventually causes the potassium ion
channel to open while the sodium channel closes, leading
potassium ions to flood out of the cell and effectively reset

it. While other ions also play a role in the creation of an action
potential, the nonlinear opening and closing of the sodium and
potassium channels are broadly responsible for its overarching
behavior.

Several superconducting spiking platforms have been
inspired by the similarities between action potentials and the
nonlinearity intrinsic to JJs. The voltage across a JJ depends
on its phase difference, which ranges from 0 to 2π due to the
sinusoidal nature of the current-phase relationship. Figure 3(b)
illustrates how the phase winding can be visualized as a pen-
dulum that creates a quantized voltage pulse as it completes
a full 2π revolution. This natural spiking mechanism along
with operation at tens to hundreds of gigahertz and low power
dissipation, make JJs an appealing candidate for spike-based
computing architectures.

Figure 4(a) shows a simplified circuit schematic of a
JJ-based neuron first proposed by Crotty et al [3]. In this
design, two JJs are connected in a superconducting loop and
act analogously to the sodium and potassium ion channels of a
biological neuron. In response to an input signal, the ‘sodium’
JJ fires and adds an influx of counterclockwise current into the
loop, which triggers the ‘potassium’ JJ to fire in the oppos-
ite direction and remove the loop current. Simulations sugges-
ted that the JJ neuron is capable of reproducing many char-
acteristics of biological neurons, such as a firing threshold, a
refractory or ‘resting’ period between spikes, and a spiking
frequency response that depends on the magnitude of junc-
tion damping. Additionally, the JJ neuron uses an estimated
10−17 J per spike, in comparison to 10−8 J for silicon-based
platforms, highlighting the competitive energy performance of
superconducting architectures. More recently, the JJ neuron
was extended to include Josephson transmission line axons
and capacitive synapses whose strengths are controlled by
flux-tunable SQUIDs [5, 14]. Experiments demonstrated how
mutual coupling between two of these JJ neurons can be used
as a foundation for studying complex synchronization dynam-
ics in biological systems (see section 4.3), emphasizing the
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Figure 4. Junction-based spiking neurons. (a) Circuit schematic of the JJ neuron adapted from [3], which uses two JJs analogous to the two
ion channels in a biological neuron. (b) Diagram of a spiking neuron based on JJs with a thresholding loop. Figure adapted from [15].
(c) Circuit schematic of an integrate-and-fire neuron using quantum phase-slip junctions. Figure adapted from [15].

dual use of these devices as both an energy-efficient compu-
tational platform and as a tool for exploring theories of how
biological neurons interact.

Other JJ-based models have also been proposed.
Figure 4(b) illustrates a spiking neuron with a two-pulse firing
threshold. In this design, two JJs form a ‘threshold loop’ that
temporarily stores an input pulse for a duration set by a resist-
ive ‘decaying loop’ inductively coupled to it, thereby setting
the maximum amount of time between two successive pulses
so that their sum exceeds the firing threshold [15]. Measure-
ments of fabricated somas using DC-to-SFQ and SFQ-to-DC
circuits to perform read and write operations validated this
firing mechanism for different thresholds. Estimates suggest
the energy per pulse is on the order of 10−19 J.

Another recently proposed design relies on quantum phase-
slip junctions, one-dimensional nanowires that are considered
the exact dual to JJs since they produce quantized current or
charge pulses in units of 2e, where e is the electron charge
[16]. As shown in figure 4(c), the firing of an input quantum
phase-slip junctions accumulates charge on a capacitor, build-
ing a potential that eventually exceeds the threshold of the
n output quantum phase-slip junctions connected in parallel.
This design is an example of an integrate-and-fire neuron,
since a specific number of input pulses must be accumulated
on the capacitor before the parallel quantum phase-slip junc-
tions fire together and generate an output spike. Although the
quantum phase-slip junctions neuron has yet to be experiment-
ally realized, its energy per spike is estimated to be on the order
of 10−21 J, suggesting its potential as an energetically compet-
itive technology.

In addition to JJs, superconducting nanowires have also
been used as a hardware platform for artificial spiking neurons.
Unlike the current-phase relationship in JJs, spiking is cre-
ated from relaxation oscillations that occur when a nanowire
is placed in parallel with a resistive shunt. As shown in
figure 3(c), as the nanowire switches from the superconducting
state to the thermally resistive state, the bias current oscillates
between the shunt and nanowire with a time constant dictated
by the nanowire’s high kinetic inductance. Although slower
than JJs, these relaxation oscillations are potentially more
robust to noise and better suited for fan-out due to their ability

to support high impedances, making them appealing candid-
ates for the large parallelism required by neural networks or for
interconnects between superconducting neuromorphic circuits
and classical hardware. A recently demonstrated nanowire
neuron follows the same design as the JJ neuron in figure 4(a),
with the junctions replaced by nanowire relaxation oscillat-
ors [17]. Measurements of a fabricated neuron showed that
it reproduced multiple bio-realistic behaviors, including a
refractory period and firing threshold, while simulations of
nanowire neural networks suggested that they may be used as
inference circuits for pattern recognition [18]. As discussed in
more detail in section 4.4, simulations also explored how the
stochastically varying switching current in nanowires could be
used for testing theories about the role of probability in biolo-
gical neuron dynamics.

2.2. Synapses

In a biological context the synapse modulates the strength of
the signal between two neurons. To describe the synapse, it
is then necessary to also discuss the two neurons that it con-
nects. These neurons can be defined as the presynaptic neuron
(where the input signal to the synapse originates) and the post-
synaptic neuron. On the presynaptic side of the synapse, an
action potential causes the release of a neurotransmitter that
binds to receptors on the postsynaptic side of the synapse.
This release of neurotransmitter and the subsequent binding
to receptors opens ion channels across the synapse. Depend-
ing on the nature of the synapse, this ion flow can either
have an excitatory or inhibitory effect on the post-synaptic
neuron. The strength of this connection between neurons can
change over time and often exhibits Hebbian learning, where
neurons that fire together tend to strengthen their connections
[7, 19]. In the context of artificial neural networks, the vari-
able weights applied to the node inputs are inspired by these
synaptic connections. They are used to determine the strength
of the incoming connection and can typically be either posit-
ive or negative in value. These synaptic weights in a neural
network are then trained to perform certain tasks with an
algorithm such as back-propagation [20]. In neuromorphic
systems, the synaptic weighting is typically either carried out
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by an analog (or quasi-analog) hardware device, or by access-
ing stored memory values in digital implementations. In both
cases the devices or memory values are typically trainable,
which can adapt the hardware to different problems. If the syn-
aptic weights are not trainable then the hardware can typic-
ally perform only inference (such as image classification) for
one particular task. While such hardware is not a general pro-
cessor, it can be thought of as an application-specific integ-
rated circuit (ASIC), which can be extremely fast and energy
efficient for a given task.

2.2.1. SQUID synapses. A synapse can be formed by a two-
junction SQUID at the end of a Josephson transmission line
(JTL). In a JTL, propagation occurs when sequential junctions
are triggered to undergo a 2π phase rotation as the pulse is
propagated to the next stage. The peak voltage of each junction
is given approximately by IcRs, where Ic is the critical current
of the junction and Rs is the shunt resistance. Replacing a junc-
tion with a SQUID gives it effectively a variable critical cur-
rent, depending on the flux in the SQUID loop. If the SQUID
replaces the final junction in the JTL, then the size of the pulse
leaving the JTL will be dependent on the SQUID flux. If the
JTL represents an axon, then the end of the axon will act a
synapse, with the pulse leaving the SQUID analogous to the
post-synaptic current. Since the size of the post-synaptic cur-
rent will depend on the flux in the loop, then this flux will rep-
resent the weight of the synapse. This scheme was utilized by
Segall et al in a scheme with mutually coupled neurons. The
flux through the SQUID loop was able to change the coupling
to cause a phase flip bifurcation as seen in figure 10. In addi-
tion, biased SQUIDs have also been proposed for the synaptic
element in adiabatic flux based superconducting systems [21].

2.2.2. MJJ synapses. Superconducting spintronic devices
can use the interaction of ferromagnetic and superconducting
order parameters to create new functionality [22–24]. Recently
there has been significant effort in this area and many inter-
esting devices are currently being investigated, such as π JJs
[25], spin triplet JJs [26], and pseudo spin-valve JJs [27]. As
an understanding of how to make these devices grows, new
novel devices can be made in which a ferromagnetic layer in
a JJ can be used to modulate the phase and/or amplitude of
the Josephson critical current Ic. However, one potential issue
with these devices is that the energy and time scales required
to manipulate the magnetic layer are typically much larger
and longer than those of SFQ-based JJ logic. From basic size
scaling arguments, it can been seen that the interaction of a
magnetic moment with an SFQ pulse requires a small cluster
of magnetic material with a diameter on the order of a few
nanometers.

Recently, a magnetic Josephson junction (MJJ) with nano-
scale magnetic clusters in the barrier was demonstrated in
which the magnetic order affects the critical current of the
junction [6]. These non-exchange-coupled magnetic nano-
cluster are small enough that above the blocking temperat-
ure of 50 K the thermal energy of the system is enough to
change the direction that the net magnetic moment of any

given nanocluster points. When all of the magnetic moments
point in the same direction, this defines the fully ordered mag-
netic state for the junction. If the magnetic moments are ran-
domly oriented, the junction is in the magnetically disordered
state. In these recently demonstrated devices the magnetic
nanoclusters are made from Mn and have a size of about
4 nm in diameter, and are quite dense with approximately
20 000 clusters per square micrometer of junction area. This
means that there should be a large number of states that exist
where the number of magnetic nanocluster pointing in the
same direction is somewhere between fully ordered and fully
disordered. Measurements of these devices have shown that
the intermediate states can also be accessed in these devices,
making them appealing candidates for synapse-type devices in
superconducting circuits.

Mn nanocluster MJJs have demonstrated a change in Ic
from 1 mA to 10 µA by changing the magnetic order. In order
to modify the magnetic orientation of the state one can use
short (100 ps) electrical pulses while the chip remains nomin-
ally at 4 K. The use of short electrical pulses in the absence
of any applied magnetic field tends to disorder the magnetic
clusters, whereas the application of short electrical pulses in
the presence of a small magnetic field tends to order the mag-
netic clusters. The applied ordering field can be made small
enough that only devices that see the electrical pulse have
their magnetic order affected. In addition, because the block-
ing temperature is roughly 50 K, defluxing the circuit does not
affect the magnetic order in the MJJs.

Figure 5 (originally from [6]) part (a) shows the charac-
teristic voltage versus current curve for the magnetically dis-
ordered state of a 10 µm diameter circular clustered MJJ. The
data (blue circles) are fit with a resistively shunted junction
model [28]. The fit gives a value of Ic = 1.30 mA ± 0.02 mA
and Rn = 1.32 mΩ ± 0.02 mΩ. Figure 5(b) shows the char-
acteristic voltage versus current curve for the same device
now in the magnetically ordered state. The Resistively shunted
junction fit gives a value of Ic = 0.08 mA ± 0.02 mA and
Rn = 1.30 mΩ ± 0.02 mΩ. The data are plotted with the same
current range for clarity of comparison. It is also worth not-
ing that change of magnetic order does not affect the normal
state resistance of the junctions, as is expected. Figure 5(c)
shows data from a 10 µm diameter clustered JJ. The device
started in a magnetically disordered state and was successively
ordered by short (240 ps, 11 pJ) electrical pulses applied in
the presence of a 20 mT external magnetic field. Figure 5(d)
shows (red squares) the value of the electrical pulse energy
required to change a device of a given size from magnetically
disordered to magnetically ordered in the presence of a 20 mT
magnetic field. The calculated dissipation energy of an SFQ
pulse from these junctions (≈IcΦ0) is shown with blue circles
for the magnetically disordered state.

The clustered MJJs with variable critical current can be
used in different ways for biologically inspired superconduct-
ing circuit design. In one potential architecture, one can lower
the critical current value to lower the threshold of the MJJ for
emitting SFQ pulses to tune the spiking behavior. It is worth
noting that, in this context, the devices may offer a way to
adjust threshold values in a neuron (or soma) type circuit in
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Figure 5. Data (blue circles) of the voltage versus current characteristics taken at 4 K on a 10 µm diameter nanoclustered MJJ along with
the fit to the resistively shunted junction model (red line) shown for the magnetically disordered state (a) and the magnetically ordered state
(b). (c) MJJ critical current taken at zero applied magnetic field vs. the number of ordering pulses applied in a 20 mT applied field, line is a
guide to the eye. Figure (d) electric pulse energy required to fully order the MJJ in a 20 mT applied field (red squares), and calculated SFQ
pulse energy of the MJJ (blue circles) vs. cross-sectional area.

addition to being used in synapse type circuits. In another
potential architecture, the device can be used as a variable
inductor, since the Josephson inductance scales as 1/Ic. For
example, on can use a clustered MJJ on one leg of an induct-
ive divider and use the other leg to couple current (or flux)
into a postsynaptic neuron circuit. It has also been suggested
that MJJs can be used with adiabatic superconducting circuits
to perform the synaptic function with potentially even lower
energy costs [29].

While these devices are very promising, they are currently
still very new and as such need to be tested on a larger scale.
One of the primary drawbacks of these devices is the cur-
rent requirement of a 400 ◦C annealing step. While such
temperatures are compatible with CMOS processing, JJ pro-
cessing typically does not have adequate thermal budget. As
such, this step limits the use of these devices to layers below
any of the JJ layers in the stack. Because the electrodes are
Nb, and the barrier is quite thin (<5 nm) and the devices
themselves would have the thermal budget for additional lay-
ers on top, there is no fundamental reason that this will not
work. However, incorporating a new layer with new materi-
als at or near the bottom of the fabrication process will likely
take some significant development. Demonstrations with a lar-
ger number of clustered MJJs working together in a circuit
will likely be needed to get a better idea of device-to-device

variations before such development is likely to be undertaken.
One other issue with the previously demonstrated version of
these devices is that the IcRn product is quite low. While
overdamping in and of itself is not so problematic, it would
potentially limit the speed of biologically inspired circuits
that use these elements. Further work on the materials side of
these devices could mitigate these potential difficulties, with
a higher IcRn product and reducing or eliminating the anneal-
ing step being particularly helpful. Another future direction for
these devices would be the incorporation of a spin-polarizing
layer within the device. If successful, such an addition could
eliminate the need for any applied magnetic field and could
enable the increase or decrease in Ic depending on the direc-
tion of the current flow.

2.2.3. Optoelectronic synapses. The strengths of supercon-
ducting electronics for neural information processing extend
to very large cognitive systems. Communication is crucial
in neural computing, and to interconnect systems with mil-
lions or even tens of billions of neurons at the scale of
the human brain, photonic communication may be advant-
ageous. Superconducting single-photon detectors bring an
extraordinary advantage in this regard, as one quantum of
electromagnetic radiation is then sufficient for a neuron to
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Figure 6. Superconducting optoelectronic synapse converts
photonic communication events to integrated supercurrent. The
single-photon detector is labeled SPD and biased by a direct current,
Ispd. The synaptic bias current, Isy, controls the amount of current
added to the synaptic integration loop (SI) with each synapse event.
Many such synapses can be coupled to a common neuron through
transformers, as described in section 3.1.

communicate to a synapse. By contrast, if semiconductor pho-
todiodes are used in conjunctions with MOSFETs as syan-
pses to receive photonic communication events, roughly one
thousand photons are required for communication [30]. Super-
conducting detectors therefore dramatically reduce the optical
power required for communication between distant neurons in
a large network, reducing the required brightness of each light
source by a factor of one thousand.

Synapses based on single-photon detectors operating in
conjunction with JJ circuits have been designed [31–33], and
demonstrations of the basic principle have been accomplished
[34] using thin-film constrictions in place of tunneling-barrier
JJs [35]. One manifestation of such a synapse comprises
a superconducting-nanowire single-photon detector in paral-
lel with a JJ embedded in a flux-storage loop (figure 6). In
this manifestation, the synaptic-firing junction (Jsf) is current-
biased below its critical current. When the single-photon
detector (SPD) detects a photon, all the current from that
branch of the circuit is diverted to Jsf, driving that junc-
tion above Ic, causing the junction to produce a series of
fluxons. Those fluxons are added to the synaptic integration
loop (SI), which accumulates a circulating current with mag-
nitude dependent on the recent history of synaptic activity.
This signal decays with a time constant set by the passive
circuit parameters: τsi = Lsi/rsi, much like the charge leaking
off a biological neuron’s membrane capacitance. The signals
frommany such synapses can be coupled to a common neuron
through transformers.

While such optoelectronic synapses have been designed to
enable communication across large spiking neural networks
with optical signals at the single-photon level, they also offer
the possibility of event-based adaptation and unsupervised
learning mechanisms. The synaptic weight of such a synapse
is set by the current bias to the synaptic firing junction, Isy.
When this current is low, the sum of the bias to the SPD and
the JJ (Ispd + Isy) will only slightly exceed Ic, so the junction
will be driven above Ic briefly, and will therefore produce only
a small number of fluxons. In this case, a small amount of cur-
rent is added to the SI loop, and the synaptic weight is weak.
When Isy is very close to Ic, the sum Ispd + Isy will be well
above Ic and will stay above Ic for nearly the entire recovery
time of the SPD. In this case, many fluxons will be added to
the SI loop, and the synaptic weight is strong. Such circuits can
be designed such that a small synaptic weight produces close
to a single fluxon, whereas a strong synaptic weight produces
over one thousand. In such a circuit, the synapse may have a
bit depth of 10. Plasticity and learning can be accomplished
by coupling other JJ-based circuits to the bias Isy. Designs
for circuits capable of implementing STDP were presented in
[31, 32], and further extensions to achieve short-term plasticity
and metaplasticity are possible based on the same principles.

While the recovery time of the SPD (10 ns) is slower than
the switching time of a JJ (10 ps), it is the high speed of JJs
that allows analog operation in this context. With this form of
optoelectronic neuron, the maximum neuronal firing rate must
be reduced due to the SPD recovery time, while fast JJ pro-
cessing is leveraged for computations performed within each
neuron. One proposed architecture uses dendritic trees with
dendrites very similar to typical JJ neurons [33, 36]. Sophist-
icated neurons thus envisioned are closely akin to the elab-
orate neural processors comprising human cortical neurons
[37, 38], wherein dendritic computations appreciably augment
neuronal functionality [39].

2.2.4. Other synapses. There have been several other sug-
gested synaptic elements for different superconducting neur-
omorphic systems. These include building a system based
on adiabatic superconducting cells that can perform the sig-
moid transfer function [13] and cells that approximate the
derivative of the sigmoid activation function [40], in order
to perform a learning rule such as resilient back-propagation
[41]. In addition, circuits have been demonstrated that have
used SQUIDs for neurons and the conductance of resistors
between the SQUIDs to perform the synaptic weighting func-
tion [42, 43]. There have also been simulations of a super-
conducting neuromorphic system that use quantum phase-slip
junctions combined with magnetic JJs for the synaptic opera-
tion [44]. In addition to these analog-type synaptic elements,
a binary synaptic element combined with a threshold neuron
has also been demonstrated [15].

3. Connectivity

In addition to choices regarding soma and synapse imple-
mentations, neuromorphic architectures are also defined by
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the interconnection scheme used to enable communication
between the neurons in the network. In biological neural net-
works this interconnection functionality is provided by axons,
synapses, and dendrites. The output signal from a spiking
neuron is carried along a branching axon that forms syn-
apses with downstream neurons. The axon is the biological
component that accomplishes fan-out and provides the con-
nections between neurons. Synapses thus formed may con-
nect to the receiving neuron’s dendritic tree, the soma itself,
or the axon initial segment. Fan-in is performed primarily in
the dendritic tree [45]. In biological systems, the response of
the dendrites is active and nonlinear, resulting in stages of
information processing between the synapses and the neuron
cell body [39]. This dendritic processing enables neurons to
detect and respond preferentially to certain patterns of activ-
ity, such as coincidences and sequences [46], as well as to per-
form intermediate thresholding operations on groups of inputs
[47] and influence learning [48, 49]. Such functions appear
possible with superconducting circuits [33]. However, these
functions are typically omitted from hardware implementa-
tions (with exceptions [50]) as the complexity of networks
without this functionality is sufficient to generate rich dynam-
ical activity. In superconducting neuromorphic architectures
this interconnection functionality is provided by the wires that
connect the neurons and the circuits that handle fan-in and fan-
out. However, there are many ways to implement and organ-
ize these components. In general, a superconducting neur-
omorphic architecture’s interconnection scheme is shaped by
three main choices. First, how neurons should be physically
connected in the system. Second, how spikes should be rep-
resented in the system. And third, how the spikes should be
interpreted by the system.

At the highest level this interconnection architecture can
be either fully dedicated or time multiplexed. Fully dedicated
architectures provide a physical wire for each connection that
is needed between neurons. This approach is the most straight-
forward in terms of design and can natively preserve analog
timing relationships within the network. However, because
physical wires are needed for every connection that might exist
between any two neurons in the system, the wiring-density
requirements of this approach can become excessive when the
number of neurons in the system becomes very large. Connec-
tions can be virtually eliminated by setting synapse weights to
zero, but the physical wires will remain. This challenge can
be somewhat addressed by implementing a more targeted net-
work architecture that does not include all of the possible con-
nections between neurons. In other words, a specific network
configuration or a class of networks could be implemented
rather than hardware capable of supporting any network con-
figuration. In addition, because the number of physical con-
nections between neurons can be high even in targeted imple-
mentations, support for high fan-in and fan-out is needed.

Alternatively, time-multiplexed architectures share phys-
ical wires between neurons in order to reduce the wiring
density required when implementing systems with very large
numbers of neurons. This approach often makes use of a
digital network with routers to provide the shared connectiv-
ity. Address event representation (AER) packets are used to

specify where spikes should be routed. The AER packet can
also include timing information so that timing relationships
between neuron firing events can be preserved. However,
recreating these timing relationships from AER packets is sig-
nificantly more complex than the native support found in fully
dedicated architectures. In addition, large amounts of memory
may be needed to store the addresses of post-synaptic neurons
and to store the routes for the routers in very large systems.
Novel memory technologies andmemory system architectures
will likely be needed to address this need. Dense supercon-
ducting digital logic will also be needed to provide the func-
tionality required by a digital network. Suitable technologies
have been recently demonstrated as a result of research pro-
grams such as the IARPA C3 program, but digital networks
have not yet been implemented using these technologies.

In superconducting neuromorphic systems, the method of
communication can also vary and has a significant impact on
the capabilities of the system. For instance, SFQ pulses can be
used to represent the spikes that travel between neurons. This
allows for relatively straightforward communication between
the components of the system because every circuit is based
around the same signal type. This enables an uncomplicated
interface between analog and digital components in the sys-
tem. Alternatively, multiple SFQs can be used to represent
a single spike event. In implementations involving only JJ-
based circuits, generating multiple SFQs for every spike can
require prohibitively complex circuitry. However, in optical or
nanowire implementations, multiple SFQs can result natively
from signals traveling between neurons. An advantage of mul-
tiple SFQ approaches is that they can support greater degrees
of fan-in and fan-out thereby enabling fully dedicated systems
with more neurons.

Finally, the spikes themselves can be utilized in a rate-
coded or temporal-coded fashion. In a rate-coded system, only
the number of spikes that are received per unit time is con-
sidered by the activation function. In other words, the neuron
will fire if enough spikes are received before some dead-
line such that the sum of the weight of those spikes exceeds
some threshold. In superconducting electronics, such a rate
coded system can be built in an analog fashion by utiliz-
ing a loop to aggregate flux quanta from all of the incom-
ing spikes that are received over some period of time. The
same function can also be realized in a digital fashion by
using superconducting digital logic to accumulate the weight
of all incoming spikes. Another way to interpret the spikes
is to consider not only the number of spikes received but
also the timing relationships that exist between them. This
is referred to as temporal coding. The timing relationships
between spikes can be natively preserved in a fully dedicated,
free-running network implementation. In this architecture, the
neurons will receive spikes at different times depending on
when the pre-synaptic neurons fired. Refractory periods and
leaky soma circuits can then ensure that different patterns of
incoming spikes result in output spikes that occur at different
times. Again, similar functionality can be implemented using
digital circuits that use the timing information in AER pack-
ets to establish when incoming spikes should be applied to the
soma.
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Figure 7. Transformer circuits for fan-in. (a) Direct fan-in circuit with multiple input synapses coupled to a SQUID performing the role of
the soma. (b) Synapses coupled to a common collection coil.

3.1. Fan-in for superconducting electronics

Fan-in in semiconductor-based neural circuits is straightfor-
ward, owing to the large impedance ofMOSFETs. The source-
drain current from many MOSFETs can be directly summed
via Kirchhoff’s current conservation law without significant
cross talk or leakage current. By contrast, the low impedance
of superconducting wires and JJs results in appreciable cur-
rent leakage through unintended paths to ground when mul-
tiple wires are directly connected to a common node. For this
reason, fan-in leveragingmutual inductance has long been pre-
ferred in superconducting neural circuits [51, 52].

Examples of circuits accomplishing fan-in through trans-
formers are shown in figure 7. We consider two primary cases,
and in both a DC SQUID is employed as the soma, which sums
input flux and produces one or more fluxons when the cur-
rent through one of the JJs exceeds Ic. In figure 7(a), the out-
puts from synapses are directly coupled to the SQUID loop,
whereas in figure 7(b) a collection loop is used to passively
sum the input flux. The direct configuration reduces parasitic
inductance, making the SQUIDmore sensitive to small inputs,
but this implementation leads to a practical fan-in limitation
owing to the fact that the total inductance of the SQUID loop
must be kept relatively low to ensure βL = 2LIc/Φ0 stays close
to one, as is desirable for low-noise SQUID operation [53].
The direct method of figure 7(a) is preferable in the case where
the action potentials are single SFQ pluses, whereas the collec-
tion loop method shown in figure 7(b) may be preferable in the
case where the action potentials contain many flux quanta, so
that the SI loops have large inductance and can couple strongly
to the SQUID. The single SFQ approach is expected to be bet-
ter in terms of energy efficiency and speed, whereas the multi-
SFQ approach allows analog post-synaptic signals which may
bring computational benefits while still maintaining suitable
performance for energy and speed. In this section we look
closely at how both methods scale to large fan-in, indicated
by the number of synapses N.

We first consider the single SFQ case and the circuit of
figure 7(a). Using the equations of mutual inductance, the flux
coupled into the SQUID loop Φsq from a single synapse is
simply equal to MIsi, where Isi is the synaptic input current

and M is the mutual inductance M= k
√
L2L3, and k is the

inductor coupling constant. This flux results in a SQUID cur-
rent Isq given by the following:

Isq =
k
N

√
L2

L3
Isi. (1)

Here we have assumed that the self-inductance of the loop is
NL3, ignoring the L4 term and the Josephson inductances of the
junctions in the limit of large N. In order to trigger an action
potential, this current needs to be larger than the critical current
of the junctions in the loop (Ic3), or conversely the size of the
flux Φsq must be larger than Φ0(βL/2π).

If SFQ pulses are being used for action potentials, two
adjustments to this expression for Isq can be made. First, since
the current Isi is from an SFQ pulse in the synaptic input loop
we can write:

Isi =
Φ0

L1 +L2
. (2)

In addition, the critical current of the junction in the synapse
input loop (Ic2) can be made larger than the critical current in
the SQUID loop Ic3, increasing the SQUID current by a factor
of (Ic2/Ic3). (Note: If one does in fact do that it is important that
the SQUID neuron loop be followed by an amplifying JTL to
bring the current levels back to the level of Ic2.)

To explore the limit of large N, some other design assump-
tions must be made. First, howmany synapses P (where P<N)
should be active at a given time to fire the post-synaptic
neuron? One can consider the case as low as P= 1 (a single
synapse triggers an action potential) up to something like
P= 0.2 N (20% of the synapses firing at one time). Second,
how large must the SQUID current Isq be compared to the crit-
ical current Ic3? One can use an external bias current to com-
pensate for a small SQUID current, but this has limits due to
fabrication spreads. A recent work [54] explored the limit of
large-N fan-in requiring that P= 1 (by far the worst case) and
Isq = 0.2 Ic3 (also very conservative). Using fabrication para-
meters achievable with today’s technology, a fan-in of 100 was
simulated (see equation (8) and figure 10) [54]. Considering
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that the majority of neurons in the brain are granule cells with
fan-in of around four [55], this fan-in situation appears favor-
able. Further, fan-in at much higher levels can also be achieved
with slightly modified circuit concepts, as described below.

When using SFQ pulses to communicate from neurons to
synapses and from synapses to neurons, it is advantageous to
reduce the Ic of the JJs in the SQUID comprising the neuron
cell body so that a relatively small fraction of active synapses
can drive the neuron above threshold, as described above. It
is also illuminating to consider the other end of the spectrum,
wherein synaptic integration loops (SI in figure 7) may have
large inductance and be used to couple strongly to a SQUID
soma. The response of a SQUID is periodic in applied flux,
and in general the integrated current from many synapses may
couple an amount of flux into the SQUID that drives the cir-
cuit through multiple periods of its response function. Next
we consider the scenario in which we design all transformers
so that the maximum applied flux to the soma is limited to
Φ0/2 so the response of the neuron is a monotonically increas-
ing function of applied flux. In the above calculation we con-
strained the inductance of the synapses to ensure SFQ opera-
tion, and this inclined us to consider synapses directly coupled
to the SQUID loop to reduce parasitic inductance as well as to
use JJs with reduced Ic in the SQUID relative to the synapses.
Here we consider allowing the synaptic inductors to take any
value, but we consider the fan-in ramifications of limiting the
total applied flux to the soma to Φ0/2.

When the synaptic inductances (L1 in figure 7) are allowed
to take larger values than required for SFQ operation, it is not
necessary to couple synapses directly into the soma. In this
context, one can use an intermediate collection coil, as shown
in figure 7(b) to passively sum all synaptic signals and couple
them into the soma SQUID with one transformer. In general,
the net flux to the soma (Φa in figure 7(b)) can far exceed Φ0,
causing the neuron to have a periodic response with applied
flux. Each synapse will have a maximum current at which the
loop saturates, Isat. The maximum flux to the SQUID (Φmax)
occurs when all synapses are saturated. We can enforce the
condition Φmax =Φ0/2 through a particular choice of induct-
ors comprising the transformers, introducing a constraint on
L2 and L4 in terms of the junction Ic and the number of syn-
aptic inputs to the collection loop. For Ic = 100 µA, this con-
straint can be satisfied with L2 and L4 between 10 pH and 1
nH across a wide range of numbers of inputs. These induct-
ances are straightforwardly achieved for synapses with large
self-inductance (L1), but this inductance constraint cannot be
satisfied in general while also satisfying the constraint that
L1 +L2 =Φ0/Ic, as required for SFQ operation. Thus, if SFQ
operation is desired, it is difficult to also enforce the constraint
that the maximum applied flux is limited to Φ0/2.

Fixing Φmax =Φ0/2 through the choice of L2 and L4 has
important consequences for fan-in. In this context, the fraction
of synapses that must be active to drive the neuron to threshold
depends primarily on the bias point of the soma SQUID. Addi-
tionally, for typical values of this bias point (0.6Ic ⩽ Ib ⩽
0.9Ic), a relatively large fraction of synapses must be active

to reach threshold. This may be undesirable, as it will require
extensive network activity before any neuron will fire, render-
ing sparse coding intractable. One method to address this chal-
lenge is to use an active dendritic tree. In this case, the cir-
cuit block of figure 7(b) is repeated in a tree graph. Now each
collection loop and SQUID define a dendrite. Consider the
homogeneous case wherein each dendrite receives n inputs,
and there areH tiers to the tree. The first tier at h= 0 is the final
receiving SQUID of the soma itself, intermediate tiers involve
dendrites coupled into other dendrites, and at h=H are the
synapses coupled into dendrites. The total number of synapses
is given byN= nH.We assume all dendrites in the tree have the
same values of Ic and that the transformers are designed to sat-
isfy the conditionΦmax =Φ0/2 so that all responses are mono-
tonically increasing functions of the input flux. Given these
design choices, it is found through numerical integration of the
SQUID equations [53] that an active dendritic tree can signi-
ficantly decrease the fraction of synapses that must be active to
drive a neuron to threshold. We define the number of saturated
synapses required for threshold as P, the total number of syn-
apses as N, and the depth of the dendritic tree as H. The case
of a point neuron corresponds to H= 1. For example, a point
neuron with transformers designed to limit flux Φa ⩽ Φ0/2
biased at Ib = 0.7Ic with N= 1000 would require 71% of
synapses to be saturated to drive the neuron to threshold,
while using a tree with n= 6 and H= 4 would require 25%
synaptic activity. For a very large neuron with N= 10,000,
n= 6, and H= 5 would require 18% of synapses to be act-
ive, and if Ib = 0.9Ic, with H= 4 and n= 20 drops P/N down
to 1.3%.

This brief analysis of fan-in is intended to illustrate several
aspects of superconducting neural circuit fan-in. One result is
that using synapses with SFQ inputs to the neuron is incom-
mensurate with using a collection loop and requires using dif-
ferent junction Ic for neurons and synapses. The proper neuron
Ic depends on the number of synaptic inputs, N. If one starts
analysis at a different point and requires the maximum applied
flux be limited to Φ0/2 to ensure a monotonic response, it is
likely necessary to use a dendritic tree to reduce the number
of synapses that must be active for threshold. If one prefers
to utilize a single SQUID design with fixed Ic for many syn-
apses, dendrites, and neurons without modifying the design
based on the number of inputs, then a collection coil is advant-
ageous. However, this limits the ability to utilize SFQ syn-
apses, and instead inclines the designer to employ larger syn-
aptic inductors, leading to analog signals stored in synaptic
integration loops and communicated to the neuron cell body.
It is possible that complex networks will leverage multiple of
these design concepts, as intelligence is observed to benefit
from a diversity of neuron types [56]. Additionally, due to
the significant implications of limiting applied flux to Φ0/2 to
ensure monotonic response, consequences of allowing a peri-
odic response from dendrites and neurons merits investigation
in a network context. If this behavior can be accommodated
or may be useful, design of circuits for fan-in can be adjusted
accordingly.
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3.2. Fan-out for superconducting electronics

When building toward large cognitive systems, the architec-
ture of the brain serves as an indication of the expected hard-
ware requirements. Most of the neurons in the human brain
reside in the cerebellar granule-cell layer. These 50 billion
neurons only receive input from about four synaptic connec-
tions [55]. Such neurons are thought to participate in associ-
ative learning to realize a high-dimensional representation of
the information provided by their inputs. This degree of con-
nectivity is straightforwardly achieved with superconducting
electronic circuits, wherein two stages of 1× 2 pulse splitters
can route the output from a single neuron to four recipient syn-
apses with negligible time delay [54].

At the other end of the spectrum, pyramidal cells in the neo-
cortex make thousands of connections, many of which extend
over appreciable distances [57]. The networks formed by such
neurons are characterized by several graph metrics that are
thought to be significant enablers of cortical function. The
networks form what is known as a small-world architecture,
wherein a high degree of local connectivity is combined with
long-range connectivity to realize significant clustering, but
also very short average path length across the network [58, 59].
The short average path length enables rapid communication
between distant modules whose combined activity may be rel-
evant to processing a given stimulus. Achieving both the high
degree of connectivity as well as the significant long-range
connections are primary challenges faced by all approaches
to neuromorphic hardware, yet these connectivity structures
appear necessary to achieve a high topological dimension,
which is evidently prioritized in the cognitive circuits of the
brain [60].

Achieving this degree of connectivity with electronic cir-
cuits remains a primary challenge to scaling of neuromorphic
hardware. Making direct connections between semiconductor-
based neurons is prohibited by wiring parasitics, and this lim-
itation is partially mitigated through address-event representa-
tion (AER) [61–63] digital networks, wherein spike events are
given a digital representation as a packet including the time of
a spike and a neuron address. A shared communication infra-
structure is then used to route spike packets to their intended
synaptic connections. This approach has been a key enabling
factor in the development of semiconductor neuromorphic sys-
tems and allows a great degree of reconfigurability in the net-
work structure, but it comes with a cost. As the number of
neurons and their degree of connectivity increase, the size of
memory required to store the addresses grows, as does the
communication latency.

Similar themes arise when designing interconnection net-
works for superconducting electronic neurons. While it is
the capacitance and resistance of metal wires that makes dir-
ect connections between semiconducting neurons challenging,
it is the inductance of superconducting wires that requires
attention in the superconducting domain. The current asso-
ciated with a fluxon produced by a JJ varies inversely with
the inductance of the wire the JJ must drive (Ifq =Φ0/L),
so repeater junctions must be used to propagate pulses over
long distances, forming a Josephson transmission line (JTL).

A typical superconducting wire close to a ground plane will
have 500 fHµm−1 of inductance, and the inductance one
would like a JJ to drive is typically less than 100 pH. If one uses
wires of 1 µm width, one would expect to place JJs roughly
every 200 µm along a JTL. To produce an axon connecting a
neuron on one side of a 1 cm × 1 cm die to a synapse on the
other side may require as many as 50 extra JJs. When inter-
connecting large numbers of neurons in a small-world archi-
tecture, increasing the width of the wires to reduce inductance
does not bring a net reduction in the number of JJs required in
the JTL, because while junctions can be spaced further apart,
the destinations also grow further apart by the same scaling
factor. As is the case in semiconductor-based architectures,
an AER digital network may be a path forward for supercon-
ducting neuromorphic systems. This approach is discussed in
greater detail in section 4.5.

3.2.1. Large-scale connectivity. While challenging, achiev-
ing interconnection of neurons across a die may be possible,
and is decidedly worth pursuing [54]. Many exciting applica-
tions and research opportunities will be served by high-speed,
low-power-density, spiking neural networks of that scale. For
those who seek to go beyond that scale, new challenges
must be considered. For artificial neurons of any composi-
tion, whether semiconducting or superconducting, achieving
the complexity of operations supporting learning and adapta-
tion in biological brains requires circuits of much larger spatial
extent than the devices grown by biology. Simple area estim-
ates reveal that the 100 billion neurons of the human brain will
never fit on a computer chip, nor even a full 300 mmwafer. Yet
for large neural networks approaching this number of inter-
connected neurons, the trend is toward wafer-scale integration
[64–66]. At this scale, an axon spanning the wafer will require
10 000 repeater JJs, leading to wiring and current-biasing chal-
lenges that appear formidable. It has been acknowledged that
such current-biasing challenges must be solved in supercon-
ductor digital electronics long before wafer-scale integration is
conceived [67]. Tomakematters more interesting, such wafers
are likely to support between one million and ten million neur-
ons, interconnected by billions of synapses—an extraordinary
technological goal, but still far short of the cognitive structures
inside each human skull.

Optical communication is an enticing approach that could
address the challenges of large-scale connectivity in super-
conducting neuromorphic systems. Optical communication
in digital processors is not a new idea [68], and there
are sound physical motivations for including optical links
in existing computer architectures, even at the chip scale
[69]. These motivations include precise clock distribution,
energy-efficient long-distance communication, and scalabil-
ity to multi-chip modules. Given these extensive motivations
for optoelectronic integration, the reason modern computer
chips do not employ optical communication is simple yet for-
midable: there is not a known way to integrate light sources
with CMOS electronics in a scalable, cost effective manner.
If there existed light sources as simple as transistors that
could be integrated with CMOS electronics, the hardware and
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Figure 8. (a) Schematic of a fully connected 16 JJ neuron network (not to scale). (b) Approximate chip length (assuming square) for a fully
connected JJ neuron network vs. neuron count.

architectures of modern computing might be appreciably dif-
ferent. Excellent work toward this end [70, 71] notwithstand-
ing, the basic burdens are physical. Silicon has an indirect band
gap, so light production is inefficient. Successful light sources
are based on compound semiconductors with lattice constants
significantly different from that of silicon, so direct growth of
light sources on silicon wafers requires processing techniques
that, to date, have not been integrated with a CMOS process.

In the superconducting domain, light-source integration
remains the primary challenge to optical communication. Yet
there are several problems that change the considerations relat-
ive to semiconductor optoelectronic integration. First, the use
of superconductors enables simple, high-yield detectors that
can respond to light levels as low as a single-photon [72, 73],
dramatically reducing the output requirements of light sources
used by neurons to signal to synapses [74]. Second, supercon-
ducting circuits must be operated at cryogenic temperatures,
at which point optical transitions in silicon other than slow,
band-edge transitions can produce light more efficiently than
at room temperature. Third, superconducting electronic cir-
cuits can potentially be sputtered and processed on top of III–V
semiconductor light sources, enabling greater fabrication flex-
ibility than is possible when integrating with MOSFETs. The
prospects for silicon as well as III–V light sources appear more
promising when integrated with superconductors than when
integrated with semiconductors, potentially enabling multiple
routes to light sources as simple as transistors while meeting
the needs of large-scale neuromorphic systems [30, 75, 76].
Such systems are envisioned to achieve communication across
wafers through passive, dielectric waveguides [77–79], and
between wafer-scale modules with low-loss fiber optics [80].
Still, significant hurdles remain to move such light sources
from the domain of research-level devices towafer-scale integ-
rated optoelectronic circuits. In particular, integration of faint,
pulsed light sources with superconducting electronic circuits,
including JJs and SPDs, at an industrial scale has not been
demonstrated. Additionally, while it has been shown that
superconducting thin-film amplifiers can produce the voltage
necessary for driving a semiconductor light source [81], it

remains to be demonstrated that these driver circuits can be
accomplished with sufficient speed and energy efficiency to
enable scalable systems.

3.2.2. Fully connected networks. Large-scale systems that
use only all-to-all connectivity seem very unlikely. However,
mixed systems with smaller blocks of fully connected neurons
that communicate with other locally fully connected blocks is
something that has already been used in CMOS implement-
ations of neuromorphic computing [82–86]. Here we look at
how a block of SFQ neurons can be connected in an all-to-all
manner and what the basic size requirements are for this type
of block.

Figure 8(a) shows 16 fully connected JJ neurons with the
associated wiring for an all-to-all connection scheme. Each
of the squares here (not to scale) represents the necessary
synaptic weight, fan-in, and neuron needed to process the
15 inputs and provide the 1 output. The blocks contain all
of the analog components of the neuromorphic SFQ circuit
as described in [54]. In this type of architecture, the output
and communications are handled as digital SFQ. The wir-
ing between these cells must then typically contain additional
junctions to maintain proper impedance. This type of phys-
ical layout would most likely require at least 2 wiring layers
in order to support the required cross-over points, plus addi-
tional wiring layers for biasing the junctions. However, small
fully connected analog blocks like these could be an interest-
ing part of a larger system and implement certain problems
like best match and traveling salesman type problems [87].

Figure 8(b) shows the nominal size scaling of JJ techno-
logy with the number of fully connected neurons. The size
scaling is estimated using the following assumptions about the
block size and thewiring. The pitch between synaptic elements
(contained within the neuron block) is 5 µm and will domin-
ate the size of the block as the number of connected elements
is increased since the neuron is 2 JJs regardless of the size
of the fan-in. There will also be a JTL amplifier within the
block, but again this will be a fixed number of JJs that does
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not scale as the number of connected elements is increased.
For the estimation, it is assumed that the JJs for the neuron
and JTL amplifier will add a constant 10 µm to the sides. The
wiring pitch is assumed to be 3 µm. Narrower strip-lines are
easily possible, but they typically increase the impedance of
the stip-line per unit length, and would therefore require a lar-
ger number of repeater junctions in the wiring. The tradeoff
between impedance per unit length and number of repeater
junctions within the wiring will need to be determined for a
given final circuit design. The size of a fully connected block
is then roughly Lblock ≈ Psyn(Nneurons/4)+Pwire(Nneurons/2+√
Nneurons/2), where Lblock is the total length of the fully con-

nected block of neurons, Psyn is the synapse pitch, Nneurons is
the number of neurons in the fully connected block, and Pwire
is the wire pitch. This leads to an approximate size of 60 µm
× 60 µm for the 16 fully connected neurons block shown in
figure 8.

4. Architectures

4.1. SNNs

One of the most promising applications of superconducting
electronics for neuromorphic computing is in the domain of
spiking neural networks (SNNs). Biological neurons integrate
signals from many synaptic and dendritic inputs and to pro-
duce a pulse when that integrated signal drives the neuron
above threshold. This behavior of accumulation and discharge
defines a relaxation oscillator, and relaxation oscillators are
uniquely useful physical entities to serve as computational
primitives. This utility derives from several contributions. To
list a few, relaxation oscillators are energy efficient because
they are quiescent most of the time; they are resilient to noise
because their communication events are binary, all-or-nothing
spikes; and they make excellent use of the time domain in that
they can encode information not just in spike rate, but also in
timing correlations and sequences of spike events.

The literature in this field has presentedmultiple designs for
relaxation oscillators based on superconducting spiking neur-
ons. At a basic level, JJs are conducive to forming spiking
neurons because a JJ itself has a threshold current, and when
driven above this current the junction will produce pulses of
voltage and current. By combining two JJs in a superconduct-
ive loop, one forms a DC SQUID [88, 89], perhaps the most
ubiquitous and useful of superconducting electronic circuits.
As previously mentioned these two junctions work to balance
each other, much like the Na+ and K+ ion channels in biolo-
gical neuron membranes [3]. The DC SQUID is the primary
active core of many superconducting spiking neuron designs,
and neurons based on this pulsatile locus can be coaxed to
demonstrate many of the dynamical responses observed in
their biological counterparts [90]. Beyond neuronal response,
DC SQUIDs can also be used to accomplish similar nonlin-
ear processing and temporal filtering functions associated with
dendritic processing [33].

So superconducting electronic circuits are well-equipped
to perform the dynamical activities of relaxation oscillators
that serve as the computational primitives for spiking neural

networks. The specification that a neural network is based on
spiking activity does not constrain the architectures that can be
achieved. However, spiking activity is most conducive to cer-
tain types of information processing. Foremost, because spikes
are temporally brief responses to stimulus, spiking neural net-
works are well-matched to processing stimulus that is dynam-
ically varying. In biological systems, examples include aud-
itory stimuli in which signals with frequency content up to
tens of kilohertz are mapped onto spiking activity up to tens of
hertz, as well as visual stimulus, where the persistent motions
of the eyes (saccades) ensure that images on the retina are per-
petually dynamic. Spiking neural networks excel at transdu-
cing these ever-changing stimuli into network activity and self-
organizing the dynamics of the network so that unique stimuli
become correlated with unique patterns of spiking activity.

Ensuring that unique patterns of spiking activity correlate
with specific stimuli is the task of information coding, which
is a primary area of neuroscientific investigation [7, 91]. The
rich repertoire of responses that can be elicited from com-
plex relaxation oscillators enable spiking neurons to encode
information about a stimulus in a number of ways [92, 93].
For example, a given neuron may respond to a specific audio
frequency or specific color incident on the retina by firing at
a constant rate. The neuron may have a preferred audio fre-
quency or visual color to which it responds preferentially, such
that the neuron will fire most rapidly in the presence of that
specific frequency or color, and its firing rate will decay the
further the stimulus departs from the preferred input. Such
a response is referred to as the neuron’s ‘tuning curve’ [7].
By comparison to the responses of biological neurons, one
is compelled to conjecture that superconducting neurons have
extraordinary perceptual potential. While the response of the
auditory system persists only to frequencies in the tens of
kilohertz, the speed of JJ circuitry would appear to enable
superconducting cognitive systems to directly perceive sig-
nals up to hundreds of gigahertz, endowing such systems to
hear and process high-frequency microwaves. Similarly, in the
visual domain, a wealth of superconducting sensors capable
of detecting photons from microwaves to gamma rays offer
the opportunity for superconducting neural systems to directly
see this broad swath of the electromagnetic spectrum. Synaptic
circuits capable of such perception with single-photon sensit-
ivity have been discussed in section 2.2.3.

Beyond rate coding, certain neuronsmust respond in aman-
ner that does not require the delay associated with integrating
spikes to determine a firing rate. Individual spikes can accom-
plish fast response times [94]. Neurons can activate rapidly to
the onset of a stimulus, sending an action potential to down-
stream connections which act quickly in response to a single
pulse. Such a response mechanism is crucial to ensure a quick
action immediately follows the onset of a stimulus that may
represent danger or otherwise require prompt reaction. More
complexity can be encoded and decoded in the timing between
spikes produced by different neurons. Consider two neurons
both transmitting signals to synapses on a third, downstream
neuron. The nonlinear processing occurring in the dendritic
tree of the downstream neuron enables that neuron to gain
information not just about the rates of the two input neurons,
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but also about the precise timing relationships between the
spikes [46, 95]. If spikes from the two upstream neuron arrive
at a common dendrite within a certain time window, or in
a particular temporal order [46], that dendrite may pass a
strong signal on to the neuron cell body, while spikes arriv-
ing with too large a temporal separation, or in the wrong order
to excite that dendrite, may pass a very weak signal on to the
neuron. Such intermediate processing in dendrites provide the
neuron with the means to detect spike coincidences and even
more elaborate spike sequences, providing the neuron with
much more information about the activities of its colleagues
in the network than is contained in a simple sum of synaptic
activities [96].

All of these forms of information representation in spiking
neurons—including rate coding, spike timing, coincidences,
and sequences—can be accomplished with superconducting
circuits based on the same celebrated elementary device, the
DC SQUID. By judicious organization of input synapses onto
a tree of SQUIDs serving as dendrites, input spike rates can be
transduced to circulating DC current levels, correlated input
activity can be converted to a current signal where uncorrel-
ated activity would induce none, and specific sequences can
drive a SQUID to become active, where other sequences would
evoke silence. Part of the power of superconducting electron-
ics for implementing complex spiking neurons can be attrib-
uted to this simple modularity: the DC SQUID is the cascad-
able building block.

Populations of neurons can function only in this modular,
hierarchical manner if there is a balance between the excitation
of modules responding to their preferred stimuli and the inhib-
ition of other modules that may have a more urgent or relev-
ant message to report. Through inhibition, various neurons and
modules compete with each other for the attention of the pop-
ulation. Without this competition, nearly all stimulus would
result in a runaway cascade of excitatory activity. With this
competition, the dynamical activity perpetually shifts to allow
changing stimulus to be continually reflected in the spiking
activity of the network. This ever-engaged interplay between
excitation and inhibition has been referred to as ‘winnerless
competition’ [97], and it has been argued that spiking neural
networks with internal competition through inhibition perform
probabilistic reasoning [98] that leads ideal Bayesian infer-
ence in the presence of incomplete information [99, 100]. The
hardware of superconducting electronics is naturally equipped
to implement the match between excitation and inhibition. As
has been discussed, coupling between synapses, dendrites, and
neurons can be straightforwardly accomplished through trans-
formers. Whether a connection is excitatory or inhibitory is
simply determined by the sense of coupling in the mutual
inductor used in the transformer. A given neuron can easily
receive many excitatory and inhibitory connections with this
technique.

4.2. Direct ANN inference in hardware

One potential architecture for superconducting neuromorphic
hardware is to directly implement software style artificial
neural networks (ANNs). In this type of implementation, one

of the synapse styles described above can be used to weight the
incoming signals. The fan-in can be performed for an arbitrar-
ily large number inputs as long as the threshold for activating
the neuron does not need to be below roughly 1% of the total
input signal. However, the activation function typically used in
software ANNs does not map well to single SFQ pulses with
digital type fan-out and communications. While passing amp-
litude information in a very small network through a limited
number of layers is possible, the amplitude is quickly reduced
below a usable value. At this point, re-amplification of the ana-
log value would be required in order to pass values further into
the network. This type of re-amplification is typically expens-
ive in both energy and size and therefore does not seem to be
a natural fit for SFQ type neural networks. However, there are
two other potential choices; one is to create a multilayer per-
ceptron type network where the neuron acts as a threshold.
The other is to use rate encoding of several pulses to convey
the strength of the signal to subsequent layers.

While full scale software based neural networks, such as
the transformer network [101] used in natural language pro-
cessing, or resNet [102] used in image classification are too
large to achieve with current JJ technology nodes, selecting
smaller scale networks can provide a valuable test bed to
explore the strengths and weaknesses of neuromorphic super-
conducting hardware. Smaller scale networks with a targeted
problem could also be of more immediate practicality. For
example, problems where state of the art microwave sensors
are already at 4 K could use a first line of signal identification
to determine which segment of the microwave band should be
digitized and sent out of the cryostat for further analysis [103].
Another example is in the control and detection of q-bits that
are at cryogenic temperatures. Software neural networks of a
more modest size have been proven to be useful in controlling
or detecting these systems and a direct hardware implement-
ation would offer immediate advantages in speed and latency
[104].

Figure 9 shows an example of an SFQ based nine pixel
classification network that was simulated using WRSPICE.
The network shown in figure 9(a) consists of nine input pixels
which are simulated as DC to SFQ circuits that are fully con-
nected to three different output classes. The connections are
weighted by 27MJJ style inductive dividers and the fan-in cir-
cuits are flux based as described in [54]. The nine pixel clas-
sification problem was originally simulated using a sigmoid
based neural network in python to determine the weights. The
weights were then linearly mapped to the critical current val-
ues of the simulated MJJs. Figure 9(b) shows the output of
the 3 postsynaptic JJ neurons, each of which had a fan-in of
nine weighted inputs. The output is the simulated phase of
one of the output JJ in a JJ neuron configuration described
above. 2π steps can be seen indicating that the output JJ neuron
fired an SFQ pulse, which can be used as the output of the
circuit. Note that the circuit is running at a 100 GHz clock
demonstrating one of the potential advantages of SFQ type
neuromorphic computing, namely, very high speed. The ini-
tial latency of the circuit is about 30 ps, which is the time
required for the SFQ pulse to travel through the network of
JJs. However, one need not wait for the output before sending
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Figure 9. (a) Schematic of 9 pixel JJ classifier network that was simulated using WRSPICE. Each of the lines includes an adjustable
strength synaptic element. (b) Phase of each of the output neuron junctions offset for clarity. 2π steps indicate one SFQ pulse was fired as a
result of the input image. (c) The input images representing n, v, and z and allowing for any one pixel of ‘noise’ on the input image.

the next input. Thus, such a network could be fed new images
every 10 ps. In general, as the SFQ type ANNs grow in size the
latency will increase, but with careful design 100 GHz signal
input rates should be within current technological capabilities.
Figure 9(c) shows the 30 test cases; 10 each from one of three
classes representing the letters n, v, or z using nine pixels. One
of the pixels of any of these letters was then turned on or off
to represent noise. This example problem was first shown for
a small memristor hardware network [105].

4.3. Biologically realistic networks

The typical network structure for both ANNs and SNNs is
feed-forward, where the input stimuli couple to a set of inner
layers of neurons which are ordered, i.e. the first layer couples
to the second, the second layer couples to the third, and so
forth. The so-called recurrent connections, where for example
the second layer couples back to the first, are usually avoided,
because they make the training more difficult. However, recur-
rent connections occur frequently in mammalian brains. Given
the brain’s extraordinary information processing capability
and energy efficiency, it is tempting to study network struc-
tures with recurrent connections and asses their capability in
neuromorphic hardware.

A simple example of a recurrent connection occurs in two
mutually-coupled spiking neurons, where the first neuron is
coupled to the second and the second is coupled back to
the first. The mutual coupling occurs through two synapses
and can include a time delay along the axons and dendrites.
Mutually-coupled neurons tend to synchronize, with the two
neurons settling into a long-term firing state where they both
spike at the same rate with a fixed phase relationship. If the
neurons and synapses are identical, only two possible phase
relationships exist: in-phase, where the neurons fire at exactly

the same time, or anti-phase, where they fire 180 degrees out of
phasewith each other. The synaptic strength and the time delay
determine whether the synchronization is in-phase or anti-
phase, in a complicated nonlinear relationship which depends
on the dynamics of the neurons.

If the synaptic strength or the time delay of a connec-
tion slowly varies, a synchronized system can toggle from in-
phase to anti-phase or vice-versa in what is known as a phase-
flip bifurcation. Phase-flip bifurcations are a generic feature
of time-coupled nonlinear oscillators and have been studied
extensively in the bifurcation community. They have also been
observed in mammalian brains, where they are quite com-
mon; in Dotson and Gray [106], the authors recorded time
traces from 16 locations in a primate brain and found phase-
flip bifurcations in 9 of them. Although the details of how a
phase-flip bifurcation contributes to the brain’s higher func-
tioning is still under study, it is well known that oscillator
phase is used to encode information, so it is likely that its role is
significant.

In Segall et al [5], amutually coupled system of two JJ neur-
ons was studied. Josephson transmission lines were used as
axons and SQUIDs were used as synapses. Figure 10(a) shows
a scanning electron micrograph of the circuit. The neurons
were biased to fire continuously, and the flux and bias current
to the SQUID were varied to change the coupling strength and
the delay. SFQ-to-DC converters were used to measure the fir-
ing frequency of both neurons, and an SFQ merger (OR-gate)
was used to measure the phase relationship. In the experi-
ments, a large region of parameter space showed synchroniz-
ation of both in-phase and anti-phase types. Phase-flip bifurc-
ations were found both as a function of the SQUID flux and
bias current. Figure 10(b) shows the bifurcation diagram of
the system, with red and blue regions indicating in-phase and
anti-phase states.
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Figure 10. Phase flip bifurcation as described in Segall et al [5]. (a) Circuit picture of two mutually-coupled JJ neurons, with axons,
synapses and readout circuitry. (b) Measured bifurcation diagram showing in-phase (blue) and anti-phase (red) regions. The x- and y-axis
are control currents for the synapse. (c) WR-SPICE simulation of the same parameter space as in (b).

The circuit studied by Segall et al [5] was also simulated
using the WR-SPICE simulation package for superconduct-
ing electronics. Figure 10(c) shows the simulated data from
(b) and very good agreement was found. The simulation times
were over four orders of magnitude longer than the measure-
ment times. In future, larger networks that ratio would grow
even larger, dis-proportionally with the number of neurons.
This leads one to consider efficient brain simulation as a pos-
sible application of superconducting neuromorphic hardware.

4.4. Winner take all

Neuromorphic hardware can also be organized into bio-
inspired architectures for testing theories of how biological
neurons interact. For example, the winner-takes-all (WTA)
framework is a computational model that describes how
groups of neurons develop selectivity through competition
[107]. While many models have been proposed, figure 11(a)
highlights one WTA network developed for spiking neurons
in which two shared inhibitors create competition between the
outputs, suppressing them until only one (the winner) is left
firing [108]. As illustrated in figure 11, these networks are
highly interconnected; each output neuron has two inhibitory
input connections and two excitatory connections (one from
its respective input neuron and one from its own output). In
this particular case, the inhibitors are excited by the output

neurons and play distinct roles based on their different fir-
ing thresholds. The convergence inhibitor Zc creates compet-
ition and fires as long as two outputs are active, which can be
achieved by setting its threshold appropriately. The stability
inhibitor Zs has a lower firing threshold so that it fires as long
as just one output is active. Its primary responsibility is keep-
ing the losing neurons suppressed, thereby saving the result of
the competition.

A key feature of this particular design is that the output
neurons are identical and stochastic, meaning that the winner
is determined by probability. This aspect is distinct from other
WTA models that use neurons with different firing frequen-
cies. Since stochasticity is frequently observed in biological
neurons, WTA models that explore how stochastic neurons
develop selective pathways may be powerful tools for under-
standing large-scale dynamics in the human brain.

Recent work demonstrated how the stochastically vary-
ing firing thresholds of superconducting nanowire-based neur-
ons can be used for simulating these types of WTA networks
[18]. Superconducting nanowires are susceptible to thermal
and quantum fluctuations, causing them to switch prematurely
at currents below their critical current [109]. As a result,
their measured switching currents form a probabilistic distri-
bution. By incorporating these probabilistic switching events
into a circuit-based nanowire neuron model, it was possible to
simulate a WTA competition between three nanowire neurons
and demonstrate that the winner changes from iteration to
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Figure 11. (a) Schematic of a two-inhibitor WTA network. Synaptic
weights are indicated relative to the dimensionless parameter γ. (b)
A simulated WTA competition using nanowire spiking neurons. In
this particular competition, the third output neuron was the winner.
Reprinted with permission from [18]. © 2020, American Chemical
Society.

iteration as a result of probability. This example emphasizes
how intrinsic device stochasticity–usually avoided in digital
circuits–can instead be harnessed in neuromorphic applica-
tions to simulate theories of how populations of biological
neurons interact.

4.5. Mixed analog digital

Digital and analog components can be used to build mixed-
signal spiking neuromorphic architectures that combine the
benefits of both types of circuits while avoiding some of
their disadvantages. In particular, the mixed-signal approach
typically leverages low-noise digital communication to build

large networks of complex analog neurons. This mixed-signal
approach has been explored by several semiconductor neur-
omorphic architectures [82–84] as a way to build systems with
millions of complex neurons and billions of synapses. Many
of the same ideas can be incorporated into superconducting
neuromorphic systems by using superconducting digital logic
to build some aspects of the architecture such as the commu-
nication network between neurons.

Some of the more prominent semiconductor spiking neur-
omorphic architectures [85, 86] utilize only digital compon-
ents because this avoids the challenges and overheads that
arise when interfacing digital and analog components. How-
ever, these digital approaches require many more circuit ele-
ments in order to approximate the behavior of inherently ana-
log biological neurons. As a result, most digital architectures,
such as TrueNorth and Loihi, settle for the Leaky-Integrate-
and-Fire (LIF) model of the soma, which is less biologically
suggestive but less computationally complex than other mod-
els [110]. Analog approaches, however, are typically able to
efficiently implement more biologically relevant models of
the soma such as the Adaptive Exponential Integrate and Fire
model or the Adaptive Quadratic Integrate and Fire model.
These soma models capture more of the behaviors of the bio-
logical neuron and could provide important functionality for
more advanced neural networks. This functionality is desir-
able but implementing it in a digital system often prohibitively
limits the number of neurons that can fit on a chip.

Similarly, large-scale semiconductor spiking neuromorphic
systems are typically difficult to implement using purely ana-
log components due to the noise that is introduced by those
components. In addition, in order to scale efficiently, physical
components in the system often need to be shared between
different neurons in a time multiplexed fashion. This avoids
the problem of overprovisioning the system when only a small
number of components will be in use at any one time relative
to the total number of neurons being simulated. It also avoids
the need to provide enough wiring layers to connect thousands
or millions of neurons together. There is a limit to the num-
ber of wiring layers that can reasonably be provided by cur-
rent fabrication processes and this limit in turn limits the total
number of neurons that can be directly interconnected. Shar-
ing wires and other components in a time-multiplexed fash-
ion can address these problems but such a time-multiplexed
arrangement is much more difficult to implement in an analog
architecture than it is in a digital one.

The situation is slightly different for superconducting elec-
tronics, but the overall principle still holds that using a
mixed-signal architecture enables the system to simultan-
eously support complex neuron models and scalability. Super-
conducting digital logic enables the time-multiplexing of com-
ponents in the architecture in a similar manner to some
semiconductor approaches. This allows for large numbers of
virtual neurons to be simulated by sharing hardware and wires
throughout the system at the cost of some performance. At
the same time, superconducting circuits can be designed that
implement complex neuron models using relatively few cir-
cuit components [3]. These compact soma circuits enable
the architecture to incorporate a soma model that closely
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Figure 12. The shared axon neuromorphic architecture, which shares physical connections between neurons in an effort to reduce the
wiring density of large-scale networks.

resembles the Hodgkin–Huxely model with much less hard-
ware than would be required in a semiconductor implement-
ation. By combining the time-multiplexed digital compon-
ents with the compact soma circuits it should be possible to
build a neuromorphic system that captures biologically sug-
gestive neuron behaviors and interactions at a large scale. In
addition, the SFQ pulses used by the digital logic are the
same pulses that are produced by the soma circuits. This
allows for much more straightforward interfacing between the
two types of circuits without the need for an ADC. In some
architectures a DAC may still be required to translate from
a digital output into the analog input needed by some soma
circuits. Finally, because the superconducting digital circuits
tend to run at much higher clock rates than their semiconductor
counterparts, the biologically suggestive simulation can take
place at time scales that are much faster than biological real
time.

Directly connecting neurons together is the most straight-
forward way to build neuromorphic systems but the number of
neurons that can be implemented in this fashion is ultimately
limited by wiring and circuit density. To address this, several
different schemes exist that share different degrees of the hard-
ware between virtual neurons in neuromorphic architectures
such as the shared axon and shared synapse approaches, shown
in figures 12 and 13 respectively. In the shared axon approach,
the wires that are used to connect the neurons are shared by
using a digital network to route packets between the different
virtual neurons. In this way, the number of wires needed to
implement a very large fully connected network can be greatly
reduced. To implement this digital network, the spiking events

are typically encoded as Address event representation (AER)
packets which communicate the timing and location of each
spike to the appropriate post synaptic neurons [61–63]. By
capturing the timing information of each spike in the packet
the relationships between the spike timings of different neur-
ons in the system is preserved even though a digital network
is used to communicate the spikes. The synapse connections
between neurons are recorded in the routing tables of the
digital network which are used to determine where to send
each AER packet. Additional information about the differ-
ent neuromorphic digital networks and routing approaches can
be found in [111]. Importantly, this digital network approach
allows for arbitrary connectivity between neurons in the simu-
lation because the connections between virtual neurons are just
entries in the table of a router. As a result, the same hardware
can be reused to implement many different neural networks
and perform different experiments.

The shared synapse approach builds upon the shared axon
approach by also sharing the same synapse memory arrays
between neurons. This allows synapse weights for different
neurons in the network to be stored in the same memory
subsystem which can improve utilization and reduce the
area requirements of the memory hardware. In addition, this
approach allows for the same weight value to be used by mul-
tiple virtual neurons thereby reducing the total amount of syn-
apse weight memory needed for a network. Sharing synapse
weights between virtual neurons is generally not compatible
with on-line learning as the values of individual synapses need
to be able to change independently to support that functional-
ity. More aggressive approaches have also been explored in an
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Figure 13. The shared synapse neuromorphic architecture, which shares the physical memories used to store synapse weights between
neurons in an effort to reduce the memory overheads required for large-scale networks.

effort to further improve scalability, such as the shared dend-
rite approach used by Neurogrid [83].

The shared axon and shared synapse architectures that are
enabled by the mixed-signal approach address two of the
more significant challenges facing scalable superconducting
neuromorphic systems. In particular, the number of directly
connected physical neurons that can be implemented on a
single die is significantly less in the superconducting case.
This is because the circuit and wiring density of supercon-
ducting electronics is typically much less than that of semi-
conductors. By implementing a shared axon architecture, the
wiring density limitation can be greatly alleviated because
the wires are shared between virtual neurons. Similarly, the
shared synapse approach can be used to alleviate some of the
scaling limitations that are imposed by the limited density
of superconducting memory technologies. Additional digital
components could also potentially be shared by time multi-
plexing them to further improve the scalability of supercon-
ducting neuromorphic systems. As a result, the mixed sig-
nal approach allows superconducting neuromorphic systems
to scale to much larger numbers of neurons that might oth-
erwise be possible given the current limitations of the tech-
nology. An example mixed-signal architecture is depicted in
figure 14.

By combining large numbers of biologically suggest-
ive neurons into a simulation that runs at speeds much
faster than biological real time, mixed signal superconduct-
ing neuromorphic systems have the potential to enable new
investigations in the area of computational neuroscience.
Simulating large numbers of biologically suggestive neurons

in software is a computationally demanding task that results in
prohibitively long simulation times. Supporting these sorts of
simulations in superconducting hardware would enable exper-
iments that previously were not feasible. In particular, exper-
iments involving the interactions between large numbers of
biologically suggestive neurons could be a valuable tool in
the effort to understand how the biological brain works. Ulti-
mately, these experiments and the superconducting hardware
that supports them could provide critical insights in the push
to general artificial intelligence.

4.6. Reservoir computing

The superconducting neuromorphic architectures described
above all seek an operational mode evocative of biological
neural networks, even though they differ in the particulars
of their physical implementation. Reservoir computing (RC)
offers the remarkable possibility of subsuming the dynam-
ics of any one of these physical substrates in order to per-
form computation in a different operational mode that offers
a simpler training procedure and eliminates the need for stor-
ing most synaptic weights. In order to understand how super-
conducting circuits can function as a computational resource
in this manner, it is helpful to explain the software neural-
network origins of the RC paradigm.

RC emerged as an alternative training methodology for
recurrent neural networks (RNNs) that are difficult to
train using traditional back-propagation methods [112, 113].
Attempts to train complex (i.e. large and highly connected)
RNNs mainly resulted in changes to the output weights
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Figure 14. An example mixed-signal architecture with each of the
major components shown.

Wout of the system, while the internal weights Wr remained
largely unchanged. Embracing this insensitivity as a tenet,
RC assumes that Wr are initialized randomly and fixed; no
attempts are made to train them. In most cases the input
weightsWin are treated in the same manner. These RNN vari-
ants are called echo state networks (ESNs), an example of
which is shown in figure 15 in comparison to a simple ANN
architecture in which every single weight must be trained to
solve a particular problem. ESNs typically employ supervised
learning and are trained by finding the output weights Wout

that produce the best estimates y(t) =Woutx(t) of the ground
truth training data ỹ(t) for input data u(t) and internal reservoir
state x(t). The simplest approach to this training is to use the
Moore–Penrose pseudo-inverse:Wout = ỹ(t)x(t)† which gives
the solution explicitly and without the need for iterative back-
propagation. A δ update rule can also be used that performs
single-step gradient descent on the linear outputs [114], con-
tinually tuning weights in response to changes in input data
conditions or even the reservoir itself. No matter the particular
training methodology the reservoir may be used to solve mul-
tiple problems, since Wout is not integral to the reservoir. The
recurrent nature of ESNs (and RCmore generally) makes them
well-suited to time-domain problems, and so we have written
these quantities as a function of time t, though in the case of

Figure 15. Comparison between an echo state network (ESN) and
an artificial neural network (ANN). (a) The ESN processes
time-domain input data and has fixed weights apart from its outputs.
The ESN’s construction otherwise mirrors a recursive neural
network (RNN). (b) The ANN operates on parallel input data, and
all of its connections are based on trainable weights.

Figure 16. A block diagram of a physical reservoir supplanting the
ESN. The only explicit operations performed outside of the reservoir
are input/output encoding and output weight multiplication.

ESNs this is understood to mean a discrete-time basis where
any time dependent quantity a(t) is taken to imply the series
of points [a0,a1, . . .,an].

Unfortunately, attempts to directly accelerate ESN execu-
tion on a hardware platform are ultimately subject to the same
computational and memory bandwidth constraints that have
motivated much of the earlier work in this review. For RC,
however, another opportunity emerges: the black-box nature
of the RC and the lack of a need for controlling its internal
weights means that it can be replaced by a physical sys-
tem whose dynamics form a substrate for so-called phys-
ical reservoir computing (PRC) [115], as represented pictori-
ally in figure 16. So long as this physical system exhibits
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Figure 17. Two potential reservoir computing architectures based on JJs. (a) A ‘parallel’ array of junctions analogous to a Josephson
transmission line (JTL) and (b) a series array where JJs are coupled via a global load. (c) The performance of both of these architectures
where performing channel equalization, as compared to an adaptive least mean squares (LMS) technique and to the cases where the exact
channel inverse is known and no equalization is performed.

sufficiently high dimensionality, non-linearity, and the fading-
memory property (i.e. it has a short-term dependence on the
reservoir inputs) it can be exploited for this purpose. Conveni-
ently, there is no need to explicitly store the internal and input
weights Wr and Win since they are provided naturally by the
design of the reservoir. The emergence of the PRC paradigm
unsurprisingly resulted in an explosion of different hardware
reservoir realizations—optical, spintronic, mechanical, elec-
tronic, etc—whose diversity speaks to the broad applicab-
ility of PRC [116]. Here we summarize the recently intro-
duced implementation of RC on a superconducting circuit
platform [117], which provides considerable advantages in
terms of speed and energy efficiency compared to other PRC
embodiments.

Starting with simple circuits such as the Josephson trans-
mission line (JTL) in figure 17(a) or the globally coupled series
array in figure 17(b), one must first choose input and output
encodings that facilitate information processing by the reser-
voir. In order that the JJ voltages are easily measured, it is con-
venient to operate these circuits above the critical current Ic
of the JJs, at which point they enter a complex coupled oscil-
latory state wherein all of the junctions undergo relaxation
oscillations. In the JTL these are soliton dynamics, as the cir-
cuit equations mirror the Sine–Gordon equation [118]. In the
series array these dynamics are strongly coupled but kept away
from the precipice of synchrony that is readily observed in
such structures [119]. For these PRC embodiments, the inputs
are raw waveforms applied as currents without pre-processing
or encoding. The reservoir’s dynamics are interpreted through
the lens of a multi-pulse encoding of the dynamics in some
fraction of the JJs in the reservoir. The spiking rates give
similar information as the time-average voltages, either of
which can be used for the purposes of reservoir computing
depending on which is experimentally more convenient. The
efficacy of these reservoirs for signal processing is shown in
figure 17(c), where the reservoirs are asked to perform channel
equalization on a 4-level amplitude modulated signal subject
to multipath-fading, nonlinear distortion, and additive white
Gaussian noise (AWGN). Remarkably both the series and par-
allel (JTL) arrays are able to perform at the level of the ‘exact’
channel inverse, which of course cannot invert the AWGN.
Both superconducting circuits easily outperform a traditional

channel equalization technique, adaptive least mean squares
(LMS), which struggles with the nonlinear distortion effects
of the channel. This performance is highly encouraging, espe-
cially in light of the minimal number of JJs required: 40 in
the case of the JTL and 5 in the case of the series array.
Also impressive are the data rates: 10 Gb s−1 to 20 Gb s−1 for
this signal equalization task with the possibility of scaling to
100 Gb s−1. In [117] a readout chain based on simple RSFQ
circuits was considered, which converts the analog oscillations
of the reservoir JJs into decimated digital signals that can be
brought to room temperature for direct measurement or passed
to additional RSFQ circuitry that can perform the final weight
multiplication. While multiplication can be performed quickly
enough in RSFQ to support these high data rates [120, 121],
it comes at the cost of a nearly thousand-fold increase in the
required junction count.

Despite the allure of interfacing these superconducting
reservoirs directly to a compatible logic family, a more enti-
cing possibilities is combining superconducting reservoirs
with the technologies mentioned earlier in this review, bring-
ing to bear the power and flexibility of weight-based JJ com-
puting in a targeted fashion. The most straightforward com-
bination of JJ-based RCs and neural networks would have the
latter serve as a readout layer for the reservoir. This scheme
has been demonstrated in liquid state machines—effectively
spiking implementations of reservoirs—where a trained per-
ceptron output layer takes the place of an output weight mat-
rix [122]. This could eliminate the need for explicit multiplic-
ation using SFQ or other logic implementations and further
reduce the junction counts in a hybrid architecture. Additional
extensions of a hybrid architecture could mirror the proper-
ties of so-called Deep-ESNs [123] which combine multiple
reservoirs with intermediate trained output layers, or by adding
auto-encoding stages that enhance the generalization capabil-
ities of the system.

Overall, superconducting RC provides a powerful tool in
the superconducting neuromorphic toolkit that sidesteps the
traditional constraints of local memory resources while still
serving as a general purpose computational architecture whose
functionality is determined solely by the output weights of
the system. The extremely high oscillation rates of JJs allow
for inference at extremely high speeds (to 100 Gb s−1 and
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potentially beyond), while maintaining full compatibility with
other digital and neuromorphic superconducting platforms.

5. Summary

We presented an overview of the current state of neuromorphic
computing based on superconducting electronics. JJs and
superconducting nanowires can implement bio-inspired func-
tionality directly at the device level. For example, JJs exhibit
naturally spiking behavior analogous to the action potential
that neurons in the brain exhibit. Small scale circuits with
only a few devices can extend this functionality dramatically
depending on the desired properties. For example, two JJs
can mimic the ion channel dynamics that are observed in fir-
ing neurons, and a nanowire resistor combination can mimic
the relaxation oscillations observed in the brain when several
neurons are connected. These device properties combinedwith
superconducting communications, which work well with time
domain spiking signals, provide a diverse set of bio-inspired
primitives for performing computation.

The way in which these devices or small circuits are con-
nected depends significantly on the target application. We dis-
cuss some of the options including small-scale fully connec-
ted analog networks and reservoirs. These small analog blocks
can be further connected with digital communications to form
more powerful networks. Such mixed analog digital supercon-
ducting neuromorphic systems have great promise for their
ability to implement more general computational functional-
ity. In addition to all electrical connectivity, one can also integ-
rate optical communications. The integration of photonics
with superconducting electronics may be particularly effective
because of highly sensitive cryogenic single photon detectors,
which reduce the requirements on integrated light sources, and
on the light sources themselves that may benefit from cryo-
genic operation.

The fabrication of superconducting neuromorphic pro-
cessors that can approach the size and scope of current day
software based neural networks seems difficult, to say the
least. The current state-of-the-art in digital JJ circuits is still
at a relatively low integration density compared to CMOS. In
part, this is due to the stringent requirements of digital compu-
tation, which is not tolerant of faults even at a very low level.
Superconducting neuromorphic computing is approximate in
nature and therefore has the potential for acceptable operation
even in the presences of low-level errors from sources such as
flux trapping. Whether or not this potential advantage enables
greater integration density for superconducting neuromorphic
systems remains to be seen. However, targeted applications
such as microwave signal sensing or quantum state readout
may be far more within reach and could drive the field forward
in the near term. The speed and energy advantages of super-
conducting neuromorphic computing, particularly for applic-
ations that already operate in a cryogenic environment, are
significant. This combined with the ability to leverage digital
superconducting fabrication techniques make superconduct-
ing neuromorphic computing a very appealing area of research
and development.
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