
A Framework for the Composition of IoT and
CPS Capabilities

Khalid Halba1,2,3, Edward Griffor2, Ahmed Lbath1 and Anton Dahbura3

1Grenoble Alpes University, Grenoble, France

{khalid.halba , ahmed.lbath}@univ-grenoble-alpes.fr
2National Institute of Standards and Technology, Gaithersburg, Maryland, USA

{khalid.halba , edward.griffor}@nist.gov
3Johns Hopkins University, Baltimore, Maryland, USA

{khalba1 , adahbura1}@jhu.edu

Abstract—By 2030, over a half trillion devices will
be connected to the internet. With so many devices
providing a wide range of features, there is a need for
a framework for innovation and reuse of Internet of
Things (IoT) and Cyber-Physical Systems (CPS) capa-
bilities. Such framework should facilitate the composi-
tion of capabilities and provide stakeholders means to
reliably model and verify compositions. An IoT and CPS
Composition Framework (ICCF) is proposed to achieve
this goal. ICCF is based on the NIST CPS framework
composition guidelines, intuitive composition seman-
tics inspired from the mPlane protocol, and strong
formal verification capabilities of the Temporal Logic
of Actions (TLA) formal descriptors and tools. This pa-
per demonstrates why such framework, semantics, and
formal specification and verification components form
a powerful and intuitive composition framework that
satisfies different stakeholders concerns. To achieve
this purpose, semantics and formal specification of the
composition algebra were provided, a well-being com-
posite capability within a smart building was specified,
its prototype model in a formal verification tool was
run, an analysis of the results of symbolic execution
quantitatively and qualitatively was performed, and as-
sessment of the trustworthiness of the composition was
done. Lastly, implementation details were provided and
proposed extensions to other domains such as smart
transportation and smart health were discussed.

Index Terms—Framework, IoT, CPS, ICCF, Capability,
Algebra, Composition, Trustworthiness.

I. Introduction and paper plan

IoT or CPS capabilities composition is the process of
generating a value-added capability based on atomic
measurements or services. Throughout this paper, IoT
and CPS can be used interchangeably [1]. A frame-
work for capabilities composition that addresses dif-
ferent stakeholders concerns would serve as a foun-
dation for open innovation and re-purposing of IoT
and CPS capabilities of an expected half-trillion IoT
and CPS devices by 2030 [2]. Examples of target do-

mains include smart buildings (well-being), transporta-
tion (safety of autonomous vehicles), and healthcare
(autonomous ventilators output). Verifying such novel
compositions and making sure their deployment won’t
cause errors is crucial for a trustworthy implemen-
tation. For this reason, there is a need for a frame-
work for composing IoT or CPS systems capabilities
regardless of their complexity. This work proposes
an IoT and CPS Composition Framework (ICCF) that
addresses these goals. Such a framework should lay
the groundwork for composition and trustworthiness
assessments, use straightforward semantics to help
developers prototype novel capabilities, and describe
tools for the formal verification of such novel com-
posite capabilities. Capabilities composition taxonomy
involves formal, technical, and Quality of Service (QoS)
components. Together these components provide foun-
dations for representing, processing, and generating
sought-after capabilities by diverse stakeholders while
preserving properties of interest to those stakeholders.
The focus of this paper is on formal components of
the proposed framework, technical and QoS aspects
remain for future work. Formal components of ICCF
include i) foundations for composition ii) semantics for
capabilities, interactions, and compositions iii) formal
specification languages and formal verification tools
used to translate the semantics of composition into
specifications for performing model checking and trust-
worthiness assessment via assertions or deadlock anal-
ysis. The contributions of this paper are organized as
follows: in section II, related work on previous efforts
is provided. In section III: i) criteria based on which
the selection of the building blocks of the proposed
composition framework is defined, ii) existing frame-
works, semantics, and formal verification techniques
are compared to select formal components that best



satisfy ICCF requirements. Section IV provides ICCF
semantics used to describe interactions and capabil-
ities compositions. In section V an example of com-
position in the IoT space is presented, its composite
function is formally specified and its state space is
studied following its model checking. This is followed
by quantitative and qualitative analysis and an assess-
ment of the trustworthiness of the results obtained,
as well as an outlook on implementation efforts of
the studied example and potential extensions to other
domains. In the conclusion, a summary of contributions
is presented as well as an outlook to future work.

II. Related work

Examples of IoT and CPS frameworks, environ-
ments, or standards for capabilities composition in-
clude OneM2M environment [3]. It leverages the NIST
CPS framework [4] [5] [6], a comprehensive frame-
work that provides capabilities composition guidelines
including time synchronization between atomic capa-
bilities. The OneM2M environment can use the M2M
semantics provided by the industry segment that uses
corresponding data. This makes its semantics domain-
specific [7], a higher abstraction layer might be needed
to simplify rapid prototyping of composition for dif-
ferent IoT and CPS domains. Fiware [8] was coupled
with the IoT-A framework which supports IoT capa-
bilities composition and semantic specification using
Business Process Model and Notation (BPMN) 2.0, it
also supports powerful features such as synchronous
and asynchronous compositions [9]. The BMPN seman-
tics, however, make it challenging to formally verify
compositions as that involves converting the BPMN
notation to the Generic Property Specification Lan-
guage (GPSL formal) specification language which can
improve expressiveness but might add complexity, im-
pact performance, or limit expressiveness when con-
verting BMPN to a graphically verifiable model such
as Property Sequence Chart (PSC) [10]. For the CIM
(Context Information Management) environment [11],
the foundations for composition are provided by the
CIM NGSI evolution framework, it uses RDF (Resource
Description Framework) to semantically describe the
capabilities of a system. RDF is a graph-based de-
scriptive language, it can be converted to a formally
verifiable specification such as ShEx 2.0 (Shape ex-
pression schemas v2.0) [12]. ShEx expressions can be
used both to describe RDF and to automatically check
the conformance of RDF data. However, ShEx checks
whether RDF data respects the schema requirements
as it is data-oriented not composition function-oriented.
This can make it challenging to model check the system
features. VITAL is another project that supports IoT-

A framework, W3C SSN semantics, but recommenda-
tion on formal specification and verification languages
and tools to use are not the focus of the framework
[13]. The same case for FogFlow [14], an environment
that leverages NGSI framework for IoT capabilities
composition foundations and YAML as a capability de-
scriptor. AWS [15] is a commercial environment for
cloud services, it leveraged PlusCal semantics [16] and
TLA [17] formal specification techniques to verify the
correctness of properties such as fault tolerance in
their storage services, but this didn’t extend to cover
the microservices and IoT composition solutions such
as GreenGrass [18]. To address the limitations of these
frameworks and to provide a strong framework for the
composition of IoT and CPS capabilities, an IoT and
CPS Composition Framework (ICCF) is proposed. This
framework leverages the NIST CPS framework com-
position and trustworthiness recommendations, uses
strong semantics inspired from the mPlane protocol
[19], and relies on the intuitive PlusCAL/TLA/TLA+
package to prototype, formally specify, and model
check capabilities and assess their trustworthiness.

III. Formal criteria and ICCF foundations

A. Formal criteria

Satisfying the formal criteria of the ICCF framework
means relying on a framework that provides capabil-
ities composition foundations. This also requires the
leverage of lightweight and expressive semantics to
describe compositions and being able to translate their
semantics easily to a formal specification language for
building complex functions and verifying their trust-
worthiness. Below is a comparison of frameworks, se-
mantics, and formal verification techniques that aims
to select components providing the formal components
necessary to satisfy the requirements of ICCF.

B. Comparing formal components

1) Frameworks: A framework enables composition
when it takes into consideration i) concerns related to
the ability of the IoT/CPS to achieve an intended pur-
pose in the face of changing external conditions such
as the need to upgrade or otherwise reconfigure an
IoT/CPS to meet new conditions, needs, or objectives
(adaptability), ii) concerns related to our understand-
ing of the behavior of IoT/CPS due to the richness and
heterogeneity of interactions among its components,
such as the existence of legacy components and the
variety of interfaces (complexity), iii) concerns related
to the ability to combine IoT/CPS modular components
(hardware, software, and data) to satisfy user require-
ments (constructivity), vi) concerns related to the ease
and reliability with which an IoT/CPS component can



be observed and understood (for purposes of leverag-
ing the component’s functionality) by an entity (human,
machines), and v) concerns related to the ease and re-
liability with which an IoT/CPS component’s functions
can be ascertained (for purposes of leveraging that
functionality) by an entity (discoverability). IoT-A is a
reference model and architecture (RMA) designed to
allow the generation of different IoT architectures tai-
lored to specific scenarios. Using IoT-A with Fiware in
[8] enabled the creation of architectures with different
functional groups each serving a specific purpose and
enabling interoperability, the composition of functions
is intrinsic to Fiware using the service organization FG
(functionality group) but stakeholders concerns when
composing IoT capabilities aren’t explicitly addressed.
In [20], an OWL-based ontological framework for the
opportunistic composition of IoT systems was intro-
duced. The framework leverages holons, which are pro-
gramming entities used to model distributed systems.
Designing holons uses CoAMOS and A3ME ontologies.
The resulting ontologies can then be converted to UML
or domain-specific languages for further exploitation
or composition in the IoT domain. While the capa-
bilities discoverability or composition complexity are
addressed in this framework, the adaptability of the
composition isn’t addressed. In [21], ISCO, (Internet
of Smart City Objects), a distributed framework for
service discovery and composition was introduced with
three major enablers: a semantic functional descrip-
tion of city objects, representing physical devices or
abstract services, a distributed service directory that
embodies available city services for service lookup and
discovery, and planning tools for selecting and chain-
ing basic services to compose new complex services,
this effort provides rich implementation aspects in the
smart city context but the trustworthiness of composed
capabilities isn’t addressed. The NIST CPS framework
[4] defines criteria that contribute to CPS composition
trustworthiness taking into consideration functional,
human, trustworthiness, timing, data, and composition
concerns. The composition concern addresses adapt-
ability, complexity, constructivity, and discoverability
of CPS capabilities, hence, the NIST CPS framework
composition foundations are leveraged to guide stake-
holders concerns for composing capabilities.

2) Semantics: Semantics for capabilities composi-
tion suggest that the semantics are lightweight and
expressive enough to represent capabilities, interac-
tions, compositions, and workflows necessary to com-
pose value-added features in IoT and CPS. The W3C
Web Ontology Language (OWL) [22] is a semantic web
language designed to represent complex and rich IoT
capabilities, groups of things, and relations between

things. However, it is more geared toward web services
and it is not a lightweight approach to composing ser-
vices. In [23], CyPhyML, a CPS capability description
language was discussed with formal specification ca-
pabilities supported. However, the language was more
geared towards a formal description of CPS systems for
model checking purposes and not IoT services. mPlane
semantics [19] allow the representation of value-added
capabilities using a set of operations designed to facil-
itate service composition. These compositions can be
applied to measurement environments, IoT services,
and CPS. mPlane semantics are simple, expressive, and
lightweight compared to other description languages
investigated, as a result, it satisfies the human aspect
of the NIST CPS framework.

3) Formal specification and verification: This aspect
is related to the semantics discussed earlier. Building
correct compositions and verifying their properties
should not be a daunting experience for engineers
and developers. These stakeholders should be able
to easily use semantics and service descriptors to
formally specify and prototype composite services. In
[24] authors introduced linear logic LL based on pi-
Calculus to describe and formally verify non-functional
attributes such as the credibility/trustworthiness of the
service composition. Linear temporal logic (LTL) was
introduced in [25]. Real-Time Maude formal verifica-
tion tool that is based on LTL was used to formally
verify properties of interest. In [26], Directed acyclic
graphs were used to formally model dynamic service
discovery, invocation, and composition in opportunistic
networks. Petri Nets [27] were used as an algebra to
formally model services and processes where the main
goal was to formally verify compliance of compositions
with the ever-changing regulations on IoT. Temporal
Logic of Actions formal specification was used to for-
mally specify and verify critical properties on services
within the AWS echo-system [15]. The common aspect
between these formal specification languages is how
difficult it is to move from description semantics to
formal specification of composite services. Except for
TLA, which has strong software support using PlusCAL,
a high-level language that is comparable to pseudocode
and which enables the fast translation of mPlane com-
position semantics to TLA formal specification. TLA+
is the formal tool that uses notation which is very
similar to natural mathematic operations. CoQ [28]
or Isabelle [29] use relatively daunting notations that
are challenging for stakeholders which might impact
the developer’s ability to write verifiable compositions
and as a result might limit innovation. Based on this
comparative study of frameworks, service description
semantics, and formal specification and verification



Fig. 1. Space of Capabilities and Entities

techniques ICCF is proposed: a framework for the
composition of IoT and CPS capabilities that is based
on strong composition foundations provided by the
NIST CPS framework, easy and lightweight semantics
inspired from the mPlane protocol and leverages the
ability to quickly translate service semantics into for-
mal specification thanks to PlusCAL’s translation capa-
bilities of composition semantics to TLA specification.

IV. Introducing ICCF composition algebra semantics

This section defines the algebra for describing capa-
bilities, interactions, and compositions.

A. The space of capabilities and descriptors

Figure 1 shows the space of entities and capabili-
ties. E represents the space of IoT entities, while D
represents the space of capability descriptors. There
is a space R in D that meets ICCF requirements.
R elements can be composed and decomposed using
the ICCF framework specification algebra. There is
a surjective relationship between D and E : one or
more CapabilityDescriptors are provided by a single
entity (Ca1 and Ca2 provided by Ea). In the imple-
mentation, using microservices, an exception to this
rule are those microservices that provide a single and
unique CapabilityDescriptor (Cb1→ Eb represents this
case). If E is composed of such microservices then the
relation between R and E is injective. Capabilities in
R are either indecomposable or composite.

B. Composition operators and descriptors

Let’s define an operator ψ which represents a k-
ary composition operator. To illustrate composition in
this paper, an assumption of k=2 is considered (which
renders ψ a binary composition), Ca1, Ca2, and Ca are
represented as JSON objects (with simple key-value
pairs representing the CapabilityDescriptor parame-
ters), the composition is an operator on values obtained
after sending a specification to all atomic capabilities
and receiving results. Let’s consider Ca1 and Ca2 from
Figure 1 two indecomposable capabilities and Ca a
composite capability obtained as follows:

The composition operator ψ has outcomes in R :
ψ : R2 → R .

(Ca1,Ca2) → Ca
→ ψ (Ca1,Ca2)

This composition generates the CapabilityDescriptor of
the composite capability Ca described below:

{ "ID": "Ca_ID",
"Organization": "Ca_O",
"NAME": "Ca_N",
"TIMESTAMP": "Ca_TS",
"LOCATION": "Ca_L",
"REFRESH_RATE": "Ca_RR",
"UNIT": "Ca_U",
"VALUE": "Ca_V",
"SIGNATURE": "Ca_S"}

Ca_ID: represents the ID of the composite capability.
It is an increment of the last ID registered in the
CMr registry. Ca_N and Ca_O are the Name and the
Organization of the new composite capability respec-
tively, a new name and organization are attributed to
the composite parameters when the indecomposable
capabilities have different ones. Ca_TS: time of ar-
rival of the composite capability. Ca_L represents the
physical location (geographical in terms of latitude and
longitude) or logical location (IP address). In the case
of a geographical address the composite location is
the location that comprises indecomposable capabil-
ities’ locations. For logical locations, If the sensors
reside in the same IP Subnet then the subnet that
comprises their IP address becomes their composite
location. Ca_RR represents the frequency at which a
measurement is received. A composite value for this
parameter should be the longest refresh rate:
Ca_RR←−MAX{Ca1_RR,Ca2_RR}. Ca_U reflects the
nature and unit of the composite capability. The simple
example of power consumption as a composite capa-
bility of both current and voltage takes the "Watt" as
the composite Unit of "Amperes" and "Volts". In other
cases such as well-being in a smart building, indecom-
posable capabilities such as temperature, humidity, and
air quality have different units and the composition
algorithm depicts the composite unit. Ca_V : represents
the value of the composite capability. IoT providers
have the flexibility to define and introduce parameters
customized to their composition needs. One such cus-
tomization is the introduction of weights and multipli-
ers. For example, Ca_V ← αCa1_V+βCa2_V where α

and β are two doubles that represent the weight of
C_a1V and C_a2V , respectively, and (+) a composition
operator. Composition rules and parameters are nested
in the programmable extension of the indecomposable
capabilities descriptors. This addresses the construc-
tivity concern of the NIST CPS framework as the ability
to compose capabilities of different units and sources
in a modular way would allow more innovation.



Fig. 2. Composition Hierarchy

C. Capability Hierarchy and Level

Composite capabilities can be further composed into
more complex capabilities. C1,1 and C1,2 in Figure 2
are an example of this case. The hierarchy level σ ranks
the capabilities complexity. Every capability can be ex-
pressed as follows: Cσ, y, where σ is the hierarchy level
and y is the id of the capability at that level. If σ(C)
=0, the capability is indecomposable. The composite
capability descriptor enables tracking the ancestry of
the capabilities and verification of their source without
directly sending a request to the producing entities.
This paradigm addresses the composition complexity
concern of the NIST CPS framework.

D. Specifications, results, and interactions

1) Specifications and results: A Specification (sC)
for a capability with a descriptor (C) is a request sent
from an entity to a resource to get information. The
Specification contains information about the capability
that helps intermediate entities (including proxies and
capability managers) to locate the requested capability.
A Result is a Specification for which all the parameters
are known. The Result (rC) can be represented as
the solution for a system of equations with all the pa-
rameters resolved. The space of solutions can contain
a unique element, multiple elements, or no element.
Below is an example of a Specification represented
as a system of equations where the only unknown
parameter is CV : the value of the capability. The other
parameters are known as depicted in equation 1. The
Result is a unique solution to the Specification as
depicted in equation 2.

2) Discovery interaction: The capability manager
discovers entities that verify the following rule:
CapabilityDescriptor ∈ R. the discoverability function
is defined as Disc(CM , E), it takes CM, a capability
manager, and E, an entity as input and returns a binary
based on whether or not a capability is discovered.
This addresses discoverability, one of the NIST CPS
framework composition concerns.

3) Registration interaction: C ∈ R =⇒ C can be
registered in CMr. The above implies that all k-ary
compositions ψ can be applied to C. The Reg(CM ,C)
function is a binary function that takes CM (a capabil-
ity manager) and C (the entity’s CapabilityDescriptor)
as inputs and returns True or false depending on

whether or not the descriptor is stored in the CMr and
the composition algorithms nested in its programmable
extension are stored in the CMt.

E. SendSpec(Src,Dst,Specification) interaction

It is a request sC sent to a resource, a proxy, or a
capability manager. If C represents a composite capa-
bility CapabilityDescriptor, the Specification sC will
be decomposed to its indecomposable Specifications(
sC1,sC2,...,sCk

)
first by applying the decomposition

operator ψ−1 as follows:

ψ−1 : R → Rk .
(sC ) → (sC1 ,sC2 , . . . , sCk )

→ ψ−1 (sC )

F. sendResult(Src,Dst,Result) interaction

Entities directly provide a Result for the
Specification if it doesn’t require further composition
or if it is available in the cache CMc. This explains
how the adaptability concern of the CPS framework is
addressed. Composite Results require composition.

ψ : Rk → R .
(rC1 ,rC2 , . . . , rCk ) → rC

→ ψ (rC1 , rC2 , . . . , rCk )

G. ICCF semantics/algebra example

ICCF algebra helps in expressing abstract interac-
tions (discovery, registration, composition, decomposi-
tion, specification, results) and enables formal verifica-
tion, symbolic execution, and making sure the outputs
of a system fall within trustworthy values. Pseudo-code
in Algorithm 1 summarizes all these operations in a use
case explained in the section. The space of capabilities
is described above via an example depicted in Figure 1.
Let’s consider CM , a capability manager, Ex an en-
tity that provides a composite CapabilityDescriptor Cx
from indecomposable capabilities Ca1 and Cb1. These
indecomposable capabilities are provided by entities
Ea and Eb. Ex requests a composite capability Cx from
the nearest CM . CM checks its CMc as to whether a
copy of the Result rCx is available. If this is the case,
CM returns the data to to Ex. Otherwise, CM sends



requests to entities Ea and Eb based on information
in the CMr. These latter respond by sending their
Results back to CM . The capability manager performs
composition of the Result rCx based on algorithms in
the CMt and sends it back to Ex.

Algorithm 1 ICCF Protocol

1: if Ca1 ∈ R and Cb1 ∈ R then
2: Disc(CM , (Ea,Eb))← true and
3: Reg(CM ,(Ca1,Cb1))← true

4: sendSpec(Ex, CM , sCx)
5: if rCx ∈ CMc then
6: sendResult(CM , Ex, rCx)
7: else
8: ψ−1(sCx)→(sCa1, sCb1)
9: sendSpec(CM , Ea, sCa1) and

10: sendSpec(CM , Eb, sCb1)
11: sendResult(Ea, CM , rCa1) and
12: sendResult(Eb, CM , rCb1)
13: ψ(rCa1,rCb1)→(rCx)
14: sendResult(CM , Ex, rCx)

So far, ICCF composition interactions and operations
were described using semantics inspired from the in-
tuitive mPlane platform and following the capabilities
composition guidelines of the NIST CPS framework.

V. Example: Formal specification and assessment of a
composite capability: well-being in a smart building

A. Experiment Description

In this section a composition case is studied and
its trustworthiness is assessed. It involves composing
multiple metrics to get a value-added feature. The
example under study is well-being in a smart building:
this feature depends on multiple sensor inputs from
multiple entities including temperature, humidity, pol-
lution level, and safety sensors in the smart building
under study. The well-being composite capability C5 is
represented as follows:

ψ :
(rC0 ,rC1 ,rC2 ,rC3 ,rC4) → rC5

ψ is the composition operator which represents in
this case arithmetic and logical operations on the
atomic features C0, C1, C2, C3, C4 that generate
the composite capability C5. The goal is to prototype
a composition with an assurance, which means the
composite feature’s values must fall in a trustworthy
range. To simplify the specification, the focus is shifted
towards the composition of the capabilities data, as-
suming discovery, registration, and other mPlane pro-
tocol interactions are already performed. The compos-
ite feature’s value, in this case, is a range from 1 to

4 stars representing the level of well-being achieved,
with 3 or 4 stars are the trustworthy levels. If security
level rC3 is not satisfied well-being’s value is 0 stars
as it is a mandatory aspect. This simple description
satisfies the human concern of the NIST CPS frame-
work which guides this implementation. The times-
tamp is synced across all capabilities values which
are discrete. Figure 3 shows the well-being model in
PlusCal and its translation to TLA+. Figure 4 shows the
range of values generated by each capability and the
trustworthy boundaries. Figure 5 shows results after
running symbolic execution. The model was run on a
Windows Server VM equipped with 4 i9 CPU cores
and 24 GB of RAM. TLA+ offers allows connection to
remote AWS performant resources to analyze complex
and demanding specifications. Figure 6 shows an
instance of checking a deadlock state that yields a non-
trustworthy outcome.

B. Qualitative and Quantitative Analysis

The symbolic execution of the model results in
running combinations of all atomic capabilities values
to determine the well-being state space. In Figure
4 it took 18 seconds to perform symbolic execution,
APALACHE Model Checker can replace TLC to
improve execution time [30]. From Figure 5, the
number of states generated across all combinations
is 14382900, with 5821200 duplicate states, which
means more optimization is required. The queue
suffered from congestion instantly after execution
but it was emptied over. Through this experiment
we demonstrated how to prototype a composition
based on the framework and semantics proposed,
run symbolic execution, analyze trustworthy results,
and reveal errors using a deadlock invariant. Other
examples that could benefit from this framework
include preventing oxygen toxicity in autonomous
ventilators (smart health applications) or studying
braking time as a composite feature in an autonomous
vehicle to evaluate the braking amount required to
prevent collisions (smart transportation applications).
Minimizing execution time, queue congestion, and
the effect of state-space explosion can be done by
optimizing the model, space reduction, or leverage of
better hardware (local/cloud) which TLA+ allows.

C. Implementation efforts

ICCF composition framework is agnostic from the
implementation perspective and its principles can be
extended to multiple environments. Vert.X, a reactive
and event-driven programming tool is used to imple-
ment the well-being composite feature based on ICCF



Fig. 3. Well-being model in PlusCal and its translation to TLA

Fig. 4. Capabilities and their Range of possible and accepted values
for the well-being composite feature

Fig. 5. Symbolic Execution Results as a function of time: States,
Distinct States, Queue Size

Fig. 6. Deadlock and Trustworthiness Verification

foundations. The well-being verticle receives data from
temperature and humidity sensors (provided by sensor
DHT22 AM2302), and air-quality sensors (provided
by sensor SDS011 PM2.5). Code for the project is
available in the GitHub repository [31]. An Automated
Driving System testbed [32] on the NIST’s UCEF co-
simulation environment is also being built [33]: The
goal is to be able to simulate define autonomy functions
as composite features. This will enable trustworthiness
assessment of safety critical maneuvers such as emer-
gency braking.

Conclusion and Future work

The ICCF framework and its formal criteria derived
from a composition-enabling framework, straightfor-
ward and expressive semantics, and strong formal ver-
ification language and techniques for composing CPS
and IoT capabilities were introduced. A comparison of
existing environments, frameworks, semantics, and for-
mal specification and verification techniques enabled
the selection of formal components of a composition
framework that enables specification, prototyping, and
assessment of IoT and CPS capabilities. The goal is to
provide stakeholders the tools to innovate in the IoT
and CPS space while addressing their corresponding
concerns. NIST CPS framework composition guide-
lines, and powerful semantics inspired from the mPlane
protocol, as well as formal specification and verification
techniques provided by the TLA/PlusCal package, en-
able such framework. Composition requirements, ser-
vices, and interactions were described, and based on
that, well-being in a smart building was studied as an
example. Results of model checking were generated
and an analysis of the state space was performed to
understand non-trustworthy results through a dead-
lock invariant. The following objectives are targeted
as future work: strengthening the well-being model



as well as tackling the composition concerns in other
domains of interest namely: preventing oxygen toxicity
in an autonomous ventilator and preventing collisions
during emergency braking in the case of autonomous
vehicles. Also, as capabilities composition concerns
can be mutually exclusive (simplicity vs performance),
studying this challenge in-depth is a target milestone.

NIST Disclaimer

Certain commercial equipment, instruments, or ma-
terials (or suppliers, or software, ...) are identified in
this paper to foster understanding. Such identification
does not imply recommendation or endorsement by
the National Institute of Standards and Technology,
nor does it imply that the materials or equipment
identified are necessarily the best available for the
purpose. Official contribution of the National Institute
of Standards and Technology; not subject to copyright
in the United States.

References

[1] C. Greer, M. J. Burns, D. A. Wollman, and E. R. Griffor, “Cyber-
physical systems and internet of things. (no. special publication
(nist sp)-1900-202),” tech. rep., 2019.

[2] Cisco, “Cisco iot prediction for 2030. a technical
report.” https://www.cisco.com/c/en/us/products/collateral/
se/internet-of-things/at-a-glance-c45-731471.pdf.

[3] S. Yun, H. Kim, H. Shin, H. S. Chin, and W.-T. Kim, “A novel
reference model for cloud manufacturing cps platform based
on onem2m standard,” KIPS Transactions on Computer and
Communication Systems, vol. 8, no. 2, pp. 41–56, 2019.

[4] E. R. Griffor, C. Greer, D. A. Wollman, and M. J. Burns, “Frame-
work for cyber-physical systems: Volume 1, overview,” 2017.

[5] E. R. Griffor, C. Greer, D. A. Wollman, and M. J. Burns, “Frame-
work for cyber-physical systems: Volume 2, working group
reports,” 2017.

[6] D. A. Wollman, M. A. Weiss, Y. Li-Baboud, E. R. Griffor, and
M. J. Burns, “Framework for cyber-physical systems: Volume 3,
timing annex,” 2017.

[7] oneM2M Partners, “OneM2M Technical Report :
Study of Abstraction and Semantics Enablements.”
https://onem2m.org/images/files/deliverables/Release2/
TR-0018-Industrial_Domain_Enablement-V2_0_0.pdf, 2016.

[8] A. Preventis, K. Stravoskoufos, S. Sotiriadis, and E. G. Petrakis,
“Iot-a and fiware: Bridging the barriers between the cloud
and iot systems design and implementation.,” in CLOSER (2),
pp. 146–153, 2016.

[9] A. Bassi, M. Bauer, M. Fiedler, R. van Kranenburg, S. Lange,
S. Meissner, and T. Kramp, Enabling things to talk : Design-
ing IoT solutions with the IoT Architectural Reference Model.
Springer Nature, 2013.

[10] M. Brumbulli, E. Gaudin, and C. Teodorov, “Automatic verifica-
tion of bpmn models,” in 10th European Congress on Embedded
Real Time Software and Systems (ERTS 2020), 2020.

[11] W. Li, G. Privat, J. M. Cantera, M. Bauer, and F. Le Gall, “Graph-
based semantic evolution for context information management
platforms,” in 2018 Global Internet of Things Summit (GIoTS),
pp. 1–6, IEEE, 2018.

[12] I. Boneva, J. E. L. Gayo, and E. G. Prud’hommeaux, “Semantics
and validation of shapes schemas for rdf,” in International
Semantic Web Conference, pp. 104–120, Springer, 2017.

[13] A. Kazmi, M. Serrano, and J. Soldatos, “Vital-os: An open source
iot operating system for smart cities,” IEEE Communications
Standards Magazine, vol. 2, no. 2, pp. 71–77, 2018.

[14] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and
A. Kitazawa, “Fogflow: Easy programming of iot services over
cloud and edges for smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 696–707, 2017.

[15] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker,
and M. Deardeuff, “How amazon web services uses formal
methods,” Communications of the ACM, vol. 58, no. 4, pp. 66–
73, 2015.

[16] L. Lamport, “The pluscal algorithm language,” in International
Colloquium on Theoretical Aspects of Computing, pp. 36–60,
Springer, 2009.

[17] L. Lamport, Introduction to TLA. Digital Equipment Corpora-
tion Systems Research Center [SRC], 1994.

[18] A. Kurniawan, Learning AWS IoT: Effectively manage connected
devices on the AWS cloud using services such as AWS Green-
grass, AWS button, predictive analytics and machine learning.
Packt Publishing Ltd, 2018.

[19] B. Trammell, M. Mellia, A. Finamore, S. Traverso, T. Szemethy,
B. Szabo, D. Rossi, B. Donnet, F. Invernizzi, and D. Papadim-
itriou, “mplane architecture specification.”

[20] V. Nundloll, Y. Elkhatib, A. Elhabbash, and G. S. Blair, “An onto-
logical framework for opportunistic composition of iot systems,”
in 2020 IEEE International Conference on Informatics, IoT, and
Enabling Technologies (ICIoT), pp. 614–621, IEEE, 2020.

[21] F. Sivrikaya, N. Ben-Sassi, X.-T. Dang, O. C. Görür, and C. Kuster,
“Internet of smart city objects: A distributed framework for
service discovery and composition,” IEEE Access, vol. 7,
pp. 14434–14454, 2019.

[22] D. L. McGuinness, F. Van Harmelen, et al., “Owl web ontology
language overview,” W3C recommendation, vol. 10, no. 10,
p. 2004, 2004.

[23] G. Simko, D. Lindecker, T. Levendovszky, S. Neema, and J. Szti-
panovits, “Specification of cyber-physical components with for-
mal semantics–integration and composition,” in International
Conference on Model Driven Engineering Languages and Sys-
tems, pp. 471–487, Springer, 2013.

[24] Y. Li, S. Zhao, H. Diao, and H. Chen, “A formal validation method
for trustworthy services composition,” in 2016 International
Conference on Networking and Network Applications (NaNA),
pp. 433–437, IEEE, 2016.

[25] C. Laneve and L. Padovani, “An algebraic theory for web ser-
vice contracts,” Formal Aspects of Computing, vol. 27, no. 4,
pp. 613–640, 2015.

[26] N. Le Sommer, Y. Mahéo, and F. Baklouti, “Multi-strategy dy-
namic service composition in opportunistic networks,” Informa-
tion, vol. 11, no. 4, p. 180, 2020.

[27] H. Groefsema, N. R. van Beest, and M. Aiello, “A formal model
for compliance verification of service compositions,” IEEE
Transactions on Services Computing, vol. 11, no. 3, pp. 466–
479, 2016.

[28] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, and T. Winterhal-
ter, “Coq coq correct! verification of type checking and erasure
for coq, in coq,” Proceedings of the ACM on Programming
Languages, vol. 4, no. POPL, pp. 1–28, 2019.

[29] T. Ali, M. Nauman, and M. Alam, “An accessible formal specifi-
cation of the uml and ocl meta-model in isabelle/hol,” in 2007
IEEE International Multitopic Conference, pp. 1–6, IEEE, 2007.

[30] I. Konnov, J. Kukovec, and T.-H. Tran, “Tla+ model checking
made symbolic,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[31] K. HALBA, “Iotcap : A platform based on the vert.x toolkit and
iccf foundations.” https://github.com/usnistgov/ICCF.

[32] K. Halba, E. Griffor, P. Kamongi, and T. Roth, “Using statistical
methods and co-simulation to evaluate ads-equipped vehicle
trustworthiness,” in 2019 Electric Vehicles International Con-
ference (EV), pp. 1–5, IEEE, 2019.

[33] M. Burns, T. Roth, E. Griffor, P. Boynton, J. Sztipanovits, and
H. Neema, “Universal cps environment for federation (ucef),”
in 2018 Winter Simulation Innovation Workshop, 2018.

https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://onem2m.org/images/files/deliverables/Release2/TR-0018-Industrial_Domain_Enablement-V2_0_0.pdf
https://onem2m.org/images/files/deliverables/Release2/TR-0018-Industrial_Domain_Enablement-V2_0_0.pdf
https://github.com/usnistgov/ICCF

	Introduction and paper plan
	Related work
	Formal criteria and ICCF foundations
	Formal criteria
	Comparing formal components
	Frameworks
	Semantics
	Formal specification and verification


	Introducing ICCF composition algebra semantics
	The space of capabilities and descriptors
	Composition operators and descriptors
	Capability Hierarchy and Level
	Specifications, results, and interactions
	Specifications and results
	Discovery interaction
	Registration interaction

	SendSpec(Src,Dst,Specification) interaction
	sendResult(Src,Dst,Result) interaction
	ICCF semantics/algebra example

	Example: Formal specification and assessment of a composite capability: well-being in a smart building 
	Experiment Description
	Qualitative and Quantitative Analysis
	Implementation efforts

	References

