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Abstract— A commonly used methodology to estimate the 

proximity of two individuals in an automatic exposure notification 

system uses the signal strength of the Bluetooth signal from their 

mobile phones. However, there is an underlying error in 

Bluetooth-based proximity detection that can result in wrong 

exposure decisions. A wrong decision in the exposure 

determination leads to two types of errors: false negatives and false 

positives. A false negative occurs when an exposed individual is 

incorrectly identified as not exposed. Similarly, a false positive 

occurs when a non-exposed individual is mistakenly identified as 

exposed. Both errors have costly implications and can ultimately 

determine the effectiveness of Bluetooth-based automatic exposure 

notification in containment of pandemics such as COVID-19. In 

this paper, we present a platform that allows for the analysis of the 

system performance under various parameters. This platform 

enables us to gain a better understanding on how the underlying 

technology error propagates through the contact tracing system. 

Preliminary results show the considerable impact of the Bluetooth-

based proximity estimation error on false exposure determination. 

Alternatively, using this platform, analysis can be performed to 

determine the acceptable accuracy level of a proximity detection 

mechanism in order to have a more effective contact tracing 

solution. 
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I. INTRODUCTION 

Contact tracing is an epidemiological technique used to 

identify people who have had “contact” with an infected person. 

In the United States and for COVID-19, the Centers for Disease 

Control and Prevention (CDC) defines a “contact” as anyone 

who has been within 2 meters of an infected person for at least 

15 minutes, beginning 2 days prior to the appearance of his/her 

symptoms [1]. Prior to COVID-19, contact tracing was 

primarily a manual process to trace and identify people who 

were in close proximity to a known infected person. Once those 

people are identified, public officials will notify them of 

potential exposures along with instructions to prevent further 

spread of the disease. The procedure after such exposures 

typically involves a period of self-isolation and may also 

include testing. 

Automatic Exposure Notification is an electronic 

notification protocol based on a proximity detection mechanism 

such as Bluetooth Low Energy (BLE). These protocols often 

include various privacy preserving mechanisms to protect the 

privacy of the users.  The popularity of smart phones and the 

availability of BLE technology in the new generation of these 

phones make automatic exposure notification a viable approach 

to slow down or prevent the spread of the virus during a 

pandemic. This approach requires installing an app developed 

and published by authorized health authorities. The 

effectiveness of automatic exposure notification critically 

depends on the adoption and utilization of this app by an 

overwhelming majority of people in a community. The cost and 

practical advantages of automatic exposure notification over the 

traditional manual contact tracing justifies its adoption and 

usage. One of these advantages is a faster notification of the 

exposed individuals compared to manual tracing. In pandemic 

situations, time is of an essence and any delay in identifying 

exposed people could have major consequences. Another 

advantage is that by using automatic exposure notification 

individuals who are not necessarily known to the infected 

person can easily be identified. Such individuals might be hard 

to locate using the traditional manual tracing [2].  

Automated exposure notification can effectively 

complement or assist manual contact tracing process during 

pandemics, especially when resources for manual contact 

tracing is not sufficient. The combination of automated 

exposure notification and manual contact tracing along with 

appropriate policy decisions is expected to efficiently contain 

the spread of the virus at minimal economic cost. The accuracy 

of exposure determinations directly impact the success of this 

containment. Location-based technologies such as GPS or QR 

code scanning have also been suggested as a means to estimate 

proximity in contact tracing systems. However, privacy 

concerns, spatial accuracy, and other practical limitations have 

created challenges to their implementation and public adoption. 

As such, BLE signal strength measurement is the most popular 

mechanism for proximity detection in an automated exposure 

notification system. The Private Automated Contact Tracing 

(PACT) project led by several laboratories at MIT has 

developed one of the most widely used apps that can be installed 

on most commercially available smart phones [3]. This app uses 

the BLE signal strength to estimate the distance between two 

individuals holding the phones. These distances are used to 

assess whether the contact with an infected individual justifies 

sending exposure notification to the healthy individual [4].   

The accuracy of BLE-based proximity detection heavily 

depends on the mapping from the BLE received signal strength 

to the corresponding distance between the two individuals. The 

variations in the Bluetooth signal propagation will cause an 



unavoidable error in this mapping. These variations are due to 

many factors such as the surrounding environments, phones 

positions and orientations relative to the body, antenna gain 

patterns, etc. Inaccuracies in the estimated distances can lead to 

wrong exposure determinations such as false negatives and 

false positives. A false negative error occurs when an exposed 

individual is incorrectly identified as not exposed. Similarly, a 

false positive error occurs when a non-exposed individual is 

wrongly identified as exposed. Both types of errors have costly 

implications and can ultimately reduce the effectiveness of the 

Bluetooth-based automatic contact tracing in containment of 

pandemics such as COVID-19. To the best of the authors’ 

knowledge, there are no prior studies that have investigated the 

impact of this underlying error on the binary exposure decision 

(i.e., exposed/not exposed). In this paper, a simulation platform 

is presented that allows for the evaluation of the system 

performance under various parameters. One of the objectives of 

this platform is to gain a better understanding on how the 

underlying BLE technology error affects the effectiveness of 

the contact tracing system. Our preliminary results demonstrate 

that inaccuracies in the Bluetooth-based proximity estimation 

may result in high rate of false exposure determination. In 

addition, it is shown that proper filtering of the estimated 

proximities may substantially reduce the rate of such false 

determinations.  

The rest of the paper is organized as follows. Section II 

describes the simulation platform that has been developed to 

study potential exposures using BLE-based proximity 

detection. Preliminary simulation results and discussions are 

provided in Section III. Finally, conclusions and plans for future 

work are described in Section IV. 

II. SIMULATION PLATFORM 

To understand the effect of the Bluetooth proximity 

estimation error on automatic exposure notification, a 

simulation platform has been developed to test scenarios 

involving people walking in a plaza, campus area, or 

neighborhood. Initially, a population of agents is created and 

randomly placed within a closed simulation area. A certain 

percentage of the population is designated as being infected and 

contagious. The mobility pattern of the agents will obviously 

play an important role on the exposure possibilities. To conduct 

our initial study, here we have used the mobility algorithms in 

[5]. The algorithms enable us to choose and modify the 

individual parameters of each agent’s behavior (e.g., speed and 

movement) as well as the agents’ goals. A potential challenge 

with agent dynamic in mobility algorithms is the possibility of 

jamming [6]. Jamming can occur when all the agents in a 

simulation have similar goals, e.g., all trying to reach the same 

area within the simulation field. To prevent jamming and the 

potential of biasing of the results, the goal of each agent is 

periodically randomized during each simulation. Using our 

platform, the true and estimated distances between any two 

moving agents can be tracked at fixed time intervals. Here, we 

have chosen one second as the length of this time interval. The 

estimated distance is calculated as the summation of the true 

distance and an error which is due to the BLE proximity 

detection mechanism. The statistical distribution of this error 

can be obtained from a given pathloss distribution associated 

with the Bluetooth wireless channel. 

Each healthy agent in the simulation maintains two counters: 

(a) True Exposure Counter (TEC), and (b) Estimated Exposure 

Counter (EEC). The true exposure counter keeps track of the 

total time when the true distance from infected agents has been 

below 2 meters. Similarly, the estimated exposure counter 

keeps track of the total time when the estimated distance from 

infected agents has been below 2 meters. These counters are 

updated every second after considering the population 

dynamics in the simulation platform. Exposure determination 

for all healthy agents can be made based on these counters at 

any time during the length of a simulation. Comparison of the 

values of these counters to the CDC guidelines (i.e., 15 minutes 

threshold) leads to 4 possible states for each agent including two 

types of errors in exposure determination. 

A false negative exposure error occurs when the agent’s true 

distance counter goes above the 15 minutes threshold while the 

estimated distance counter shows the accumulated exposure 

time still below that threshold. Conversely, a false positive 

exposure error occurs when the true distance counter of a heathy 

agent is less than 15 minutes while its estimated exposure 

counter is above 15 minutes. A cutoff radius of 10 m around 

any infected agent has been considered in the simulation to limit 

the number of exposures checks at each time interval. This 

radius is often considered as the maximum coverage of a BLE 

transmitter in environments which cause minimal multipath and 

shadowing on the signal propagation path [7]. Also, it can be 

shown that the probability of estimated exposure will be 

insignificant if the Bluetooth signal of the infected agent’s 

mobile phone can reach beyond the 10 m. 

 

III. SIMULATION RESULTS 

Consider a population of 800 agents moving according to 

the mobility model [5] inside a 100 m x 100 m area. The number 

of infected agents at the start of the simulation is set to 5% of 

the population. Duration of the simulation is set to 8 hours to 

represent one full working day. Assuming a Lognormal 

pathloss distribution for the BLE channel with a Gaussian 

distributed shadowing and fading component with standard 

deviation �, the distribution of the error in the estimated 

distance would be a function of (�), pathloss exponent (�) and 

the true distance between the agents. For a pathloss exponent of 

� = 2,  the impact of error in the estimated distance on false 

exposure determination can be investigated using the 

simulation platform described in the previous section. Figure 1 

shows the maximum average numbers of false negatives and 

positives versus � for the scenario described above. The 

confidence interval of one standard deviation has been used for 

all results presented here. As observed, when  � = 0, there is 

no error in the estimated distance, and therefore, there are no 

false exposure determination in the system. However, as � 

increases, number of false positives noticeably increase as well. 

In environments with strong fading and shadowing (e.g.,  � =

5), almost half of the population will be mistakenly identified 



as “exposed” by the end of the simulation. As a result of this 

misidentification, a significant percentage of the population 

could be asked to quarantine. These are in addition to the 

detected exposed people who also require isolation.  

The mobility pattern used in these simulations does not 

consider occasional congregation by the agents. The constant 

movements of the agents lead to higher probability of their true 

distances being over the 2 m radius of each other. For agents 

that are outside the 2 m radius of an infected agent, error in 

proximity detection can only result in false positive type of 

exposure determination. In addition, higher error intensity (i.e., 

�) will increase the likelihood of this false positive 

determination. This is the main reason for the significant rise in 

the number of false positives with increasing � in Fig. 1. 

 

 
Fig. 1: Number of false exposure determinations versus �  

 

Despite the monotonic increase in the number of false 

positives, the number of false negatives slightly increases at 

first and then decreases as � increases. The main reason behind 

this trend is the rapid increase in the number of false positives 

within the population. A false negative occurs when an agent is 

within the 2 m distance of another infected agent for over 15 

minutes; however, the error in the estimated proximity leads to 

the failure by the EEC to correctly capture this time above the 

15 min threshold. Normally, higher error intensities (�� 
increases the likelihood of this event; but here, with the rapid 

increase in the number of false positives, the remaining “not 

exposed” candidates that could fall within the 2 m radius of an 

infected agent will decrease quickly. This means that on 

average, there will be a smaller number of “not exposed” agents 

that can be mistakenly determined as “false negative” when � 

increases. If there were no possibility of false positives, then a 

monotonic increase in the number of false negatives can also be 

expected. If the sensing radius of the BLE signal in our 

simulation is set to 2 m (instead of the 10 m that was used to 

obtain Fig. 1), then there will be no possibility of occurrence for 

false positives. Then, a monotonic rise in false negatives can be 

observed as expected. Fig. 2 shows this trend when there are no 

false positives (i.e., sensing radius=2 m).   

 
Fig. 2: Number of false negatives versus � 

 

To obtain the results in Figures 1 and 2, the instantaneous 

values of the estimated proximities have been used in the 

calculation of EEC and TEC. The instantaneous samples of the 

estimated proximities are most likely correlated in time and 

does not form an i.i.d. (i.e., independent and identically 

distributed) process. This is because the error samples are 

generated by the variation of the BLE signal strength when one 

or both individuals in close proximity move or change the 

positions. The correlation between the error samples in the 

estimated proximities is likely a function of the temporal 

correlation of the BLE wireless communication channel. This 

correlation can be exploited by using a proper windowing 

function to filter the sequence of estimated distances and lessen 

the impact of �. For stationary individuals a simple rectangular 

window (averaging the sequence of estimated distances) can 

asymptotically mitigate the with increasing length of the 

window. We conjecture that the optimal length of this window 

for moving agents depends on the coherence time of the 

wireless channel. Estimation of this coherence time is quite 

challenging as it directly relates to the mobility pattern of the 

population under study as well as the movement (and possibly 

orientation) of their mobile phones.  

 
Fig. 3: Number of false negative and positive determinations versus � 

after applying 3-point moving average 

 

In our preliminary study, we have observed that using a 3-

point moving-average window significantly reduces the number 

of false exposure determinations for the mobility algorithm 

used in our platform. Figure 3 shows the results. The number of 



false negatives has increased to an average maximum of around 

17; however, false positives occurrences has dropped 

significantly. Compared to the similar results in Fig. 1, using 

this simple filter has substantially reduced the total number of 

false exposure determinations. The average total number of 

false positives and false negatives versus time with and without 

filtering is also shown in Figure 4.  

 

 
Fig. 4: Number of false exposure determinations during 8 hours of 

simulation (� = 2� 

 

IV. CONCLUSIONS AND FUTURE WORK 

This paper summarizes our initial results on the impact of the 

underlying error in Bluetooth proximity estimation on the 

accuracy of the exposure determination in an automatic contact 

tracing system. Our preliminary results indicate that the 

proximity estimation error using BLE may have substantive 

effect on the number of false exposure determinations. Since 

analytical investigation of this problem is not feasible, we have 

developed an agent-based simulation platform which can be 

extended to study of a wide range of scenarios and the desired 

number of agents. False positive determinations incur economic 

cost due to the increase in the number of unnecessary 

quarantines. At the same time, false negative determinations 

adversely impact infection propagation and jeopardizes proper 

control of a pandemic.  Therefore, it is important to develop 

strategies that can minimize these errors by considering their 

trade-offs and corresponding risks. 

The simulation platform presented here can be easily 

extended by incorporating additional mobility patterns for the 

agents. This will allow us to investigate the effect of each 

pattern on the resulting false exposure determinations. As 

briefly mentioned in the previous section, a more 

comprehensive study of the windowing function and its 

relationship with the agents’ mobility pattern as well as the 

frequency of BLE signal measurement might also be beneficial 

to minimize the impact of � on false determinations. Higher 

measurement frequency can potentially lead to higher accuracy 

in the estimated distance; however, it will drain the battery of 

the mobile phone. This would necessitate more frequent 

recharge when a contact tracing app is used. The authors plan 

to study the impact of the length of the time interval between 

consecutive BLE signal measurements using this simulation. 
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