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Abstract— For accurate characterization and evaluation of
wireless mechatronic systems, effective modeling of wireless
communication channels is of paramount importance, espe-
cially to simulation-oriented methods. Conventional simulation
methods employ mathematical models to abstract details of
prototype channels. Although such mathematical models often
have rigorous theoretical underpinnings, they can be weak in
capturing complex environmental characteristics and complex
forms of diversity that are exhibited in industrial communication
environments. To address this problem, we develop, in this paper,
a new approach to deriving effective simulation models for
industrial communication channels. Our approach involves field
measurements from actual wireless mechatronic environments
together with feature extraction from the measurements, and
data-driven classification based on the extracted features. Our
approach leads to a general framework for simulating wireless
mechatronic systems in a way that realistically incorporates the
complex channel characteristics of these systems.

I. INTRODUCTION

In recent years, integrating wireless communications capa-
bilities into industrial mechatronic systems has attracted great
interest due to promising advantages offered by wireless com-
munications [1]. This integration brings about highly complex
design spaces, which we refer to as wireless-integrated factory
system (WIFS) design spaces, involving interactions among
physical factory layout, control algorithms, and wireless com-
munication networks (e.g., see [2]). General and effective sim-
ulation methods are needed for WIFS environments and other
types of complex mechatronic environments for performance
assessment of existing system designs, development of new
designs, and planning of technology updates.

Many software tools have been developed to provide so-
phisticated capabilities for communication network simulation.
However, traditional radio frequency (RF) wireless channel
models that are used with such tools have significant limita-
tions in the context of simulating WIFS environments. Such
models typically utilize mathematical formulations associated
with collected data or power delay profiles (PDPs) obtained
from third-party studies (see Section II). WIFS simulations
with such models may not accurately reflect actual system
performance since the models do not take into account
harsh conditions and other distinguishing characteristics of
RF channels in industrial communication environments. Such

characteristics arise, for example, from vibration of machinery,
and the presence of metal objects (e.g., see [3]), which can
have a major impact on communication performance.

In this paper, we build upon our recent work that introduced
a new link layer simulation approach for integrating field
measurements into WIFS simulation [4]. We refer to that
method as the Measurement-based Channel Library Gener-
ator (MCLG) method, which involves constructing channel
library modules, in the form of PER/SNR (packet error rate
/ signal-to-noise ratio) tables, from field measurements in
a systematic manner. However, the MCLG method has a
couple of limitations. First, the clustering algorithm used based
on [5] is computationally intensive, and the running time can
become very large with large measurement datasets. Second,
the derived channel libraries correspond specifically to the
measured environment for the specific measured communi-
cation paths. In large source environments, it is unrealistic
to measure channel impulse responses (CIRs) for all possible
communication paths.

In this paper, we develop significant improvements to the
MCLG method that address the two limitations described
above, and allow the method to be used more generally, in a
broader class of WIFS design space exploration scenarios for
a given source environment. We refer to the improved version
of the MCLG method as the Generalized Measurement-based
channel Library Generator (GMLG) method, and we refer to
our prototype implementation of the method as GMLG.

II. RELATED WORK

Candell et al. discuss challenges involved in employing
industrial wireless technology in mechatronic systems, and
present guidelines for addressing those challenges [6]. A large
body of literature addresses the modeling of wireless commu-
nication channels with emphasis on different communication
modeling concerns (e.g., see [7], [8]).

Various works have investigated the modeling of commu-
nication channels in more challenging communication envi-
ronments. For example, Abbas et al. performed comparisons
between simulations and measurements to evaluate vehicle-
to-vehicle communication channel parameters [9]. Peil et



al. developed channel models using wireless propagation char-
acteristics in an industrial environment [10]. Other works
emphasize application of existing simulation frameworks to
design challenges in specific application areas (e.g., see [2],
[11]–[13]).

The GMLG method presented in this paper differs from
previous works, including those summarized above, in its em-
phasis on systematically incorporating field measurements into
simulation of wireless mechatronic systems, and its application
of feature clustering to generalize the types of communication
channels that can be simulated using a given set of field
measurements.

III. METHODS

Fig. 1 provides a block diagram illustration of the
GMLG method. Input to GMLG consists of a set Sc =
{C1, C2, . . . , Cm} of CIR measurements from distinct phys-
ical communication paths. The output includes a set Sk =
{K1,K2, . . . ,Kn} of representative channels along with a
PER/SNR table T (Ki) that characterizes the communication
conditions represented by each Ki. The output also includes
a machine learning model M that maps features extracted
from communication paths in the source environment into
representative channels. The primary components of MCLG
that are reused in GMLG are the Link Level Simulator and
Pre-processing block (see Fig. 1). A new clustering process is
devised in GMLG to be more computationally efficient and to
support the objective of deriving the classification model M .

In summary, the GMLG method processes CIR measure-
ments to produce as output a triple (Sk, T,M), where T
provides a mapping of the representatives in Sk into corre-
sponding PER/SNR tables, and M provides a mapping of
features extracted from arbitrary communication paths into
Sk. Each ordered pair (Ki, T (Ki)) is referred to as a library
module that is generated by the GMLG method, and can be
plugged into system-level simulators to aid in exploring WIFS
design spaces.

Fig. 1. An illustration of the GMLG method.

A. Feature Selection and Extraction

The input to the Feature Extraction block in Fig. 1 is a
set of refined CIRs Sr = {R1, R2, . . . , Rn} that is produced

by the Pre-processing block. Operations performed in the
Pre-processing block include noise filtering, intra-CIR com-
pression, and peak power determination, which are discussed
in [4]. The output of the Feature Extraction block is a feature
mapping F : Sr → Sf , where for each Ri ∈ Sr, F (Ri) is the
feature vector extracted from the refined CIR Ri.

At this point, it is useful to distinguish between two types
of features that are employed in GMLG — external and
system features. External features are those that are input to
the generated machine learning model M when applying M
to higher level simulations by users. It should be possible
to derive external features conveniently from data associated
with the layout of the source environment. That way, new
communication paths can be predicted by the model M even
though they are not included in the measurements. On the
other hand, system features are the features that are used to
train the model M . In general, the system feature set includes
all of the external features along with zero or more additional
features. System features can be defined in terms of field
measurement data — for example, they can be extracted from
the CIRs collected to form the feature vector Sf . In GMLG, we
have incorporated three external features, which are the path
distance, line of sight (LOS) / non-LOS (NLOS) indicator, and
Rician K Factor, with two additional features — mean delay
and root mean square (RMS) delay spread — that are included
in the system feature set.

B. Clustering

The Clustering block in Fig. 1 partitions refined CIRs into
groups of related CIRs. Each group or cluster corresponds
to a distinct channel library module that is generated by
GMLG. A distinguishing aspect of GMLG is that clustering
is performed in the feature space — that is, the clustering
algorithm operates on the feature vectors rather than on the
refined CIRs themselves. This enables much more efficient
clustering since the feature vectors are highly compressed
representations of the refined CIRs.

A wide variety of clustering techniques can be used in the
GMLG method. Different clustering algorithms may be chosen
depending, for example, on the spread of data points for each
feature. In GMLG, we apply spectral clustering [14], which is
known for its effectiveness in handling categorical data, and
for its ability to handle inseparable data and derive non-convex
clusters.

C. Clustering Assessment and Weight Optimization

For assessment of clustering solutions, we consider two
different metrics, the silhouette coefficient (e.g., see [15]),
and the average feature variance. In our context, a cluster
corresponds to a set of refined CIRs that are grouped together
by the Clustering block (Fig. 1), and a clustering solution
corresponds to a partitioning of all refined CIRs into disjoint
subsets (candidate clusters).

To assess the quality of clustering solutions in GMLG, we
employ a composite metric that is formed of different sub-
metrics, which are listed below. For a given sub-metric, we



refer to the feature set used in assessment as the evaluation
feature set, which is a subset of the five system features.

• Γ1 is defined as the silhouette coefficient using an evalu-
ation feature set that consists only of the K factor, LOS/NLOS
indicator, and path distance (external feature set of GMLG).

• Γ2 is defined as the silhouette coefficient using an evalu-
ation feature set that consists only of the K factor, mean delay,
and RMS delay spread. We refer to these features as quality
assessment features since they are representative features for
capturing channel characteristics from a measured CIR. The
sub-metric Γ2 is the main sub-metric for guiding the tuning
process of clustering in GMLG.

• Γ3,Γ4,Γ5 are variance metrics for the quality assessment
features — K factor, mean delay, and RMS delay — respec-
tively.

Although the external feature set is used for feature cluster-
ing, all five metrics Γ1,Γ2, . . . ,Γ5 are used to guide the tuning
process for feature weights when invoking spectral clustering.
In other words, GMLG executes spectral clustering iteratively
using different relative weightings of the features. Intuitively,
the output solution B is selected as a solution that maximizes
Γ2, while retaining reasonable performance on the other four
metrics.

D. Model Training

The clustering solution provided by the Clustering block
is used to train a machine learning model, as illustrated by
the Model Training Block in Fig. 1. The objective is to
derive a trained machine learning model M that can map
novel paths, based on estimated features from those paths,
into representative channels.

The input to Model Training are the feature vectors
F (R1), F (R2), . . . , F (RN ) for the refined CIRs along with
the corresponding cluster indices B(R1), B(R2), . . . , B(RN ).
The cluster indices are used as labels for supervised learning
based on feature vectors. Intuitively, the model is trained to
predict a well matched representative channel from a given
feature vector composed of the external features.

There are many types of classifiers that can be applied
within the GMLG method for the derivation of M . In GMLG,
we apply the k-nearest-neighbors (KNN) algorithm [16],
which is capable of handling classification functions involving
categorical output results.

IV. EXPERIMENTS

The set of field measurements that we use in our ex-
periments consists of CIRs obtained from a measurement
campaign from an automotive factory site performed by Na-
tional Institute of Standards and Technology (NIST) [17]. We
implement clustering and model training in Python (Version
3.7.4) and make use of the scikit-learn package [18]
(Version 0.22).

A. Feature Clustering Results

The automotive factory site dataset includes 41,700 CIRs,
which are later reduced to 1,524 refined CIRs after pre-
processing. The results of the clustering process in GMLG

on the automotive factory dataset are illustrated in Fig. 2.
The figure provides a perspective on how clusters are formed
in relation to different pairs of features. Each data point in
each of the three plots corresponds to a feature vector that
is projected onto the two-dimensional subspace corresponding
to each plot. The data points are colored differently based on
which cluster they are assigned to. The results illustrate that the
clustering process is effective in separating the feature vectors
into distinct regions of the feature space — this is perhaps
most strongly demonstrated by the plot involving the K factor
and path distance.

Fig. 2. Separation of feature vectors into clusters for the automotive
factory dataset: (a) K factor vs. LOS/NLOS indicator, (b) path distance
vs. LOS/NLOS indicator, (c) path distance vs. K factor.

B. Comparison Between AP-DTW and Feature Clustering

In this section, we present results that demonstrate signifi-
cant improvements provided by the feature-based clustering
method in GMLG compared to the clustering approach in
MCLG, which is based on affinity propagation (AP) and
dynamic time warping (DTW).

Because the computation time for the AP+DTW approach
grows very rapidly with the dataset size, we perform the
comparison experiment in this section using a smaller dataset
with 254 processed-CIRs. This dataset is derived by using a
larger downsampling factor during pre-processing.

The improvement in computational speed is significant. We
found that the APT+DTW method required an average of
4,217 seconds with standard deviation σ = 194.0, while
GMLG required an average of 23.47 seconds with σ = 5.64.
These results represent a speedup of 179.7X. The execution
time measurements were averaged over 20 runs.

Table I compares the quality of the derived clustering
solutions between AP+DTW and GMLG. The results show
significant improvements in terms of all of the five evaluation
metrics {Γi} that were defined in Section III-C, especially for
the silhouette metric Γ1 and the variance metric Γ3.

C. Classifying Novel Paths

As motivated in Section I, an important capability of the
GMLG method is the ability to classify new communication
paths (i.e., paths that do not correspond to any of the paths
covered in the field measurements that are used to construct



TABLE I
COMPARISON OF CLUSTERING SOLUTIONS.

the clusters). We evaluate this capability in our experiments
by applying the derived classification model M on a testing
dataset that is extracted from the original automotive factory
measurement dataset, and that is excluded from the set of
CIRs that is used in clustering and model training in GMLG.
The paths in the testing dataset can be viewed as novel
communication paths.

In this experiment, the classification labels produced in the
experiment presented in Section IV-A are used as the ground
truth. We then evaluate how accurately the model M , which is
produced by GMLG, predicts the cluster label from the highly
compressed (feature-based) representation that M operates
on. We use 80% of the dataset as input to GMLG, which
is configured to generate three representative channels. The
remaining 20% of the dataset is used for testing.

The results of this experiment show that the number of mis-
classifications is only 3 out of 305 total testing instances,
for a testing accuracy of 99.0%. The experiment therefore
demonstrates the potential of the GMLG method to produce
high accuracy mappings of novel communication paths into
representative channel library modules

V. CONCLUSIONS

This paper has introduced a new approach for integrat-
ing field measurements into the modeling and simulation of
mechatronic systems that are integrated with wireless com-
munication capability. Novel aspects of the approach include
feature extraction and feature clustering, which allow for
derivation of representative channels and associated channel li-
brary modules in an efficient manner from highly compressed,
feature-based representations. Moreover, the derived clusters
are used to train a classification model, which can be used
to classify novel communication paths (not represented in
the field measurements) into the most representative channel
library modules for simulation. In the experiments presented
in the paper, key parameters of the proposed approach, such
as the downsampling factor applied to CIRs, and the number
of clusters to generate, were derived empirically. A useful
direction for future work is the development of automated
methods and supporting tools for setting these parameters.

DISCLAIMER

Certain commercial equipment, instruments, materials, soft-
ware or systems are identified in this paper in order to specify
the experimental procedure adequately. Such identification is
not intended to imply recommendation or endorsement by

the National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.
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